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Abstract: We generalize and test the recent “ab initio” self-consistent
(AISC) time-independent semiclassical laser theory. This self-consistent
formalism generates all the stationary lasing properties in the multimode
regime (frequencies, thresholds, internal and external fields, output power
and emission pattern) from simple inputs: the dielectric function of the
passive cavity, the atomic transition frequency, and the transverse relaxation
time of the lasing transition. We find that the theory gives excellent quantita-
tive agreement with full time-dependent simulations of the Maxwell-Bloch
equations after it has been generalized to drop the slowly-varying envelope
approximation. The theory is infinite order in the non-linear hole-burning
interaction; the widely used third order approximation is shown to fail badly.
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12. H. E. Türeci and A. D. Stone, “Mode competition and output power in regular and chaotic dielectric cavity

lasers,” Proc. SPIE 5708, 255–270 (2005).
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The Maxwell-Bloch (MB) equations provide the foundation of semiclassical laser theory [1]
and are the simplest description which captures the full space-dependent non-linear behavior
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of a laser. These time-dependent equations can be simulated to determine the stationary lasing
state. However time-independent methods to find these stationary properties in the multi-mode
regime for an open laser cavity did not exist until the recent work of Tureci et al. [2–4] presented
an “ab initio” self-consistent (AISC) formalism which generates all of the lasing properties
including the output power and emission pattern from a few simple inputs. The laser cavity
can be of arbitrary complexity and openness, including, e.g., chaotic dielectric disk lasers [5],
photonic lattice defect mode lasers [6] and random lasers [4, 7]. Here we generalize this infinite
order non-linear theory by extending it beyond the slowly-varying envelope approximation.
With this improvement it gives remarkably good agreement with time-dependent simulations
of the Maxwell-Bloch (MB) equations, while the standard third order approximation to the
non-linear hole-burning interaction fails badly.

The AISC theory builds on the original ideas of Haken and coworkers [8, 9] that the inversion
of the lasing medium will be approximately time-independent when γ ‖ � γ⊥,Δ (where γ⊥ is the
transverse (polarization) relaxation rate, Δ is the typical mode spacing, and γ ‖ is the longitudinal
(inversion) relaxation rate). The only significant approximation in the theory presented below
is this approximation of stationary inversion (SIA) (well-satisfied in many lasers of interest). In
addition to the excellent agreement we find between the AISC theory and the MB simulations
when the ratios γ‖/γ⊥,γ‖/Δ are very small, we develop below a perturbative treatment of the
beating terms which are neglected in SIA to extend the theory to larger values of these ratios.
The key improvements contained in the AISC theory are: 1) Treatment of the openness of the
cavity exactly. 2) Inclusion of the space-dependent non-linear modal interactions (spatial hole-
burning) to all orders, in contrast to standard third-order treatments [1]. We show below that the
third order treatment fails quantitatively and qualitatively even for the simple laser resonator we
study here.

To perform a well-controlled comparison of MB and AISC results we chose to study the
simple one-dimensional microcavity edge emitting laser [2, 3] consisting of a perfect mirror at
the origin and a dielectric region of uniform index n 0 and length L terminating abruptly on air
(see inset, Fig. 1). The MB equations are simulated in time and space using a FDTD approach
for the Maxwell equations, while the Bloch equations are discretized using a Crank-Nicholson
scheme. To avoid solving a nonlinear system of equations at each spatial location and time step,
we adopt the method proposed by Bidégaray [10], in which the polarization and inversion are
spatially aligned with the electric field, but are computed at staggered times, along with the
magnetic field. Modal intensities are computed by a Fourier transform of the electric field at
the boundary after the simulation has reached the steady state.

