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Strong Interactions in Multimode

Random Lasers

Hakan E. Tiireci,"* Li Ge,? Stefan Rotter,?t A. Douglas Stone?

Unlike conventional lasers, diffusive random lasers (DRLs) have no resonator to trap light and

no high-Q resonances to support lasing. Because of this lack of sharp resonances, the DRL has
presented a challenge to conventional laser theory. We present a theory able to treat the DRL
rigorously and provide results on the lasing spectra, internal fields, and output intensities of DRLs.
Typically DRLs are highly multimode lasers, emitting light at a number of wavelengths. We show
that the modal interactions through the gain medium in such lasers are extremely strong and lead
to a uniformly spaced frequency spectrum, in agreement with recent experimental observations.

ovel laser systems have emerged recently
Nbecause of modern nanofabrication capa-

bilities (/-3). The diffusive random laser
(DRL), perhaps the most challenging of the new
systems, consists of a random aggregate of par-
ticles that scatter light and have gain or are
embedded in a background medium with gain
(2, 4-8). Whereas light scattering in such a
random medium can give rise to Anderson-
localized, high-Q resonances (9, 10), in almost all
experiments the localized regime is not reached,
and the laser “cavity” has no isolated resonances
in the absence of gain. Despite the lack of sharp
resonances, the laser emission from the more re-
cent DRLs (2, 5, 6) was observed to have the
essential properties of conventional lasers: the ap-
pearance of coherent emission with line-narrowing
above a series of thresholds and uncorrelated
photon statistics far from threshold (/7). Earlier
work on random lasers (4, 7) did not find isolated
narrow lines and was interpreted as incoherent
lasing, in which there was intensity feedback but
not amplitude feedback. Later experiments (2)
and recent numerical studies (/2) indicated that
the lasing involves coherent phase-sensitive
feedback in at least some cases. Our work shows
that standard coherent multimode lasing is pos-
sible even when the linear resonances are much
broader than their spacing, raising the question of
what determines the emission frequencies of
DRLs because they are not determined by the
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position of passive cavity resonances. Furthermore,
recent experiments on porous GaP DRLs have
shown that the frequencies are rather uniformly
spaced and stable from pulse to pulse, although
the intensities vary substantially (§). We show
that this is a result of strong nonlinear interactions
between lasing modes combined with extreme
leakiness, a regime particularly difficult to treat.
In any multimode laser, the different modes com-
pete with one another through the gain medium
in a complex manner that depends on the spatial
distribution of the electric field of each mode.
This is particularly severe in the DRL, in which
there are many spatially overlapping modes with
similar (very short) lifetimes.

The finesse, f, of a resonator is defined as the
ratio of the resonance spacing to the resonance
width; standard laser theory only addresses lasers
with high finesse (weakly open) resonators and
cannot be applied to the DRL, which has finesse
much less than unity. Hence, no analytic results
have been derived relating to two-dimensional
(2D) or 3D DRLs, and realistic numerical sim-
ulations have been limited because of the com-
putational demands. We introduced a formulation
of semiclassical laser theory in terms of bior-
thogonal modes, called constant flux (CF) states,
which treats lasing media with any degree of
outcoupling and includes the effects of nonlinear
modal interactions to all orders (/3, /4). We
present analytic and numerical results using this
approach applied to a DRL.

The simplest model for a laser that captures
all of the relevant spatial complexity uses the
Maxwell-Bloch equations (15, 16), which are
three coupled nonlinear equations for the electric
field, the polarization, and the inversion of the
gain medium. For stationary multimode lasing,
the modes predicted by these equations are deter-

mined by the time-independent self-consistent
equation (/3)

iy
Pu(x) = m
o Do) Glex' ky)'Py(x)
e()(1 + X Tu|W (x)

