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A semiclassical theory of single and multimode lasing, the Steady-state Ab Initio Laser

Theory (SALT), is presented in this thesis. It is a generalization of the previous work

by Türeci et al which determines the steady-state solutions of the Maxwell-Bloch (MB)

equations, based on a set of self-consistent equations for the modal fields and frequencies

expressed as expansion coefficients in the basis of the constant-flux (CF) states. Multiple

techniques to calculate the CF states in 1D and 2D are discussed. Stable algorithms for

the SALT based on the CF states are developed, which generate all the stationary lasing

properties in the multimode regime (frequencies, thresholds, internal and external fields,

output power and emission pattern) from simple inputs: the dielectric function of the

passive cavity, the atomic transition frequency, and the transverse relaxation time of the

lasing transition. We find that the SALT gives excellent quantitative agreement with full

time-dependent simulations of the Maxwell-Bloch equations after it has been generalized

to drop the slowly-varying envelope approximation. The SALT is infinite order in the

non-linear hole-burning interaction; the widely used third order approximation is shown

to fail badly. Using the SALT we investigate various lasers including the asymmetric

resonance cavity (ARC) lasers and random lasers. The mode selection and the quasi-

exponential power growth observed in quadrupole lasers by Gmachl et al are qualitatively

reproduced, and strong modal interaction in random lasers is discussed. Lasers with a

spatial inhomogeneous gain profile are considered, and new modes due to the scattering

from the gain boundaries are analyzed in 1D cavities.
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Chapter 1

Introduction

From price scanners in supermarkets to DVD and Blue-ray players at home, the application

of lasers are ubiquitous in our daily lives. In the world of science, lasers are used widely in

spectroscopy, microscopy, material processing, remote sensing and etc. This year (2010)

marks the fifty-year anniversary of the inventions of the ruby laser and the gas laser,

and during this period five Nobel Prizes in Physics have been given to researches directly

related to lasers, with the first one in 1964 to Charles H. Townes, Nicolay G. Basov and

Aleksandr M. Prokhorov for their fundamental work leading to the constructions of lasers

and the most recently one in 2000 to Zhores I. Alferov and Herbert Kroemer for developing

semiconductor heterostructures which makes semiconductor lasers possible1.

The word “laser” is the acronym for Light Amplification by the Stimulated Emission

of Radiation, and its invention can be dated back to more than ninety years ago when

Albert Einstein introduced the concept of the photon and predicted the phenomenon of

the stimulated emission [1]. The laser is a device that produces a coherent light beam with

low-divergence at frequencies ranging from the infrared to ultraviolet region, and it has

two essential components: a laser cavity that traps light and supplies the needed optical

feedback, and a gain medium that amplifies light in the presence of an external pump. The

early lasers are all of Fabry-Perot type (see Fig. 1.1(a)) where the light undergoes multiple

reflections between two facing mirrors, one of 100% reflectivity and the other slightly less

(about 95% in the first ruby laser). Due to the good confinement of light in the cavity,

1The 2000 Nobel Prize in physics was also shared by Jack S. Kilby for inventing the integrated circuit.

1



the openness of the cavity is often neglected when predicting possible lasing modes in the

standard treatment. These modes are known as “closed cavity modes”, which are the

solutions of the Helmholtz equation (derived from Maxwell’s equations)

[

∇2 +
ǫc(x)ω

2

c2

]

φ(x, ω) = 0 (1.1)

with vanishing amplitude at the cavity boundaries. ǫc(x) is the dielectric function of the

passive cavity (without the gain medium).
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Figure 1.1: Schematic diagram of (a) a Pabry-Perot laser cavity and (b) a VCSEL device
[2].

Modern laser cavities

One shortcoming of Fabry-Perot lasers is that they cannot maintain stable single-mode

operation under high-speed modulation [3, 4]. The advent of dynamic single mode (DSM)

lasers [5, 6] solves this problem. Due to their small sizes (a few wavelengths of the emitted

light), the frequency spacing of the axial modes is large compared with the gain width and

typically only one axial mode is underneath the gain curve, which gives rise to robust single-

mode operation. Depending on whether the diffraction grating is incorporated inside the

gain region or outside, DSM lasers are classified as distributed feedback (DFB) lasers and

distributed Bragg Reflector (DBR) lasers. The lasing frequency in these lasers can be tuned

precisely by varying the spatial period of the diffraction grating. One important design
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of DFB lasers is the vertical cavity surface emitting laser (VCSEL) shown in Fig. 1.1(b).

Thanks to its small size and vertical emission direction, tens of thousands of VCSELs can

be fabricated and tested simultaneously on a wafer. VCSELs’ high coupling efficiency to

optical fibers and good reliability make them key to fiber optics and data communications

[7, 8], and tens of millions of VCSEL based transceivers had been deployed as of 2001 [9].

As fabrication techniques advance, novel science-driven laser cavities were introduced

which can be arbitrarily complex or even random spatially. Among them are dielectric

micro-disk and micro-sphere based lasers [10, 11, 12, 13, 14, 15], photonic crystal slab

(PhCS) defect mode lasers [16, 17] and random lasers [18, 19].

The experimental group led by Richard K. Chang at Yale have studied micro-disk

and micro-sphere based lasers for more than two decades [20, 21, 22]. Light confinement in

these lasers comes from the high reflectivity at the dielectric-air interface when the incident

angle is above the critical angle. Thus they support high-Q cavity modes even at the scale

of a few microns. These modes circulate around the cavity within a few wavelengths

from the perimeter and are known as the “whispering-gallery” (WG) modes [23]. The

high quality factor of these modes helps to reduce the lasing threshold, but it also limits

the output power as the main leakage mechanism is the evanescent tunneling due to the

curvature of the boundary. The rotational symmetry of the micro-disks and micro-spheres

determines the emission is also isotropic, and to extract light from these cavities efficiently

one needs to couple a waveguide or a fiber taper [24, 25, 26, 27] to them by evanescent

waves. This inconvenience further limits their application as a micro-scale on-chip coherent

light source. Nöckel and Stone [28] suggested that directional emission can be achieved in

these micro-lasers by smoothly deforming their boundary, giving rise to the asymmetric

resonant cavity (ARC) lasers. By “phase space engineering”, i. e., monitoring the ray

motions inside the cavity on the Poincaré surface-of-section (SOS) [29], one can predict

the output directionality of lasing modes, which has then been confirmed by a number of

experiments [14, 30, 31, 32].

PhCS lasers are made of two-dimensional photonic crystals with finite vertical ex-

tension. The light confinement within the plane is achieved by Bragg scattering of the

3



(a) (b)

Figure 1.2: Scanning electron microscope images of (a) a micro-disk laser [33] and (b) a
quadrupole cylindrical laser [14].

periodic dielectric structures. A manually introduced single defect [34, 35] or unavoid-

able imperfections during the fabrication [36] lead to spatially localized modes with fre-

quencies near the edges of photonic band gap, which have high quality factors and low

thresholds. The random lasers (RLs), like the PhCS, have no traditional resonator to

trap light. In its most basic realization, a RL consists of a random aggregate of particles

which scatter light and have gain or are embedded in a background medium with gain

[37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. Photons generated by stimulated emission are

only very weakly “confined” by multiple scattering as it leaks out of the medium. When

operated outside the strongly disordered regime, the photon escape is so rapid that the

medium exhibits no isolated resonances in the absence of gain. Despite the lack of sharp

resonances, the laser emission from RLs was observed to have the essential properties of

conventional lasers: the appearance of coherent emission with line-narrowing above a series

of thresholds, and uncorrelated photon statistics above threshold indicative of gain satura-

tion [37, 39, 42, 44]. Newly proposed deterministic aperiodic lasers intermediate between

PhCS lasers and random lasers by having structures determined by mathematical inflation

roles (e. g., the Fibonacci series and the Penrose tilting). One unique property of aperiodic

structures is the coexistence of extended, critically-localized and exponentially-localized
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modes [48, 49, 50].

(a) (b)

Figure 1.3: Scanning electron microscope images of (a) a photonic crystal slab laser with
hexagonal array of air holes in a thin InGaAsP membrane [16] and (b) ZnO nanorods on
a sapphire substrate [44].