The AISC theory consists of a set of coupled non-linear time-independent integral equations
of size equal to the number of lasing modes at a given pump. The AISC theory presented
in Refs. [2, 3] is a solution to the MB equations [1] after two standard simplifications, the
rotating-wave approximation (RWA) and slowly-varying envelope approximation (SVEA). The
SVEA involves factoring out the rapid time-dependence of the electric field and the atomic
polarization field at the atomic frequency, ka, (here and below we set c = 1 and use frequency
and wavevector interchangeably), and neglecting the second time derivatives in the Maxwell
wave equation of the remaining envelope function of the fields. The resulting non-linear system
contains only first time-derivatives of the fields and the inversion and is sometimes referred to as
the Schrödinger-Bloch (SB) equations [11]. The SVEA works well when the cavity frequencies
are negligibly shifted from the atomic frequency. For microcavities these shifts need not be
negligible; our simulated cavities have n0kaL = 60 corresponding to roughly ten wavelengths
of radiation inside the cavity, approaching the microcavity limit. For the case studied here, we
find noticeable discrepancies between MB solutions and the AISC theory of Refs. [2–4] which
incorporates the SVEA (see Fig. 1). This motivated us to generalize the AISC theory to drop
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Fig. 1. Modal intensities as functions of the pump strength D0 in a one-dimensional micro-
cavity edge emitting laser of γ⊥ = 4.0 and γ‖ = 0.001. (a) n = 1.5, kaL = 40. (b) n = 3,
kaL = 20. Square data points are the result of MB time-dependent simulations; solid lines
are the result of time-independent ab initio calculations (AISC) of Eq. (1). Excellent agree-
ment is found with no fitting parameter. Colored lines represent individual modal output
intensities; the black lines the total output intensity. Dashed lines are results of AISC cal-
culations when the slowly-varying envelope approximation is made as in Ref. [3] showing
significant quantitative discrepancies. For example, in the n = 3 case the differences of the
third/fourth thresholds between the MB and AISC approaches are 46% / 63%, respectively,
but are reduced to 3% and 15% once the SVEA is removed. The spectra at D0 = 10 and the
gain curve are shown as insets in (a) and (b) with the solid lines representing the predictions
of the AISC approach (Eq. (1)) and with the diamonds illustrating the height and frequency
of each lasing peak. The schematic in (a) shows a uniform dielectric cavity with a perfect
mirror on the left and a dielectric-air interface on the right.
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the SVEA (the RWA is found to be well-satisfied in all cases).
The generalization was as follows. Again stationary periodic solutions are assumed for

the electric field E(x,t) = 2Re [e(xxx,t)] = 2Re
[
∑μ Ψμ(xxx)exp(−ikμt)

]
and for the polarization

fields, which oscillate at unknown lasing frequencies, k μ . The spatial variation of the field am-
plitude Ψμ(xxx) is also unknown, and not assumed to be a cavity resonance, but is determined
self-consistently. For a high finesse cavity and near the first threshold it was shown [2] that
Ψμ(xxx) is well-approximated by a single cavity resonance, but above threshold and for lower
finesse this is not at all the case [3, 4]. The treatment of the matter equations does not involve
the SVEA and is exactly the same as in Ref. [2], where the key assumption is stationary in-
version, which allows the non-linear polarization in the Maxwell equation to be replaced by
a non-linear function of the electric field itself. The new element is that we keep the second
time-derivative of the polarization in the Maxwell equation and evaluate it by differentiating
the polarization equation. The resulting improved AISC/MB equations for the mode functions
Ψμ and the frequencies kμ are:

Ψμ(xxx) =
iγ⊥

γ⊥− i(kμ − ka)
k2

μ

k2
a

∫
dxxx′

D0(xxx)G(xxx,xxx′;kμ)Ψμ(xxx′)
ε(xxx′)(1+ ∑ν Γν |Ψν(xxx′)|2) . (1)

Here G(xxx,xxx′;kμ) is the Green function of the open cavity, Γν = Γ(kν ) is the gain profile
evaluated at kν , D0(xxx) = D0(1 + d0(xxx)) is the spatial pump, and ε(xxx) = n2(xxx) is the dielec-
tric function of the cavity (for the microcavity edge emitting laser n(xxx) = n0 and the pump
is assumed uniform (d0(xxx) = 0)). Electric field and pump strength are measured in units
ec = h̄

√γ⊥γ‖/2g,D0c = 4πk2
ag2/h̄γ⊥, where g is the dipole matrix element of the gain medium.

With a slight change in notation this equation differs from that derived in Ref. [2] only by the
additional factor k2

μ/k2
a multiplying the integral. This is consistent with the expectation that

the SVEA is good when the lasing frequency is very close to the atomic frequency; incorpo-
rating this change into the iterative algorithm for solving the system is trivial, but crucial for
quantitative agreement with the current MB simulations. However we do not find qualitative
changes from dropping the SVEA, either for this simple laser or for the more complicated
two-dimensional random laser studied elsewhere [4].