1
)()

where the electric field is given by e(x,f) =
S (x)e . In Eq. 1, the lasing frequencies
Q, = ck, and the lasing mode functions ‘P, (x)
are assumed to be unknown (henceforth we set
the speed of light ¢ = 1 and use the wave vector
to denote frequency as well). In Eq. 1, &, is the
atomic frequency, v, is the transverse relaxation
rate, I, = I'(k,) is the gain profile evaluated at
kv, Do(x) = Dg [1 + do(x)] is the pump, which
can vary in space, and e(x) = n*(x) is the
dielectric function of the “resonator.” Electric
field and pump strength are dimensionless, being
measured in units e, = h YY) /2g and Dy, =
4mk2g? /iy, where v is the longitudinal relax-
ation rate and g is the dipole matrix element of
the gain medium. Each lasing mode ‘¥, depends
nonlinearly on all of the other lasing modes
through the denominator in Eq. 1, which repre-
sents the “spatial hole-burning” (15) interaction
with the other modes. Through this mechanism,
modes that lase first tend to suppress lasing in
other modes, particularly those with which they
are correlated in space.

For simplicity we study a 2D DRL and take
the gain medium to be a uniform disk of radius R,
which contains randomly placed nanoparticles
with constant index greater than unity. The light
field in the cavity can be either transverse
magnetic or transverse electric polarized perpen-
dicular to the plane of the disk, leading to a scalar
equation for its normal component. The integral
in Eq. 1 is over the gain region, and the kernel
G(x,x";k) is the Green function of the cavity
wave equation with purely outgoing boundary
conditions (/3). This represents the steady-state
response of the passive cavity to a mono-
chromatic dipole oscillating with frequency & at
x'. The nonhermitian boundary conditions on
the Green function lead to a spectral repre-
sentation G(x,x";k) in terms of dual sets of
biorthogonal functions ¢,,(x, k) and @,,(x, k),
termed constant flux (CF) states, with complex
eigenvalues, £, (13).

The CF states play the role of the linear cavity
resonances within our theory and reduce to the
quasi-bound (QB) states within the cavity to a
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Fig. 1. Lasing frequencies of a DRL. Black circles and crosses represent the complex frequencies of
the CF and QB states, respectively; they are distinct but statistically similar. Because their spacing
on the real axis is much less than their distance from the axis, the system has no isolated linear
resonances, and the cavity has average finesse less than unity (f = 0.05). Solid colored lines represent
the actual frequencies k, of the lasing modes at pump Do/Do. = 123.5035; dashed lines denote the
values kff’) arising from the single largest CF state contributing to each mode (the CF frequency is
denoted by the corresponding colored circle). The thick black line represents the atomic gain curve
T'(k), peaked at the atomic frequency, k,R = 30. Because the cavity is very leaky, the lasing fre-
quencies are strongly pulled to the line center in general; however, the collective contribution to the
frequency is random in sign. (Inset) Schematic of the configuration of nanoparticle scatterers in the
disk-shaped gain region of the DRL.

Fig. 2. Lasing intensi-
ties of a DRL. Modal in-
tensities of a DRL versus
pump Dy, for the disorder
configuration of Fig. 1,
illustrating complex non-
linear dependence and
modal interactions. For
example, the black and
orange modes approach
each other in frequency
and interact so strongly
that the black mode is
driven to zero, at which
point the orange mode
has a kink in its intensity
curve. (Inset) The fre-
quencies of each of the
eight lasing modes both
above (solid) and below
(dashed) threshold ver-

w2 ;.2
m lam[ 'Jec

Intensity =

0.16
0.14

o
©
[

0.08

0.06}

0.04
0.02

-30.4

F30.2

30

| 29.8

Lasing frequency kR

9 100 10 120
Pump strength DOIDOC

sus Dy. Note that frequencies can cross if one mode is not lasing but not if both are lasing, and modes
with nearby frequencies interact strongly so that their intensity curves are highly anticorrelated. The
interactions increase the lasing thresholds substantially. For example, the green and purple modes
with k, = 29.95 have noninteracting thresholds 73.4460 and 75.6919, respectively, but the hole-
burning interaction pushes that of the purple mode up to Dy/Dy. = 105. In addition there would be 16
modes lasing by Do/Do. = 93 in the absence of interactions, compared to the 6 we find.

good approximation for a high-Q resonator (/7).
Importantly, the CF states are complete within
the cavity and generate a conserved photon flux
outside the cavity, unlike the QB states (13); for
the extremely leaky cavity of a DRL, the CF and
QB states are significantly different but statisti-
cally similar (Fig. 1).