Treating open cavities

One of the theoretical challenges of modeling these novel lasers is the correct treatment of

the openness of the cavity. One way to go beyond the closed cavity approximation is using

the quasi-bound (QB) modes or resonances [15, 28, 51]. In an arbitrary passive cavity

described by a linear dielectric function ǫc(x) the QB modes can be defined in terms of

an electromagnetic scattering matrix S for the cavity. This matrix relates incoming waves

at wavevector k (frequency ω = ck) to all outgoing asymptotic channels. The QB modes

are then the eigenvectors of the passive cavity S-matrix with eigenvalue equal to infinity,

i. e., there are outgoing waves but no incoming waves. Equivalently, the QB modes can be

defined as the solutions of the wave equation (1.1) both inside the cavity and outside, with

the outgoing boundary condition. Although QB modes have been used extensively in the

standard open cavity analysis, we emphasize that they are not orthogonal to each other

and the photon flux outside the gain medium is not conserved in QB modes. Therefore,

they are unsuitable for describing complex and random lasers where the modal interaction

is important and a multi-mode laser theory must be applied. This difficulty is overcome

by the introduction of the constant-flux (CF) states by Türeci, Stone et al [52]. As the
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name suggests, the CF states conserve the photon flux outside the gain region, and it was

shown that the CF states satisfy a bi-orthogonality relation with their dual functions and

they form a complete basis for the lasing modes. In high-Q cavities the QB modes are

similar to the CF states but distinct; in more open cavities they can be very different with

the extreme example being the random lasers in the quasi-ballistic regime (Section 3.5).

Light-matter interaction

Besides the correct treatment of the openness of the passive cavity, a successful laser theory

also needs to treat the interaction of light and the gain medium properly. Otherwise, one

can only “post-dict” what the lasing modes are by comparing the experimental results

with the cavity modes [14, 51]. The gain medium can be a collection of ions (e. g., in

solid-state lasers such as the ruby laser), atoms (in gas lasers), molecules (in dye lasers)

or heterostructures in semiconductor lasers, which we will refer to as “atoms” in general.

For the laser action to happen, the gain medium needs to be inverted, meaning there are

more atoms in an excited state than in the ground state. The simplest approach to take

into account the dynamics of the gain medium is using rate equations [3, 53], which deal

with the temporal changes of light intensity in the cavity (cavity rate equation) and the

inversion of the gain media (atomic rate equation). The rate equation approach is useful in

studying global properties of a laser such as modal intensities and thresholds [53], but since

it is motivated heuristically some important aspects are left out. For example, there is no

equation in the rate equation approach that governs the spatial variation of the electric

field (light); it is either completely neglected or one assumes each lasing mode is one cavity

mode. As a result, coherent effects such as mode instability cannot be explained by the

rate equations [54].

The deficiency is remedied in the semiclassical laser theory developed independently by

Haken [53] and Lamb [55] in the 1960s. In the semiclassical laser theory the electric field

E(x, t) is treated as a classical quantity satisfying the Maxwell’s equations and the gain

medium is described quantum-mechanically by a density matrix. This leads to coupled

nonlinear equations of the electric field, the induced polarization and population inversion

in the gain medium; these fundamental equations are known as the Maxwell-Bloch (MB)
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equations (Chapter 2) for a medium consisting of two-level atoms. It should be noted that

spontaneous emission (SE) is not included in the semi-classical laser theory2. As a result,

the semiclassical laser theory gives clear thresholds, below which the corresponding lasing

modes and the polarizations are both zero and above which the lasing peaks are taken

to be infinitely sharp. Due to the nonlinear coupling terms the MB equations cannot be

solved analytically in the multi-mode regime without invoking some approximations. The

conventional approaches either involve brute-force numerical simulations [38, 57, 58, 59] or

expansions of the lasing modes in the closed cavity modes [53, 60]. The first approach can

be employed to study the steady-state solutions as well as the transient dynamics, but it

becomes numerically intractable in the short wave length for complex geometries especially

in 3D. It is also difficult to gain qualitative physical insights from such an approach. The

modal expansion approach solves for the steady-state solutions of the MB equations in the

form of periodic or multi-periodic waves. The adoption of closed cavity modes simplifies

the mathematical description, but it also limits the application of this method since no

prediction can be made for the power and directionality of the output beams without some

ad hoc assumptions.

Gain saturation and spatial hole burning

It is well known that lasers with a homogeneously broadened gain medium maintain single-

mode operation above threshold if the gain is saturated uniformly in space (e. g., in an

ideal ring laser) [3, 61]. However, lasing modes in most cavities have spatial intensity mod-

ulation, which creates an inhomogeneous inverted population in space. This phenomenon

is known as the spatial hole burning which is the most significant effect leading to mul-

timode operation: Cavity modes with maximum intensity located at the points with less

depleted or undepleted inversion feel less gain competition, and they start to oscillate once

the pump power is sufficiently strong. One challenge in finding the steady-state solutions

of the MB equations is how to treat the above described nonlinear dependency of the

population inversion D(x, t) on the electric field correctly. In his book Haken uses the

2Recent efforts have been made to include the SE by adding a classical noise term in the numerical
simulations of the MB equations [56].
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stationary inversion approximation (SIA) D(x, t) ≈ D(x) and derives [53]

D(x) =
D0

1 + 2T1Γ(ωµ)Iµ|φµ(x)|2
(1.2)

for single-mode (the µth closed-cavity mode φµ(x)) laser action, which we will refer to as

the infinite-order nonlinearity. In this equation Iµ and ωµ are the intensity and frequency

of the µth mode, D0 indicates the pump strength, T1 is the non-radiative relaxation rate of

the inversion, and Γ(ωµ) is a frequency-dependent weighting factor, which when combined

with Iµ|φµ(x)|2 gives the stimulated transition probability. In the multi-mode regime,

however, the most pursued treatment of D(x) is expanding the nonlinearity to the second-

order:

D(x) ≈ D0

(

1− 2T1

∑

µ

Γ(ωµ)Iµ|φµ(x)|2
)

. (1.3)

By inserting this expression into the MB equations one derives the Haken-Sauermann

equations [61] for the steady-state intensity Iν :

1− κµ
D0

=
∑

ν

Γ(ων)AµνIν , (1.4)

where κµ is the cavity decay rate. The matrix Aµν is defined as the overlapping integral
∫

dx|φµ(x)|2|φν(x)|2, and it describes the modal interaction of the closed-cavity modes

φµ(x), φµ(x). The Haken-Sauermann equations are good at threshold but breaks down at

high pump power. Fu and Haken [60] go beyond the approximation (1.3) and take into

account the infinite order nonlinearity (1.2) in a 1D edge-emitting laser, but it is still of

limited use due to the framework of closed-cavity modes.

The first effort to solve for the steady-state multimode solutions of the MB equation

with correct treatments of the openness of the cavity and the infinite order nonlinearity

was reported in Ref. [52] by Türeci, Stone et al. By assuming the scalar electric field

has the multi-periodic form E(x, t) =
∑

µΨµ(x) exp(iω
µt) + c. c. the authors derived the

fundamental equation of Steady State Ab Initio Laser Theory (SALT) assuming the slowly-

varying envelope approximation (SVEA) holds. Later in this thesis we will derive and use

extensively the corresponding equation without the SVEA. These authors introduced the
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key concept of the constant flux states and expanded the complex amplitude Ψµ(x) in the

constant-flux basis {φm(x, ωµ)}, Ψµ(x) =
∑

m aµmφm(x, ωµ). The SALT equation led to

an equation for the expansion coefficient aµm:

aµm =
∑

n

Bmna
µ
n. (1.5)

The matrix Bmn is proportional to the overlapping integral of φm(x, ωµ), φn(x, ω
ν) and

the saturated gain

D(x) =
D0

1 +
∑

µ Γ(ω
µ)|Ψµ(x)|2

. (1.6)

Notice that the lasing frequency ωµ and amplitude Ψµ(x) are to be determined by Eq. (1.5)

and they bear no a priori relationship to the those of the closed-cavity modes. The authors

then showed that using the “single-pole” approximation in which Bmn is taken to be

diagonal and only a single term is kept in the CF expansion leads to a generalization of

the Haken-Sauermann equations to treat openness exactly [52] and the non-linearity to all

orders.

Although in this pioneering work the authors only demonstrate the solutions of Eq. (1.5)

when Bmn can be approximated by a diagonal matrix and within the SVEA, the concepts of

the CF states and the fundamental equation (1.5) laid the groundwork for the Steady-state

Ab Initio Laser Theory (SALT), which is the main theme of this thesis. My contributions

to the SALT include:

• Developed stable algorithms for the self-consistent equation (1.5) in the multi-mode

regime (with Türeci and Stone; Chapter 4).

• Removed the slowly-varying envelope approximation (SVEA) which leads to a much

better agreement with the numerical integration of the Maxwell-Bloch equations

(Section 2.2 and Section 5.1).

• Reformulated the integral equation of the lasing modes as a differential equation

clarifying relation to previous work based on the effective index of refraction (Sec-

tion 2.2).