In Figs. 1a, 1b we show results for n0 = 1.5,3, finding remarkable agreement between MB
and AISC approaches with no fitting parameters for the case of three mode and four mode las-
ing respectively. Both thresholds, modal intensities and frequencies are found correctly by the
AISC approach. Note that all of these quantities are direct outputs of the AISC theory, whereas
they must be found by numerical Fourier analysis of the MB outputs, which can introduce some
numerical error. If the earlier AISC approach is used with the SVEA then significant discrepan-
cies are found, for example for n0 = 3 the threshold of the third mode is found to be higher than
from MB while the fourth threshold is too low. Note however that the theory with the SVEA
does get the right number of modes and the correct linear behavior for large pumps. We believe
that this original AISC approach does solve very accurately the Schrödinger-Bloch equations
and that the same discrepancies would arise between MB and SB simulations, although we
haven’t confirmed this.

Almost all studies of the MB equations in the multimode regime have used the approximation
of treating the non-linear modal interactions to third-order (near threshold approximation) and
in fact this approximation is used quite generally and uncritically throughout laser theory. From
examination of the form of Eq. (1) it is clear that it treats the non-linear interactions to all
orders, while the third order treatment would arise from expanding the denominator to the
leading order in |Ψν |2. This third-order version of the AISC theory then becomes similar to
standard treatments of Haken [8, 9], with the improvement of correctly treating the openness of
the cavity and the self-consistency of the lasing modes in space [2, 3]. An early version of this
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improved third order theory was found to have major deficiencies: it predicted too many lasing
modes and the intensities did not scale linearly at large pump, but exhibited a spurious saturation
[2, 12]. In Fig. 2 we present comparisons of the third order approximation to Eq. (1), which is
improved over Ref. [2] because it drops the SVEA and the “single-pole approximation” used
there. We find that this improved third order theory still does a very poor job of reproducing the
multimode MB results: it still predicts too many modes (in this case seven, when there should
only be four at D0 = 10 in Fig. 2), and shows the same spurious saturation as found earlier [2]
because the third-order approximation cannot give the correct linear behavior for large pumps.
The infinite order treatment of Eq. (1) is both qualitatively and quantitatively essential.

Fig. 2. Modal intensities as functions of the pump strength D0 in a one-dimensional micro-
cavity edge emitting laser of n = 3, kaL = 20, γ⊥ = 4.0 and γ‖ = 0.001; the solid lines and
data points are the same as in Fig. 1b. The dashed lines are the results of the third order ap-
proximation to Eq. (1). The frequently used third order approximation is seen to fail badly
at a pump level roughly twice the first threshold value, exhibiting a spurious saturation not
present in the actual MB solutions or the AISC theory. In addition, the third order approx-
imation predicts too many lasing modes at larger pump strength. For example, it predicts
seven lasing modes at D0 = 10, while both the MB and AISC show only four. Right inset
just shows the same data on a larger vertical scale.

The central approximation required for Eq. (1) is that of stationary inversion. Previous
work by Haken [9] argued that SIA holds for the MB equations when γ ‖ � γ⊥,Δ , where
γ‖ is the relaxation rate of the inversion and Δ is the frequency difference of lasing modes.
For a typical semiconductor laser γ⊥ � 1012 − 1013s−1 and γ‖ � 108 − 109s−1, or equiva-
lently γ‖/γ⊥ � 10−3 −10−5. For the microcavity edge-emitting laser we are modeling we took
γ⊥,Δ ∼ 1 and γ‖ = 10−3, and we found the excellent agreement shown in Figs. 1a, 1b. In ad-
dition, direct analysis of the inversion vs. time obtained from the MB simulations confirm very
weak time-dependence in the steady state, justifying the use of SIA. The previous work did
not develop a systematic theory in which γ‖/γ⊥,γ‖/Δ appear as small parameters in the lasing
equations, allowing perturbative treatment of corrections to the SIA; we are now able to do this
within the AISC formalism.

Note first that in Eq. (1) the electric field is measured in units ec ∼√γ‖ but, unlike γ⊥, γ‖ does
not appear explicitly. Hence the solutions of Eq. (1) depend on γ ‖ only through this scale factor,
and Eq. (1) makes the strong prediction of a universal overall scaling of the field intensities:
|E(x)|2 ∼ γ‖ when dimensions are restored. The perturbative corrections to Eq. (1) are obtained
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by including the leading effects of the beating terms between the different lasing modes which
lead to time-dependence of the inversion at multiples of the beat frequencies. These population
oscillations non-linearly mix with the electric field and polarization to generate all harmonics
of the beat frequencies in principle, but the multimode approximation assumes all the newly
generated Fourier components of the fields are negligible. The leading correction to this ap-
proximation is to evaluate the effect of the lowest sidebands of population oscillation on the
polarization at the lasing frequencies and on the static part of the inversion, both of which will
enter Eq. (1). For simplicity we present a sketch of the correction to Eq. (1) in the two-mode
regime; details and the straightforward generalization to more modes will be given elsewhere.