Because the CF basis is complete and con-
serves flux outside the gain region, it is an ap-
propriate basis for representing arbitrary lasing
modes ‘P, (x) of a DRL. To solve Eq. 1, we ex-
pand each mode in terms of CF states: ¥, (x) =
YNer gt @, (x). Substituting this expansion into
Eq. 1 gives an equation for the complex vector
of coefficients a* = (aﬁ‘,ag,...,aﬁv@) that com-
pletely determines ‘¥;:

mn~—n

ab =Dy Th ab (2)

The nonlinear operator 77,
itly and discussed in (/8).

This formalism allows us to obtain analytic
insight into the question of what determines the
frequencies of the DRL. In single-mode lasers,
each lasing frequency is a weighted mean of the
real part of the cavity resonance frequency and
the atomic frequency (/6), which for a typical high-
finesse system is very close to the cavity frequency
with a small shift (“pull”’) toward the atomic line. If
we denote the “conventional” lasing frequency
by kﬁo), we find from Eq. 2 that for the DRL

ke =k + K (3)

is written out explic-

where ) is a collective contribution due to all
the other CF states, which has no analog in con-
ventional lasers. In our parameter regime (kR ~
30), both the conventional and collective terms
are important (although the conventional term is
larger), and the lasing frequencies have no simple
relationship to the cavity frequencies. The collec-
tive term is random in sign and does not always
generate a pull toward line center (Fig. 1). We
believe that at larger &R the collective term will
dominate.

In Fig. 2, we plot the intensities associated
with the lasing modes of Fig. 1 as a function of
pump strength, Do, measured by the length of the
vector of CF coefficients, I = Y |a* |*. The
behavior is very different from conventional la-
sers, showing complex nonmonotonic and re-
entrant behavior in contrast to the linear increase
found for uniform edge-emitting lasers (/4).
Analysis reveals that the complex behavior is due
to the strong spatial hole-burning interactions in
these systems. The Fig. 2 inset shows the lasing
frequencies associated with the modes as a func-
tion of pump; of the eight lasing modes in the
interval, there are six that form three pairs nearby
in frequency, and their behavior is highly cor-
related. Evaluation of the overlap of the a" vector
associated with each pair of modes confirms
that not only their frequencies but also their
decomposition into CF states are similar.

Equations 1 and 2 imply that modes with
similar a" vectors and similar frequencies will
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Fig. 3. Intensity and frequency fluctuations in a DRL. Comparison of modal intensities of the DRL for the
same disorder configuration in the case of uniform pumping (solid lines) and partially nonuniform
pumping (dashed lines). The main source of the large intensity fluctuations is the shift in thresholds. This
has the largest effect for nearly degenerate mode pairs such as the green and purple modes (k, = 29.95).
(Inset) Lasing spectra at Dy/Do. = 123.5035 (lines broadened for visibility). Note that the black mode
does not appear at this pump because it has already been suppressed by the orange mode, and the purple
mode only appears for uniform pumping because it never reaches threshold in the nonuniform case. The
intensities at this pump can fluctuate by more than a factor of two between the two cases, whereas the
frequencies fluctuate by just a few percent of their average spacing.
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Fig. 4. Field distribution of a DRL. Radial intensity of CF states contributing to the lasing modes
averaged over 400 disorder configurations. There is a large nonrandom increase of intensity with
radius r. (Inset) False color plot of electric field intensity of the seven lasing modes of the DRL of
Fig. 1 at pump Do/Do. = 123.5035 (white circle is boundary of gain medium). Note brightest
regions appear at the edge of the gain medium; this is characteristic of low finesse lasers but is a
particularly large effect in the DRL.
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compete strongly because this leads to a hole-
burning denominator that is spatially correlated
with the numerator. However, it is not obvious
that frequency quasi-degeneracy should be
associated with spatial correlation for the DRL.
For random lasers with Anderson localization
(9, 10), the CF states would typically be spatially
disjoint, the 7,,,,(k) operator (compare with Eq.
S3) would be approximately diagonal, and there
would be no such spatial correlation. In additional
calculations not shown, we do find that for
larger index nanoparticles, which begin to
localize the CF states, the modal interactions are
reduced. But for the DRL, T,,,(k) is not
diagonal, and frequency degeneracy would
require an eigenvalue degeneracy in this complex
pseudo-random matrix [see discussion in (/8)].
Instead, there is eigenvalue repulsion in the
complex plane and strong mixing of eigenvectors,
resulting in large spatial overlap of quasi-
degenerate lasing modes and strong hole-burning
interaction. This interaction, in the absence of
some special symmetry, tends to suppress one of
the two modes, leading to well-spaced lasing
frequencies as found by (8). Hence, the rigid
lasing-frequency spectrum could distinguish the
DRL from an Anderson-localized laser.