• Generalized the SALT to treat multi-level lasing schemes (Section 2.3).
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• Verified the SALT quantitatively in the regime where the stationary inversion ap-

proximation is good by comparing its predictions with the numerical integration of

the time-dependent Maxwell-Bloch equations (with Tandy et al; Section 5.1).

• Derived perturbative corrections to the SALT by going beyond the stationary inver-

sion approximation and including the lowest non-zero frequency components of the

inversion (Section 5.2).

• Developed multiple techniques to calculate CF states in 1D and 2D (Chapter 3).

• Defined the gain-region constant-flux (GRCF) states which are better representations

of the lasing modes in the presence of an spatially inhomogeneous gain medium

(Section 2.4 and 3.6).

• Proved that the dual functions of constant-flux states bear a simple relationship to

constant-flux states themselves and rewrote the biorthogonality relation as an self-

orthogonality relation (Section 2.4).

• Applied the SALT to asymmetric resonant cavity (ARC) lasers and random lasers

(Chapter 6 and 7).

Overview of this thesis

In Chapter 2 the Maxwell-Bloch equations are introduced, from which the self-consistent

equation of the electric field is derived without the slowly-varying envelope approximation.

It is shown that the effect of the gain medium can be treated as adding a nonlinear term

to the dielectric function of the passive cavity. The resulting equation of the electric field

is the central equation of the SALT, and it is shown to be equivalent to that derived in

Ref. [52, 62, 63] where the Helmholtz equation satisfied by the electric field is formally

inverted by a Green’s function by treating the polarization as the source. Starting from

multi-level rate equations and assuming that there is only one lasing transition, we show

that the dynamics of a multi-level gain structure can be described by generalized Bloch

equations, in which the relaxation rate of the polarization and the equilibrium inversion

D0 in the absence of the electric field are nonlinear functions of the pump strength. Next
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the last scattering surface and the constant-flux state are introduced independent of the

geometry of the cavity, and the orthogonality of constant-flux states is proved with a

modified inner product. The self-consistent equation of the electric field is then expanded

in the basis consisting of constant-flux states, which displays multiple thresholds when the

pump strength is increased. In the case of a spatially inhomogeneous gain medium the

gain-region constant-flux states are defined, and their self-orthogonality holds inside the

gain region. The relationship between the lasing modes at threshold and the poles of the

S-matrix of the passive cavity is shown; the latter define the quasi-bound modes, from

which the former evolve as the increasing pump strength modifies the cavity dielectric

function. Connections between the constant-flux states and the quasi-bound modes are

briefly mentioned, and the linear gain model [64] is shown to be an approximation of the

Steady-state Ab-initio laser theory at threshold.

In Chapter 3 the constant-flux states in various geometries and the out-going boundary

condition they satisfy are shown and analyzed. In a homogeneous one-dimensional edge-

emitting laser the complex frequencies of the constant-flux states are approximated and

compared with those of the quasi-bound modes. It is shown that there is always a constant-

flux state close to a quasi-bound mode in the complex frequency plane when the (real-

valued) lasing frequency is close to the real part of the quasi-bound mode; their difference

decreases as the cavity Q or lasing frequency increases. In the multi-layer case two methods

are introduced to find the constant-flux states. In the first approach the Laplace operator

is approximated by the standard three-point finite difference, and the Helmholtz equation

satisfied by the constant-flux states are transformed into a generalized eigenvalue problem.

In the second approach the constant-flux states in each layer are decomposed into two

amplifying waves traveling in opposite directions, and their coefficients in different layers

are related by a transfer matrix, which gives a discrete set of constant-flux frequencies

when solved with the out-going boundary condition. In the two-layer case where the

gain medium resides only in one of the layers, it is shown that the equation determining

the constant-flux frequencies is the same as in the single-layer case but with a modified

dielectric function of the environment. The whispering-gallery type constant-flux states in

a micro-disk are shown to be almost identical to quasi-bound modes; outside they are very
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different as the amplitude of the quasi-bound mode grows exponentially when r → ∞. The

discretized method in polar coordinates is introduced to solve for the constant-flux states

in two-dimensional cavities with an arbitrary boundary, and the accuracy of its solutions

is tested in a micro-disk laser against the analytical solutions. The discretized method

is also capable of finding the constant-flux states in random lasers, which is modeled

as an aggregate of nano-particles embedded in a disk gain regime. We find no one-to-

one correspondence between constant-flux states and quasi-bound modes although they

have similar distributions in the complex frequency plane. At the end of this chapter we

introduce two approaches to solve for the gain-region constant-flux states in laser cavities

of arbitrary shape. For presenting a complete view of constant-flux states, some results in

Ref. [52] are reproduced in Section 3.2 and 3.3. The two-dimensional discretized constant-

flux solver and some results on the random lasers are presented in Ref. [65].

In Chapter 4 we first introduce the threshold matrix, whose eigenvalues at the right

frequencies give the inverse threshold in the absence of modal interaction. A special case is

analyzed where the cavity dielectric function and the pump strength are both constant. In

this case the threshold matrix becomes diagonal, leading to a modified line-pulling formula.

The lowest non-interacting threshold is the first threshold, and all the others are pushed

to larger values when modal interactions are included. Detailed steps of implementing the

algorithm of the SALT above threshold are given, and a useful tool, the modified threshold

matrix, is introduced; its functions include visualizing the effect of modal interactions

on the modes below their thresholds. Using the example of the two-layer case with an

inhomogeneous gain medium introduced in Chapter 3, we confirm that expansions of the

lasing modes in the constant-flux state basis and in the gain-region constant-flux state give

the same thresholds, lasing frequencies, and modal intensities. The advantage of using the

latter is that a smaller basis is needed since the gain-region constant-flux states are better

representations of the lasing modes in this case. A flow chart of the SALT algorithm is given

at the end of this chapter. Some contents of this chapter are presented in Ref. [63, 65, 66].

In Chapter 5 the predictions of the SALT are compared to the numerical integration of

the time-dependent Maxwell-Bloch equations. Excellent agreement is achieved when the

slowly-varying envelope approximation is dropped from the fundamental equation derived
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in Ref. [52, 66]. The stationary inversion approximation is shown to be valid when the

ratios γ‖/γ⊥ and γ‖/∆k are small. γ⊥ and γ‖ are the relaxation rate of the polarization and

the non-radiative relaxation of the inversion respectively, and ∆k is the typical frequency

spacing of adjacent lasing modes. Perturbative corrections to the stationary inversion

approximation are given in terms of the above mentioned two ratios. The material in this

chapter is reported in Ref. [62].

In Chapter 6 the SALT is applied to a series of quadrupole lasers experimentally tested

in Ref. [14]. The boundaries of these cavities are captured by R(φ) = R0(1 + ǫ cos(2φ))

with the deformation ǫ varies from 0 to 0.16. The result of the ray model is reviewed, which

shows the evolution of cavity modes as the deformation increases. Factors that affect the

lasing threshold and output intensity are analyzed. Under reasonable assumption about

the spatial pump profile and the material loss (since detailed information is lacking), we

reproduce qualitatively the two main observations of the experiment, namely the quasi-

exponential increase of the output power as a function of the deformation and the lasing of

the bow-tie modes when ǫ ≥ 0.16. The former is found to be insensitive to the parameters

we choose as long as the cavity loss prevails against the out-coupling loss, while the latter

can only be achieved with particular configurations of the spatial pump profile and the

cavity loss.

Chapter 7 is a continuation of the work presented in Ref. [65]. The lasing frequencies in

a random laser are shown to have two contributions, one from the complex frequency of the

dominant constant-flux states and the other from a collective influence of all the constant-

flux states. Two regimes of random lasers are then studied. In the diffusive regime we

see signs of strong modal interaction, including mode mixing, strong frequency repulsion

and strong mode suppression. In the quasi-ballistic regime we find the modal interaction

to be stronger. Threshold lasing modes with close frequencies compete strongly for the

gain, and one can drive out another even after the latter is turned on. This suppression is

not permanent; The “dead” mode can “reincarnate” itself at a higher pump if the system

favors it once again. When subjected to pump noises, random lasers in this regime have

large intensity fluctuations but relatively stable frequencies. An explanation is given using

the SALT. At the end of this chapter we study the pump induced output directionality,
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showing that it is possible in the quasi-ballistic regime but not in the diffusive regime.