We start by writing the electric field and the polarization in the multiperiodic forms e(xxx,t) =
2Re

[
∑2

μ=1 Ψμ(xxx)exp(−ikμt)
]

and p(xxx,t) = 2Re
[
∑2

μ=1 pμ(xxx)exp(−ikμt)
]
, and allow for the

first two side-bands at the beat frequency Δ = k1 − k2 in the inversion, so that the total inver-
sion is D(xxx,t) = Ds(xxx) + d+(xxx)exp(−iΔt)+ d−(xxx)exp(+iΔt) where the real quantity Ds(xxx)
is the time-independent part of the inversion and d+(xxx) = d−(xxx)∗. This ansatz is inserted into
the Bloch equation for the inversion [2]; solving for the component of the inversion equation
which oscillates at exp(−iΔt) relates d+(xxx) to the product of the field and polarization and then
substitution of the zeroth order result for the polarization in terms of the zeroth order static

inversion D(0)
s gives

d+(xxx) =
2
ih̄

[Ψ1 p∗2 −Ψ∗
2p1]

(iΔ− γ‖)
=

γ‖
Δ

f (k1,k2)D
(0)
s (xxx)Ψ1(xxx)Ψ∗

2(xxx)/e2
c (2)

where the dimensionless function f (k1,k2) = −(i + Δ/(2γ⊥))/(1 + k̃1k̃2 − iΔ/γ⊥), k̃ν = (kν −
ka)/γ⊥ and the fields are not yet measured in units of ec. The component d+ will mix with the
field Ψ2 to yield a contribution to the polarization p1 at frequency k1, ( and similarly d− and
Ψ1 mix to contribute to p2),

p(1)
1 (xxx) =

g2

ih̄

[1+(γ‖/Δ) f (k1,k2)|Ψ2(xxx)|2/e2
c]

γ⊥− i(k1 − ka)
D(0)

s (xxx)Ψ1(xxx), (3)

where p(1)
2 (xxx) is obtained by interchanging subscripts 1,2. The correction to the AISC formal-

ism is the term in the numerator explicitly proportional to the small parameter γ ‖/Δ. However,
having found a correction to the polarizations p 1, p2 we must then evaluate their contribution
to the static inversion. We find

Ds(xxx) =
D0

1+ ∑ν Γν |Ψν(xxx)|2 +(γ‖/γ⊥)g(k1,k2)|Ψ1(xxx)Ψ2(xxx)|2 , (4)

where the dimensionless function g(k1,k2) = (2 + k̃2
1 + k̃2

2)(1− k̃1k̃2)/[(1 + k̃2
1)(1 + k̃2

2)]
2 and

now and below electric fields have been scaled by ec. Note that the correction term in Eq. (4) is
explicitly proportional to the second small parameter, γ ‖/γ⊥. For our simulations γ⊥ ≈Δ and the
functions f (k1,k2),g(k1,k2) are order unity. The full correction to the non-linear polarization

in Eq. (3) is obtained by replacing D (0)
s with Ds of Eq. (4). The corrected polarization leads to

corrected version of Eq. (1) of the AISC theory:

Ψ2(xxx) =
iγ⊥D0

γ⊥− i(k2 − ka)
k2

2

k2
a

∫
dxxx′

ε(xxx′)
(1+

γ‖
Δ f (k1,k2)|Ψ1(xxx′)|2)G(xxx,xxx′;k2)Ψ2(xxx′)

(1+ ∑ν Γν |Ψν(xxx′)|2 +
γ‖
γ⊥ g(k1,k2)|Ψ1(xxx′)Ψ2(xxx′)|2)

. (5)

Ψ1(xxx) satisfies the same equation with the subscripts 1 and 2 interchanged.
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Equation (5) predicts corrections to the universal behavior, |E(xxx)|2 ∼ γ‖, found in Fig. 1.
There is no correction to the first mode below the second threshold as the correction terms all
vanish (there needs to be two modes to have beats). However, the theory predicts a non-trivial
correction to the threshold of the second mode. Note that the correction to the numerator in
Eq. (5) does not vanish below the second threshold but contributes self-consistently to that
threshold. This correction can be regarded as modifying the dielectric function of the micro-
cavity to take the form ε ′(xxx) = ε(xxx)/[1+