This strong interaction of nearly degenerate
modes is reflected in a very large increase in the
lasing threshold of the second mode of each pair
(Fig. 2 caption) (/8). These interaction effects are
strongly nonlinear and hence highly sensitive to
statistical fluctuations. To illustrate this, in Fig. 3
we contrast the intensity behavior of Fig. 2, for
which the pump was uniform in space [dy(x) =
0], with a case for which we have added to the
uniform pump a random white noise term dp(x)
of standard deviation +30% (normalized to the
same total power). For this nonuniform pump, the
third uniform mode (green) now turns on first. It
is thus able to suppress the seventh uniform mode
(purple) over the entire range of pump powers
and acquires an intensity almost a factor of 3
greater at the same average pump power. The
intensities of all the interacting pairs show similar
high sensitivity to pump profile, whereas their
frequencies remain relatively stable (Fig. 3 inset).
Exactly such behavior was observed in shot-to-
shot spectra of DRLs in experiments (8).

Lastly, we consider the spatial variation of the
electric field in DRLs (Fig. 4). The false-color
representation of the multimode electric field in
the laser has a striking property: It is consistently
brighter at the edge of the disk than at its center,
even though the gain is uniform and there are no
special high-Q modes localized near the edge. To
demonstrate that this effect is not a statistical
fluctuation associated with this particular dis-
order configuration, we have averaged the be-
havior of the entire basis set of CF states over
disorder configurations. The result is a nonrandom
average growth of intensity toward the boundary.
The origin of this effect is known from earlier
work on distributed feedback lasers with weak
reflectivity (19); if the single-pass loss is large,
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then the single-pass gain must also be large in
order to lase, leading to a visible nonuniformity
of the lasing mode, with growth in the direction
of the loss boundary (on average the radial
direction for the DRL). Because the DRL has
fractional finesse (which is not achievable in a
1D geometry), this effect is much larger in these
systems and should be observable. This effect
means that the electric field fluctuations in
DRLs will differ substantially from the random
matrix/quantum chaos fluctuations of linear
cavity modes (20), first because each mode is a
superposition of pseudo-random CF states and
second because these CF states themselves are
not uniform on average.

The coexistence of gain, nonlinear inter-
actions, and overlapping resonances (fractional
finesse) makes the DRL a more complex and
richer system than the widely studied linear wave-
chaotic systems. It remains to be seen whether
concepts from random matrix theory and semi-
classical quantum mechanics (quantum chaos)
will prove fruitful in this context. The theory

presented here is ab initio in the sense that it
generates all properties of the lasing states from
knowledge of the dielectric function of the host
medium and basic parameters of the gain me-
dium; it should be applicable to any novel laser-
cavity system.
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Silica-on-Silicon Waveguide