In Chapter 8 we point out the conventional wisdom, which states that there is a one-to-

one correspondence between lasing modes and passive cavity modes, fails in the low-Q limit

in the presence of an inhomogeneous gain medium. Using the example of a one-dimensional

edge-emitting cavity, we show that two types of lasing modes exist: one corresponds to

the passive cavity modes with distorted spatial profiles in the gain region, and the other

corresponds to the resonant tunneling in the gain-free region, which doesn’t exist in the

absence of the inhomogeneous gain medium. As the ratio of the lengths of the gain region

and gain-free region varies, a pair of modes, one from each type, can disappear and appear

at the same frequency, which is similar to what was found in Ref. [64, 67].
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Chapter 2

The steady-state ab-initio laser

theory

2.1 Maxwell-Bloch equations

In the semiclassical laser theory light is treated as a classical electro-magnetic field and

it satisfies Maxwell’s equations. If we assume the electric field is transverse (∇ · E = 0),

Maxwell’s equations take the form of the fundamental wave equation [53, 68]

4πP̈ (x, t) = c2∇2E(x, t)− Ë(x, t), (2.1)

where P (x, t) is the polarization, including both the electrical response of the gain medium

PNL(x, t) and the hosting material PL(x, t). When coupled to the matter equations to

be introduced below, E(x, t) in Eq. (2.1) should be understood as the electric field cor-

responding to the stimulated emission, including the radiation field caused by the decay

of the population inversion D(x, t) and the external seeding signal if it is present. In

this thesis we consider geometries in which the electric field and the polarization can be

treated as scalars. For example, the electric field in transverse-magnetic (TM) modes of a

microdisk laser is perpendicular to the planar surface (E(x, t) = E(x, t)ẑ). If the medium

is isotropic, the polarization also has only a z-component and we can then drop the vecto-

rial symbols in Eq. (2.1). In the following discussion we will drop the arguments of E, P
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and D to make the equations more compact.

The dynamical properties of the gain medium are described by the quantum equations

of motion of the density matrix, which in its most simple form are the Bloch equations for

a two-level atomic system:

Ṗ+
NL = −(iωa + γ⊥)P

+
NL +

g2

i~
ED, (2.2)

Ḋ = γ‖ (D0(x)−D)− 2

i~
E
(

(P+
NL)

∗ − P+
NL

)

. (2.3)

In these equations P+
NL is the positive frequency part of the polarization (PNL = P+

NL +

P−
NL = P+

NL + c. c. ), ωa = cka is the atomic transition frequency, g is the dipole matrix

element of the atoms, and γ⊥ and γ‖ are the relaxation rates of the polarization P+ and

the inversion D, respectively. Here c. c. stands for the complex conjugate of the previous

term as usual. In the absence of the electric field (below threshold) the inversion decays to

its equilibrium value D0(x), which represents the strength of the pump, whether it is an

optical pump or an electrical current. In this thesis we take c = 1 and do not distinguish

between frequency and wavevector. Eq. (2.1-2.3) are the fundamental equations of the

semiclassical laser theory, known as the Maxwell-Bloch (MB) equations. They are coupled

nonlinear equations of the electric field E, the polarization P , and the inversion D. In

the remaining part of this chapter we will derive the steady-state ab-initio laser theory

(SALT), which gives a set of self-consistent time-independent equations for the steady

state solutions of the MB equations.

2.2 Derivation of the steady state equations

In the following discussion we choose to solve for the positive frequency part of the electric

field; once E+ is found, the total electric field is easily obtained by E = E+ + E− =

2Re[E+]. First we rewrite Eq. (2.1) as

4πP̈+ = ∇2E+ − Ë+, (2.4)
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which is exact in the absence of a D.C. electric field. The linear polarization P+
L in

Eq. (2.4) can be included in the Ë+ term by introducing the convolution operator n̂2(t) ≡
∫

dt′n2(x, t− t′) = 1 + 4π
∫

dt′χ(x, t− t′), leading to

4πP̈+ = ∇2E+ − ∂2
t

(

n̂2E+
)

. (2.5)

P+ now represents the nonlinear polarization P+
NL only. The conventional treatment of this

equation involves the slowly varying envelope approximation (SVEA) [69, 70, 60, 52], which

approximate all the second order time derivatives by −ω2
a + iωa∂/∂t. This approximation

is valid when the lasing frequencies ωµ are close to ωa (|ωµ − ωa| ≪ ωa) which is not

necessarily true in a multi-mode laser. Here we don’t invoke the SVEA, and the Laplace

transform of Eq. (2.5) results in

[

∇2 + ǫc(x, ω)k
2
]

Ẽ+(x, ω) = −4πk2P̃+(x, ω). (2.6)

ǫc(x, ω) ≡ n2(x, ω) is the cavity dielectric function of the system. The Laplace transform

we use is

L[f ] ≡ 1

2π

∫ ∞

0
dt ei(ω+iζ)t f(t), (0 < ζ ≪ 1) (2.7)

and ζ is taken to be zero after the integration.

Eq. (2.6) can be formally inverted with a Green’s function (determined by the outgoing

wave boundary conditions) by treating P̃+(x, ω) as a source [52]. In this chapter we will

introduce a different approach to make connection with the common notion of the effect

of the gain medium, which states that the gain medium alters the index of refraction of

the passive cavity (cavity without gain) to compensate the loss. At the end of this chapter

we will compare the method we will use and the Green’s function method and show that

they are equivalent.

From Eq. (2.6) we see that if P+ is a linear function of E+, it can be moved to the

left hand side and absorbed into the ǫc(x, ω)k
2 term, giving rise to a modified dielectric

function. If we had used the SVEA in deriving Eq. (2.6), then instead of k2 we would

have had k2a in front of P+, which introduces a small error in the frequency dependence of
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the effective dielectric function. This is consistent with the expectation that the SVEA is

good when the lasing frequency is close to the atomic frequency. To find an expression for

P̃+(x, ω) in terms of Ẽ+(x, ω), we follow the derivations given in Ref. [52] when solving

the matter equations (2.2) and (2.3). Using the rotating wave approximation (RWA) we

can rewrite them such that only the positive (or the negative) parts of E and P appear

Ṗ+ = −(iωa + γ⊥)P
+ +

g2

i~
E+D, (2.8)

Ḋ = γ‖ (D0(x)−D)− 2

i~

(

E+(P+)∗ − c. c.
)

. (2.9)

The terms the RWA drops are at frequencies close to ±2ωa, and it can be shown that they

are of the order of γ‖/(2ωa) following the derivation in Section 5.2. Since in most cases

γ‖ ≪ γ⊥ ≪ 2ωa, the RWA gives very good results and is widely used in atomic physics and

related fields. In the steady state the fields E+ and P+ are assumed to be multiperiodic

in time

E+ =
∑

µ

Ψµ(x) e
−iωµt, P+ =

∑

µ

pµ(x) e
−iωµt. (2.10)

The functions Ψµ are the unknown lasing modes and the real numbers ωµ are the unknown

lasing frequencies. Unlike standard approaches [53, 55, 71, 72, 73, 74], here these functions

and frequencies are completely general and bear no a priori relationship to the normal

modes or linear quasi-modes of the passive cavity.

The steady state solution of the MB equations in the form of Eq. (2.10) is possible only

when Ḋ ≈ 0 [53, 60]. This approximation is known as the stationary inversion approxima-

tion (SIA), which enables one to write the amplitude of the polarization oscillating at ωµ

as

pµ(x) =
g2

~

D(x)

(ωµ − ωa) + iγ⊥
Ψµ(x). (2.11)

Since D(x) depends on Ψµ(x) we don’t insert the above equation to Eq. (2.6) yet. When

the multiperiodic solutions (2.10) and Eq. (2.11) are inserted into Eq. (2.9), the coupling

term between the electric field and the polarization becomes
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E+(P+)∗ − c. c. = i
2g2D(x)

~

{

∑

µ

Γ(ωµ)

γ⊥
|Ψµ(x)|2+

∑

µ>ν

Re

[

(2γ⊥ + i(ων − ωµ))Ψµ(x)Ψ
∗
ν(x)

(γ⊥ + i(ων − ωa))(γ⊥ − i(ωµ − ωa))
ei(ω

ν−ωµ)t

]

}

. (2.12)

Here Γ(ω) ≡ γ2⊥/(γ
2
⊥+(ω−ωa)

2) is the homogeneously broadened gain curve. The second

term in Eq. (2.12) only exists in the multi-mode regime, and Eq. (2.12) has no time-

dependence when there is only one mode lasing. Thus the inversion is strictly stationary in

the single-mode regime when the system reaches the steady state. In the multi-mode regime

the beating terms represent the interference of modes oscillating at different frequencies,

ruling out a strictly stationary inversion. The other time scale in the dynamics of the

inversion is γ−1
‖ ; if this time scale is long compared to the beat periods of the modes, i. e.,

if γ‖ ≪ ∆ωµν = |ωµ − ων |, ∀µ, ν, then these time-varying interference terms average to

zero. In addition it must be assumed that γ⊥ ≫ γ‖ as we will see in Chapter 5. In these

two limits the SIA is valid with high accuracy, and is often used in multi-mode laser theory

and realized in lasers of interest. By dropping the second term in Eq. (2.12) we derive the

stationary inversion in terms of the pump D0(x)

D(x) ≈ D0(x)

1 +
∑

µ Γ(ω
µ)|Ψµ(x)|2

, (2.13)

from which we see clearly the effect of spatial hole burning [3, 53]. The gain medium is less

saturated at the points where the sum of the frequency-weighted modal intensities is small.