γ‖
Δ f (k2,k1)|Ψ1(xxx)|2]; the effective dielectric function

then becomes complex and varying in space according to the intensity of the first mode. This
in turn changes the threshold for the second mode. If the modes are on opposite sides of the
atomic frequency and k2 < k1, the imaginary part of the effective index is always amplifying
and tends to decrease the second threshold; we find this effect dominates over the change in the
real part and increasing γ‖ uniformly decreases the thresholds. The opposite effect is possible
and observed in other cases we have studied (not shown). In Fig. 3 we show the results of MB
simulations as γ‖ is varied from 0.001 to 0.1 (with γ⊥ = 4). Note that the universal behavior
(in units scaled by γ‖) is well obeyed until γ‖ = 0.1, encompassing most lasers of interest. The
qualitative effect predicted by the perturbation theory is clearly seen, the higher thresholds are
reduced as γ‖ is increased. The effect is small for the 2nd threshold but large for the third as
we expect as the corrections scale with the product of the intensities of lower modes. The inset
to Fig. 3 shows that the perturbation theory for the third threshold (a suitable generalization of
the two-mode Eq. (5)) yields semiquantitative agreement with the threshold shifts found from
the simulations. Detailed comparisons between multimode perturbation theory and simulations
above threshold will be given elsewhere. Note that the simulations also find additional modes
turning on for γ‖ = 0.1 but their intensities are very small and they are not shown in Fig. 3.

Fig. 3. Modal intensities for the microcavity edge emitting laser of Fig. 1a as γ‖ is varied
(n = 1.5, kaL = 20, γ⊥ = 4.0 and mode-spacing Δ ≈ 1.8. Solid lines are AISC results from
Fig. 1a (with γ‖ = 0.001); dashed lines are γ‖ = 0.01 and dot-dashed are γ‖ = 0.1. The
color scheme is the same as in Fig. 1a. The inset shows the shifts of the third threshold as
a function of γ‖. The perturbation theory (squares, with the line to guide the eyes) predicts
semiquantitatively the decrease of the threshold as γ‖ increases found in the MB simula-
tions. The MB threshold is not sharp and we add an error bar to denote the size of the
transition region.

In conclusion, for the case studied, the recently developed ab initio self-consistent laser the-
ory without the slowly varying envelope approximation presents a very accurate solution of the
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steady-state Maxwell-Bloch semiclassical lasing equations without solving the time-dependent
problem. Third order treatments fail badly and our infinite order treatment is essential. The the-
ory is a well-controlled expansion in the small parameters γ‖/Δ,γ‖/γ⊥ and leading corrections
in these small parameters can be evaluated and understood qualitatively.

The AISC method depends on an iterative solution of Eq. (1). The numerical method involves
three modules: a complex eigenvalue solver to find the basis set of biorthogonal states in which
to expand the solutions, Ψμ(xxx), construction of threshold matrices to find the modal thresholds
from a linear analysis, and solution of the non-linear eigenvalue problem posed by Eq. (1) itself.
Some details are given in ref. [4], and particularly in the on-line supporting materials. We have
not found standard numerical packages to implement this algorithm, nor has our method been
systematically optimized. In contrast the MB code is constructed out of standard numerical
components. In our current versions, generating the modal intensities for one value of D 0 as in
Fig. 1a takes roughly 60 times longer with the MB code as compared to the AISC code, and the
AISC code works roughly 130 times more efficiently to capture the entire range of D 0.

However the qualitative advantage of the AISC approach from the numerical (as opposed to
the conceptual) point of view arises for more realistic two-dimensional and three-dimensional
laser structures. Note that the reason we can employ the stationary inversion approximation in
deriving Eq. (1) is that there is a separation of time scales in typical lasers. The approach to
steady-state is controlled by the long time scale, γ −1

‖ , whereas the field oscillates at the rapid
rate, ∼ ka. Full wave MB simulations must bridge these two time scales and hence are quite
time-consuming. That is why the SVEA is employed, to transform to the Schrodinger-Bloch
equations [11]. However our results demonstrate that the SVEA is not very accurate. Full wave
MB simulations in two and three dimensions over the full range of time scales necessary to
describe multi-mode lasing are probably not yet feasible, and have not yet been done. In con-
trast, two and three dimensional AISC calculations are quite feasible; two-dimensional random
laser simulations have already been performed [4], and two-dimensional microcavity laser sim-
ulations are in progress [13]. Therefore the AISC method can give access to accurate laser
simulations which are currently not possible by any other method. This method also provides
more physical insight into lasing properties. The accuracy of the method suggests it can be
useful in the analysis and design of novel laser systems.
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