Quantum Circuits

Alberto Politi, Martin ]J. Cryan, John G. Rarity, Siyuan Yu, Jeremy L. O'Brien*

Quantum technologies based on photons will likely require an integrated optics architecture
for improved performance, miniaturization, and scalability. We demonstrate high-fidelity
silica-on-silicon integrated optical realizations of key quantum photonic circuits, including
two-photon quantum interference with a visibility of 94.8 + 0.5%; a controlled-NOT gate with
an average logical basis fidelity of 94.3 + 0.2%; and a path-entangled state of two photons
with fidelity of >92%. These results show that it is possible to directly “write” sophisticated
photonic quantum circuits onto a silicon chip, which will be of benefit to future quantum
technologies based on photons, including information processing, communication, metrology,
and lithography, as well as the fundamental science of quantum optics.

uantum information science (/) has

shown that quantum mechanical effects

can dramatically improve performance for

certain tasks in communication, computation, and
measurement. Of the various physical systems
being pursued, single particles of light (photons)
have been widely used in quantum communica-
tion (2), quantum metrology (3—5), and quantum
lithography (6) settings. Low noise (or decoher-
ence) also makes photons attractive quantum bits
(or qubits), and they have emerged as a leading
approach to quantum information processing (7).
In addition to single-photon sources (&) and
detectors (9), photonic quantum technologies
require sophisticated optical circuits involving
high-visibility classical and quantum interference.

Centre for Quantum Photonics, H. H. Wills Physics Laboratory
and Department of Electrical and Electronic Engineering,
University of Bristol, Merchant Venturers Building, Woodland
Road, Bristol BS8 1UB, UK.
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Although a number of photonic quantum cir-
cuits have been realized for quantum metrology
(3, 4, 10-13), lithography (6), quantum logic
gates (/4-20), and other entangling circuits
(21-23), these demonstrations have relied on
large-scale (bulk) optical elements bolted to large
optical tables, thereby making them inherently
unscalable.

We demonstrate photonic quantum circuits
using silica waveguides on a silicon chip. The
monolithic nature of these devices means that
the correct phase can be stably realized in what
would otherwise be an unstable interferometer,
greatly simplifying the task of implementing so-
phisticated photonic quantum circuits. We fabri-
cated hundreds of devices on a single wafer and
find that performance across the devices is robust,
repeatable, and well understood.

A typical photonic quantum circuit takes
several optical paths or modes (some with pho-
tons, some without) and mixes them together in
a linear optical network, which in general con-

sists of nested classical and quantum interfer-
ometers (e.g., Fig. 1C). In a standard optical
implementation, the photons propagate in air,
and the circuit is constructed from mirrors and
beam splitters (BSs), or half-reflective mirrors,
which split and recombine optical modes, giving
rise to both classical and quantum interference.
High-visibility quantum interference (24) demands
excellent optical mode overlap at a BS, which
requires exact alignment of the modes, whereas
high visibility classical interference also requires
subwavelength stability of optical path lengths,
which often necessitates the design and imple-
mentation of sophisticated stable interferometers.
Combined with photon loss, interference visibil-
ity is the major contributor to optical quantum
circuit performance.

In conventional (or classical) integrated
optics devices, light is guided in waveguides—
consisting of a core and slightly lower refractive
index cladding (analogous to an optical fiber)—
which are usually fabricated on a semiconductor
chip. By careful choice of core and cladding di-
mensions and refractive index difference, it is
possible to design such waveguides to support
only a single transverse mode for a given wave-
length range. Coupling between waveguides, to
realize BS-like operation, can be achieved when
two waveguides are brought sufficiently close
together that the evanescent fields overlap; this is
known as a directional coupler. By lithographical-
ly tuning the separation between the waveguides
and the length of the coupler, the amount of light
coupling from one waveguide into the other (the
coupling ratio 1 —m, where n is equivalent to BS
reflectivity) can be tuned.

The most promising approach to photonic
quantum circuits for practical technologies ap-
pears to be realizing integrated optics devices that
operate at the single-photon level. Key require-
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