Note that the electric field is now measured in the natural unit of ec ≡ ~
√
γ⊥γ‖/(2g), which

sets an absolute scale of the nonlinearity; the spatial hole burning effect is important when

the amplitude of the electric field is comparable to ec, whose square times nc/2 gives the

saturation intensity [3]. Eq. (2.13) captures the spatial hole burning effect to all orders,

and the near threshold third order theory can be obtained by expanding the denominator

to the second order in Ψµ(x) (it will become clear why it is not called the second order

theory in Section 5.1).

Next we replace D(x) in Eq. (2.11) by its value given by Eq. (2.13) and Laplace
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transform P+(x, t):

P̃+(x, ω) ≡
∑

µ

pµ(x)

2πi(ω − ωµ)
=
∑

µ

g2

~

D0

(ωµ − ωa) + iγ⊥

Ψµ(x)

1 +
∑

ν Γν |Ψν(x)|2
1

2πi(ω − ωµ)
,

(2.14)

in which Γν is short for Γ(ων). Both P̃+(x, ω) and Ẽ+(x, ω) =
∑

µ
Ψµ(x)

2πi(ω−ωµ) in Eq. (2.6)

have poles only on the real axis of the complex frequency space after ζ, the small parameter

introduced in the Laplace transform, is taken to be zero. Therefore, we can equate the

residues of the real poles on both sides of Eq. (2.6) which gives

[

∇2 +

(

ǫc(x) +
γ⊥

(ωµ − ωa) + iγ⊥

D0(x)

1 +
∑

ν Γν |Ψν(x)|2
)

kµ2
]

Ψµ(x) = 0. (2.15)

Here we have changed the notation and D0(x) is now dimensionless, measured in the

natural unit D0c = ~γ⊥/(4πg2). The above equation, which we will refer to as the SALT I

equation, has been arranged such that one can immediately see that the effect of the gain

medium is to add a term

ǫg(x, ω) =
γ⊥

(ω − ωa) + iγ⊥

D0(x)

1 +
∑

ν Γν |Ψν(x)|2
(2.16)

to the dielectric function. ǫg(x, ω) in general is complex; its imaginary part is negative

(amplifying) when the gain medium is inverted and its value depends on the pump strength;

at threshold it compensates the outcoupling loss as well as any cavity loss from the cavity

dielectric function. Notice that in our scaled units, γ‖ doesn’t appears in Eq. (2.15), which

means the behavior of lasers with different values of γ‖ are the same up to a simple rescaling

in the regime where the SIA is valid.

The set of nonlinear equations (2.15), or their equivalents Eq. (2.19) obtained from the

Green’s function method to be introduced below, are the central equations of the SALT

laser theory. As one can easily see Ψµ(x) = 0 is always a solution of Eq. (2.15), but

these equations also exhibit a series of thresholds D
(i)
th in the pump strength. A new mode

appears once D0 surpasses its threshold, it then interacts with itself through the nonlinear

hole-burning term in the denominator in Eq. (2.15). At the same time the lasing modes

partially suppress other solutions which would turn on in the absence of mode competition.
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Because gain is less depleted where the electric field of the existing lasing modes is small,

the new modes that turn on as D0 further increases tend to overlap less in space with the

existing lasing modes. Another factor that determines the order of the lasing modes is

their position under the homogenously broadened gain curve Γ(ω), which is a Lorentzian

function centered at ωa. The modes in the vicinity of ωa utilize the available gain better

and are more likely to turn on first.

In the Green’s function method introduced in Ref. [52] P̃+(x, ω) in Eq. (2.6) is treated

as a source, and Eq. (2.6) can be formally inverted with the following Green’s function

[

∇2 + ǫc(x)k
2
]

G(x,x′;ω) = δ(x− x′). (x,x′ ∈ cavity) (2.17)

The boundary condition satisfied by the Green’s function is the out-going boundary con-

dition outside the cavity, which eliminates the surface terms in the Green’s theorem (see

Section 2.4 for details) and yields

Ẽ+(x, ω) = −4πk2
∫

cavity
dx′G(x,x′;ω)P̃+(x, ω). (2.18)

The Green’s function only correctly calculates the electric field inside the cavity, and the

external solutions are given by connecting the internal solutions through the outgoing wave

conditions. This Green’s function only has complex poles with a negative imaginary part,

which can be seen from the spectral representation of the Green’s function to be introduce

in Section 2.4. Therefore, we can repeat what we did in deriving Eq. (2.15) and equate the

residues of the real-valued poles on both sides of Eq. (2.18), which gives a self-consistent

equation of Ψµ(x):

Ψµ(x) = − γ⊥kµ
2

(ωµ − ωa) + iγ⊥

∫

cavity
dx′D0(x

′)G(x,x′;ωµ)Ψµ(x
′)

1 +
∑

ν Γν |Ψν(x′)|2 . (2.19)

There are two ways to prove that Eq. (2.19), which will refer to as the SALT II equation,

is equivalent to the SALT I equation (2.15). First, the SALT II equation can be obtained

by inverting the SALT I equation with the Green’s function defined in Eq. (2.17). Second,

the two SALT equations lead to the same equation once we expand all the spatial varying
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quantities in the constant-flux basis to be introduce in Chapter 2.4. The two forms are of

course equivalent.

Vectorial generalization of the SALT

Below we outline the steps to generalize the SALT I equation (2.15) to its full vectorial

form. First we remove the transverse condition ∇·E = 0 which is valid when the dielectric

function varies on a length scale much larger or much smaller than the wavelength. The

dielectric function and the Laplacian in the wave equation (2.1) then need to be replaced

by the dielectric tensor ǫ̂c(x) and the operator (−∇×∇×), respectively. Notice the Bloch

equations are vectorial in nature [53], and the dipole matrix element g2(x) in Eq. (2.2)

should be treated as a position-dependent tensor

ĝ2(x) ≡ g(x) · (gT (x)) = (g(x)x, g(x)y , g(x)z)
T · (g(x)x, g(x)y , g(x)z) , (2.20)

which is symmetric (ĝ2(x))ij = (ĝ2(x))ji = gi(x)gj(x). The scalar product g
2E(x) is then

replaced by ĝ2(x) · E(x) in which E(x) =
∑

µΨµ(x) exp(−iωµt) + c. c. is now a column

vector. Similarly, Eq. (2.11) still holds with g2Ψµ(x) replaced by ĝ2(x) · Ψµ(x), which

leads to a modified expression for the stationary inversion:

D(x) ≈ D0(x)

1 +
∑

µ
4Γµ

~2γ‖γ⊥
Ψ

†
µ(x) · ĝ2(x) ·Ψµ(x)

. (2.21)

To emphasize the tensorial nature of ĝ2(x) we have restored the physical unit of the electric

field in this equation. Here Ψ
†
µ is the hermitian conjugate of Ψµ and the quantity Ψ

†
µ(x) ·

ĝ2(x) ·Ψµ(x) in the sum is a scalar. This quantity can also be written as g2µ(x)|Ψµ(x)|2,
in which

gµ(x) ≡ g(x)T ·Ψµ(x)/|Ψµ(x)| (2.22)

is the projection of g(x) along the direction Ψµ(x). gµ(x) is not always positive, but since

it is g2µ(x) that appear in the denominator its eigenvalues are positive and it will always

suppress lasing. In the case that all Ψµ(x) are linearly polarized in the same direction,

e. g., Ψµ(x) = Ψµ(x)ẑ, we recover Eq. (2.13) in a homogeneous medium with g2 = g2z .
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Finally, the vectorial generalization of the SALT I equation (2.15) is



∇×∇×−



ǫc(x) +
γ⊥

(ωµ − ωa) + iγ⊥

D0(x)

1 +
∑

ν
4Γν

~2γ‖γ⊥
g2ν(x)|Ψν(x)|2



 kµ2



Ψµ(x) = 0,

(2.23)

and its solution algorithm in 3D is under investigation. The discussion above is the only

place in this thesis that we consider the vectorial generalization of the SALT, and we will

continue to discuss the properties and applications of the scalar SALT below.

2.3 Multi-level generalization

Before we describe the details of how to solve Eq. (2.19) we want to check whether Eq. (2.19)

is applicable to a three-level or four-level laser. In Ref. [3] the author discusses the rate

equation in two-level and multi-level systems and how they are related. Here we show that

the equation for the population inversion in a four-level system can be put in the form of

Eq. (2.3) in the steady state, which is derived for the two-level system. The treatment of

the three-level MB equations is very similar and we will comment on the difference at the

end of this section.

We label the four energy levels from 0 to 3, with level 0 being the ground level, and as-

sume the lasing transition happens between the two middle levels (Fig. 2.1). The dynamics

of the four levels are then captured by the following equations:

ρ̇33 = P(ρ00 − ρ33)− γ32ρ33, (2.24)

ρ̇22 = γ32ρ33 − Γ21ρ22 −
1

i~
E((P+)∗ − P+), (2.25)

ρ̇11 = Γ21ρ22 − γ10ρ11 +
1

i~
E((P+)∗ − P+), (2.26)

ρ̇00 = −P(ρ00 − ρ33) + γ10ρ11. (2.27)

ρii is the ith diagonal element of the density matrix times the number of atoms per unit

volume denoted by n. Γij and γij are the non-stimulated decay rate and the total decay

rate from level i to level j. The electrons are pumped from level 0 to level 3 and the pump

strength is given by P and proportional to the population difference between these two
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levels. In principle we need to add a stimulated emission term to Eqs. (2.24) and (2.27),

but we dropped it since in almost all cases the induced polarization between level 0 and

level 3 is weak. The decay processes between non-adjacent levels are also neglected.

Figure 2.1: Schematic of a four-level laser where the electrons are pumped from the ground
level to level 3 and the lasing transition happens between the two middle levels.

By solving Eqs. (2.24) and (2.27) in the steady state, we can express ρ00 and ρ33 in

terms of ρ11 and P. Combine the results with the conservation of the total number of

atoms per unit volume, we see immediately that both ρ11 and ρ22 are functions of the

inversion D ≡ ρ22 − ρ11 and P only. For example,

ρ11 =
n−D

2 + γ10
P + 2γ10

γ32

, (2.28)

and ρ22 = D + ρ11. Next we subtract Eq. (2.25) by Eq. (2.26) and substitute ρ11 and ρ22

by the values given above. We find the resulting steady state equation

0 = Ḋ = γ′‖(D
′
0 −D)− 2

i~
E((P+)∗ − P+) (2.29)

has the form of Eq. (2.3) with the modified quantities

γ′‖ ≡ 2Γ21

(

1 +
S

2 + γ10
P + 2γ10

γ32

)

(2.30)

and

D′
0 ≡

SnP
γ10 + (S + 2 + 2γ10

γ32
)P . (2.31)
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Here S is defined as the ratio γ10−Γ21

Γ21
. To help creating the inversion between Level 2 and

Level 1, Level 2 and 1 are chosen to be meta-stable and unstable, respectively. Therefore,

the decay rate of Level 1 (γ10) is larger than that of Level 2 (Γ21), which means S is always

positive. The expression of D′
0 confirms that the parameter D0, which is used in the

two-level equation as the pump strength, does increase monotonically with the true pump

strength P. When P is small (P ≪ γ10), D
′
0 ≈ SnP/γ10 increases linearly as a function of

P. The inversion starts to saturate as P becomes comparable to γ10 and reaches the fully

saturated value D′
0 = Sn/(S + 2 + 2γ10/γ32) when P ≫ γ10. These values depend on the

two ratios γ32/γ10 and γ10/Γ21, and when they are large, i. e., γ32 > γ10 > Γ21, a desirable

inversion can be reached at a relatively small pump value.

One difference of Eqs. (2.3) and (2.29) lies in the value of the equilibrium value of D0 in

the absence of pump. In the former D0 is essentially −1 (following the Boltzmann distribu-

tion) times the number of atoms per unit volume, but in the latter we note that D′
0 is zero

when P goes to zero (see Eq. (2.31)). This is consistent with the Boltzmann distribution

because almost all atoms are in the ground state, and it is a good approximation to take

ρ22 = ρ11 = 0. In ultra-low threshold lasers one may consider restoring the difference of

ρ22 and ρ11 given by the Boltzmann distribution ρ22/ρ11 = exp(−(E2 − E1)/kBT ).

The other difference of Eqs. (2.29) and (2.3) is that γ′‖ is now a pump-dependent decay

rate, which is approximated 2Γ21 at low pump powers and (Γ21 + γ10) when the inversion

saturates at high pump powers, assuming γ10 ≪ γ32. Notice the change γ‖ → γ′‖ only

affects the natural unit of the electric field (ec → e′c ≡ ~

√

γ⊥γ′‖/(2g) which doesn’t enter

the self-consistent equation (2.15) explicitly. This means that the four-level MB equations

can indeed be cast into the two-level form in the steady state. We can then solve them

at any given pump strength P converted to the equilibrium value of the inversion D′
0

using Eq. (2.31). The physical scale of the amplitudes of the lasing modes is restored by

multiplying the results by e′c.

In the three-level case if the lasing transition happens between the upper two levels

(level 2 and level 1), one can imagine the system is pumped to a “virtual” fourth level

slightly above level 2, and decays instantaneously onto the latter. Thus this three-level

scheme is identical to the four-level one we just discussed with γ32 goes to ∞. Since γ32
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only appears in the fraction γ10/γ32, one can drop the fraction everywhere it appears and

the behaviors of γ′‖ and D′
0 as functions of P are essentially the same.

The other three-level scheme, where the lasing transition happens between the lower

two levels (level 2 and level 1, with the latter being the ground level now), is not popular

because a much higher pump power is needed to created the inversion between the first

excited level and the ground level. Nevertheless, to demonstrate the versatility of the

method we use here, we write down the map from the microscopic quantities in this case

to those we use in the two-level case:

D′
0 ≡

(

γ32
Γ21

− 1
)

− γ32
P

(

γ32
Γ21

+ 2
)

+ γ32
P

= −1 +

(

2 γ32
Γ21

+ 1
)

P

γ32 +
(

γ32
Γ21

+ 2
)

P
, γ′‖ ≡ 2Γ21

(

γ32
Γ21

+ 2
)

+ γ32
P

3 + 2γ32
P

. (2.32)

To check whether the quantities above are reasonable, we first note that D′
0 and γ′‖ become

−1 and Γ21 as they should when P approaches zero. A positive inversion between level 2

and level 1 can be achieved only if γ32 > Γ21, and the minimal pump strength required

P = γ32Γ21/(γ32 −Γ21) is much larger than that in the four-level case and the other three-

level cases. At a high pump power (P ≫ γ32) γ
′
‖ ≈ 2(2Γ21 + γ32)/3 is greater than 2Γ21,

which is the same as in the other two cases discussed above.

The above procedure can be repeated for more complicated gain level structures as long

as there is only one lasing transition. The resulting matter equations, though complicated,

still have a structure similar to the Bloch equations, which then leads to a rescaled version

of the SALT equations (2.15 and 2.19). Therefore, we can apply the SALT presented in

this thesis to these lasers and find their lasing properties.

2.4 Constant-flux states

Having shown that multi-level MB equations in the the steady state can be solve for the

lasing modes similarly to the two-level case, we will now continue our discussion of solving

the self-consistent equations (2.15) and (2.19). Despite the fact that both equations are

nonlinear, there is a natural basis set, consisting of the constant-flux states1, in which to

1We found recently that the CF states were introduced before in an isotropic medium to explain the
dispersion formula for nuclear reactions[75].
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expand the functions Ψµ(x) [66, 52]. This basis is determined by the nature of a laser:

there should be only outgoing waves of real frequencies far from the cavity boundary all

the way to infinity. Notice the subtle difference between the above requirement and the

outgoing boundary condition imposed at the cavity boundary: They differ if the cavity is

concave or made up of disjointed structures. For mathematical convenience we introduce

the last scattering surface (LSS) which is convex and encloses all the interesting structures

of a laser cavity. The requirement of convexity is to guarantee that the scattered light

does not re-enter the LSS at some other place and we can impose the outgoing boundary

condition at the LSS. The choice of the LSS is not unique; any convex shape can be a

candidate as long as it encloses the laser cavity. Outside the LSS the index of refraction

ǫ> is assumed to be a constant, representing either a dielectric structure whose size is

much larger than the cavity or simply air. The other important aspect of the boundary

condition is that we require the outgoing waves have real frequencies. This guarantees that

the photon flux is conserved outside the cavity and the amplitude of a lasing mode does’t

increase exponentially when x → ∞.

For pedagogical purpose we choose an isotropic LSS with radius R, which consists two

symmetrically placed points about the origin in 1D, a circle in 2D and a sphere in 3D. Two

CF states, ϕp(x, ω) and ϕq(x, ω), are defined as the solutions of the following Helmholtz

equations inside the LSS:

[

∇2 + ǫc(x)k
2
p

]

ϕp(x, ω) = 0, (r < R), (2.33)

[

∇2 + ǫc(x)k
2
q

]

ϕq(x, ω) = 0. (r < R). (2.34)

ϕp and ϕq are ω-dependent where ω is the real-valued lasing frequency outside the LSS:

[

∇2 + ǫ>k
2
]

ϕp(x, ω) = 0, (r > R), (2.35)

[

∇2 + ǫ>k
2
]

ϕq(x, ω) = 0. (r > R). (2.36)

The general form of outgoing waves satisfying the above Helmholtz equations outside the

LSS is familiar. In 1D along the positive x-axis they are plane waves traveling to the right,

and in 2D and 3D their radial behaviors are given by the superpositions of the outgoing

27



Hankel functions and spherical Hankel functions, respectively. The mathematical descrip-

tions of the outgoing boundary condition in various geometries are given in Chapter 3. For

each given ω there are a countably infinite set of CF states. Their eigenfrequencies {km}
can be shown to always have a negative imaginary part [52], which means the CF states are

amplified within the LSS. We mentioned in the introduction that the quasi-bound (QB)

modes have been used extensively in the study of laser cavities. In fact they are defined

similarly to the CF states. In Section 2.5 and Chapter 3 we will compare them in detail,

and here we just mention that the QB modes don’t conserve the energy flux outside the

cavity and they are not orthogonal by standard definitions.

By operating
∫

r<R dxϕp(x, ω) and
∫

r<R dxϕq(x, ω) on Eqs. (2.33) and (2.35) from the

left and subtracting the resulting equations we derive

(k2p − k2q)

∫

r<R
dx ǫc(x)ϕp(x, ω)ϕq(x, ω)

=

∫

r<R
dx[ϕq(x, ω)∇2ϕp(x, ω)− ϕp(x, ω)∇2ϕq(x, ω)]

=

∫

r=R
dx[ϕq(x, ω)

∂ϕp(x, ω)

∂r
− ϕp(x, ω)

∂ϕq(x, ω)

∂r
]. (2.37)

In the last step we used the Green’s theorem and ∂
∂r is the radial derivative. The latter

appears as a consequence of the isotropic LSS we chose, and it doesn’t imply that the flux

of the CF states has only radial component.

By repeating the same procedure for Eqs. (2.35) and (2.36) we have

∫

r=R
[ϕq

∂ϕp

∂r
− ϕp

∂ϕq

∂r
] =

∫

r=∞
[ϕq

∂ϕp

∂r
− ϕp

∂ϕq

∂r
]. (2.38)

If the right hand side of Eq. (2.38) vanishes for all kp 6= kq, we derive from Eqs. (2.37) and

(2.38) the orthogonality relation for the CF basis

∫

r<R
dx ǫc(x)ϕq(x, ω)ϕp(x, ω) ≡ 〈ϕp, ϕq〉 = δpq. (2.39)

This equation can be interpreted in a different way, as will be discussed later in this section.

A sufficient condition for the right hand side of Eq. (2.38) (p 6= q) to vanish is that the
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non-vanishing terms in
∂ϕp

∂r become f(k)ϕp at infinity for all p’s. In the one-dimensional

case ϕp(x, ω) is proportional to e±i
√
ǫ>kx outside the LSS for positive/negative x, which

gives f(k) = ±i
√
ǫ>k (we remind the reader that we have taken c = 1). Therefore, the

orthogonality relation (2.39) of the CF states holds in 1D. In the two-dimensional case

where ǫc(x) = ǫ< is a constant inside the LSS, the label p is the combination of the

angular momentum number m and the radial quantum number n, and outside the LSS

ϕ(m,n)(x, ω) = H+
m(

√
ǫ>kr)e

imϕ →
√

π

2kr
ei(

√
ǫ>kr−mπ

2
−π

4
+mϕ) (2.40)

at r = ∞ (H+
m is the outgoing Hankel function).

∂ϕ(m,n)

∂r have two terms, and the one

due to the radial derivative of r−
1
2 decays faster than r−1 and has no contribution to the

surface integral at r = ∞. The other term gives f(k) = i
√
ǫ>k as in the one-dimensional

case and the integrand in Eq. (2.38) vanishes uniformly. Now if ǫc(x) is not a constant, the

CF state ϕq(x, ω) can be expanded by {ϕ(m, n)(x, ω)} in the uniform index case, and f(k)

is again ink since the expansion coefficients have no x-dependence. Thus we have shown

that CF states in 2D are orthogonal in the sense of Eq. (2.39). In the three-dimensional

case the discussion is very similar using the asymptotic behavior of the outgoing spherical

Hankel functions at infinity, and we find again f(k) = i
√
ǫ>k and the orthogonality (2.39)

still holds.

If the LSS is chosen to be a convex surface which is not isotropic, Eqs. (2.37) and (2.38)

still hold with ∂
∂r |x∈LSS replaced by the normal derivative ∂

∂n |x∈LSS . Since the surface

integral on the r.h.s. of Eq. (2.38) vanishes due to the outgoing boundary condition at

infinity, we have shown that the orthogonality (2.39) is independent of the choice of the

LSS. In some cases one may find it more convenient to choose the cavity boundary as the

LSS if it is convex.

When the CF frequencies are degenerate, sometimes one needs to re-construct the de-

generate subspace by linear transformations to make sure the normalization factor 〈ϕp, ϕp〉
doesn’t vanish. For example, the two CF states with p = (m,n) and q = (−m,n) (m > 0)

ϕp = Jm(
√
ǫ< k(|m|, n)r)e

imϕ, ϕq = Jm(
√
ǫ< k(|m|, n)r)e

−imϕ (2.41)
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in a two-dimensional micro-disk cavity share the same complex frequency k(|m|, n), and

〈ϕp, ϕp〉 = 〈ϕq, ϕq〉 = 0. But since 〈ϕp, ϕq〉 6= 0, one can define











ϕa =
ϕp+ϕq

2 = Jm(
√
ǫ<k(|m|,n)r) cosmϕ,

ϕb =
ϕp−ϕq

2i = Jm(
√
ǫ<k(|m|,n)r) sinmϕ

(2.42)

as the basis functions in the degenerate subspace and the bi-orthogonality is restored with

proper normalization.

The orthogonality and the inner product defined in Eq. (2.39) lead to some interesting

consequences. First we notice that the orthogonality is not the normal hermitian orthogo-

nality as no complex conjugate is invoked in the inner product; the normal definition of the

inner product in a complex function space satisfies 〈ϕp, ϕq〉 = 〈ϕq, ϕp〉∗, but here we have

〈ϕp, ϕq〉 = 〈ϕq, ϕp〉. Therefore, the “length” of an arbitrary vector Ψ(x) =
∑

p ap ϕp(x, ω)

in the CF basis is the square root of 〈Ψ(x),Ψ(x)〉 =
∑

p(ap)
2. Although this quantity

is complex in general, it is conserved in basis transformations. But as a consequence we

don’t have a unit vector in the normal sense: ap can have a modulus larger than unity

even though
∑

p(ap)
2 = 1.

An alternative interpretation of the orthogonality relation

An alternative interpretation of the orthogonality relation (2.39) requires the introduction

of a set of dual functions {ϕ̄m(x, ω)}. They satisfy the same equations as the CF states

(Eqs. (2.33) and (2.35)) but with the incoming boundary condition and with ǫc(x) and ǫ>

replaced by their complex conjugates:

[

∇2 + ǫc(x)
∗k̄2m

]

ϕ̄m(x, ω) = 0, (r < R), (2.43)

[

∇2 + ǫ∗>k
2
]

ϕ̄m(x, ω) = 0, (r > R). (2.44)

R here is the radius of the isotropic LSS as before. {ϕ̄m(x, ω)} can be treated as the time-

reverse of the CF states, and the equations and the boundary condition they satisfy are

the hermitian conjugates of those satisfied by the CF states. One can see that k̄2m = (k2m)∗

and ϕ̄m(x, ω) = (ϕm(x, ω))∗ by taking the complex conjugates of the equations above
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and comparing them with Eqs. (2.33) and (2.35), and it is easy to check that the flux in

ϕ̄m(x, ω) outside the LSS is incoming. Therefore, the orthogonality relation (2.39) can be

rewritten as
∫

r<R
dx ǫc(x) (ϕ̄m(x, ω))∗ ϕn(x, ω) = δmn . (2.45)

ǫc(x) can remove from the integral if it is a constant, which leads to a different normaliza-

tion of the CF states and their dual functions. The above bi-orthogonality is then defined

using the standard definition of an inner product.

With this definition of the dual functions ϕ̄m(x, ω) are trivially related to ϕm(x, ω),

but notice that Eq. (2.33) has the form of a generalized eigenvalue problem when ǫc(x)

varies in space. In this case it may be useful to divide Eqs. (2.33) and (2.35) by ǫc(x) and

ǫ> to obtain a standard eigenvalue problem for the operator ǫc(x)
−1∇2. The CF states

and their eigenfrequencies do not change but the dual functions are non-trivially changed.

The equations defining the time-reversed problem are the hermitian conjugates of these

reformulated equations, as in the case discussed above:

[

∇2(ǫc(x)
∗−1•) + k̄2m

]

ϕ̄m(x, ω) = 0, (r < R), (2.46)
[

∇2(ǫ∗>
−1•) + k̄2

]

ϕ̄m(x, ω) = 0, (r > R). (2.47)

Notice the order of the two operators ǫ∗−1 and ∇2 has changed from that in the reformu-

lated equations the CF states satisfy, and the • indicates that ∇2 acts on the product of

ǫ∗−1 and ϕ̄m(x, ω). Evidently, k̄2m still equals (k2m)∗ but ϕ̄m(x, ω) is now (ǫc(x)ϕm(x, ω))∗

inside the LSS. Therefore, the orthogonality relation (2.39) can be interpreted as the bi-

orthogonality relation between the CF states and their dual functions {ϕ̄m(x, ω)}, with
the standard definition of an inner product

∫

r<R
dx (ϕ̄m(x, ω))∗ ϕn(x, ω) = δmn . (2.48)

{km, k̄∗m} are known as the right and left eigenvalues of the operator ǫc(x)
−1∇2 inside the

LSS, and {ϕm(x, ω), ϕ̄†
m(x, ω)} are the corresponding right and left eigenvectors. These

conventions were used in reference [65] as the numerical CF solver used was based on the
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form of the CF equation with the operator ǫ−1∇2 + k2m. We use the form with ∇2 + ǫck
2
m

primarily throughout this thesis. It is important to note that with these conventions the

SALT equation (2.19) appears differently from that in Ref. [65]. The integral kernel there

contains ǫc(x)
−1 and the Green’s function is defined with respect to ǫ(x)−1

c ∇2. Exactly

the same equation for the lasing modes (2.50) is still obtained, as must be the case.

Expansion of the SALT equations in the CF basis

Having shown that the orthogonality of the CF states holds within the LSS, we expand

the SALT I equation (2.15) in the CF basis using Ψµ(x, ω
µ) =

∑

p a
µ
p ϕp(x, ω

µ):

∑

p

aµp

[

(kµ2 − k2p)ǫc(x) +
γ⊥

(ωµ − ωa) + iγ⊥

D0(x)

1 +
∑

ν Γν |Ψν(x)|2
kµ2
]

ϕp(x, ω
µ) = 0.

(2.49)

We will refer to the region inside the LSS as Domain D in the following discussion unless

otherwise stated. By operating
∫

r∈D dxϕm(x, ωµ) on the equation from the left and use

the orthogonality (2.39), we derive a set of integral equations for {aµm}:

aµm = − γ⊥
(ωµ − ωa) + iγ⊥

kµ2

kµ2 − k2m

∫

D
dx′D0(1 + d0(x

′))ϕm(x′, ωµ)
∑

p a
µ
p ϕp(x

′, ωµ)

1 +
∑

ν Γν

∣

∣

∣

∑

p a
ν
p ϕp(x′, ων)

∣

∣

∣

2 .

(2.50)

D0(x) is rewritten as an overall pump strength D0 times the spatial variation (1+ d0(x)).

In general Eq. (2.50) gives a nonlinear map for the vectors of coefficients in the CF basis and

the actual nonzero lasing solution is a fixed point of this map. Above the lasing threshold

for each mode, Dµ
th, we find that the nonzero solutions are stable fixed points and trial

vectors flow to them under iteration of the map while the trivial zero solutions, which

below Dµ
th are stable, become unstable. Note that the map is proportional to [kµ2−k2m]−1,

favoring CF states with a complex frequency close to the real lasing frequency.

To show that the two SALT equations (2.15) and (2.19) are indeed equivalent, we first

introduce the spectral representation of the Green’s function defined by Eq. (2.17) in the

CF basis:

G(x,x′;ω) =
∑

p

ϕp(x, ω)ϕp(x
′, ω)

k2 − k2p(ω)
. (2.51)

32



It is straightforward to check that the above expression satisfies Eq. (2.17). This expression

indicates that the Green’s function only has poles in the lower half of the complex plane

for Re[k] > 0 since the CF eigenfrequencies kp all have a positive real part and a negative

imaginary part. This justifies the procedure of equating the real poles when we derive

Eq. (2.19). By inserting the expansions above into the SALT II equation (2.19) with ω

evaluated at ωµ, multiplying both sides of the resulting equation by ǫc(x
′)ϕm(x′, ωµ) and

integrating over D, we end up with exactly the same equation (2.50).

Gain region CF states

In the case that the LSS doesn’t coincide with the boundary of the gain region(s), the

CF states defined by Eqs. (2.33) and (2.35) still form a complete and orthogonal basis

even though they amplify outside the gain region(s) (but not outside the LSS). In some

scenarios this causes us some inconvenience by requiring a rather large CF basis. One way

to overcome this problem is to introduce the gain region CF states (GRCF), which have a

complex wave vector only within the gain region and a real wave vector everywhere else:

[

∇2 + ǫik
2
p

]

ϕp(x, ω) = 0, (x ∈ ∪N
i=1 Gi) , (2.52)

[

∇2 + ǫ<k
2
]

ϕp(x, ω) = 0, (x ∈ D ∩ (∪N
i=1Gi)) , (2.53)

[

∇2 + ǫ>k
2
]

ϕp(x, ω) = 0, (x ∈ D) . (2.54)

Here we assume that there are N gain regions Gi’s of index ni =
√
ǫi inside the LSS for

generality (see Fig. 2.2) and Gi denotes the complement of Gi. In the rest of the Domain

D the index is assumed to be a constant ǫ<, and the outgoing boundary condition as usual

is imposed on the LSS. The GRCF states can be shown to be orthogonal within the gain

region in a similar manner to how we showed the orthogonality of the original CF states

(2.39):
∫

∪N
i=1Gi

ǫc(x)ϕµ(x, ω)ϕν(x, ω) = δµν . (2.55)

In Appendix B we will derive the above orthogonality in detail using the example of a

one-dimensional laser cavity with alternate layers of gain and gain-free regions.
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Figure 2.2: Schematic of a laser containing multiple gain regions inside the last scattering
surface.

The Green’s function in this case is defined only inside the gain regions

[

∇2 + ǫik
2
]

G(x,x′|ω) = δ(x− x′) (x, x′ ∈ ∪N
i=1 Gi), (2.56)

and its spectral representation has the same form in Eq. (2.51). By expanding the lasing

modes in the GRCF basis and repeating the derivation leading to Eq. (2.50), we recover

the self-consistent equation Eq. (2.50)

aµm = − γ⊥
(ωµ − ωa) + iγ⊥

kµ2

kµ2 − k2m

∫

∪N
i=1Gi

dx′D0(1 + d0(x
′))ϕm(x′, ωµ)

∑

p a
µ
p ϕp(x

′, ωµ)

1 +
∑

ν Γν

∣

∣

∣

∑

p a
ν
p ϕp(x′, ων)

∣

∣

∣

2

(2.57)

with the only difference being that the integral is now over the gain regions. We will discuss

how we can benefit from the GRCF basis in Section 4.1 and 4.3.

2.5 Threshold lasing modes

As mentioned in the introduction the quasi-bound (QB) modes are used extensively in

the standard semiclassical laser treatment. Because the outgoing boundary condition they
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satisfy is incompatible with current conservation, the associated eigenvectors of the S-

matrix have complex wavevector, k̃m. These complex frequencies are the poles of the S-

matrix and their imaginary parts must always be negative to satisfy causality conditions.

In this section we assume that ǫc(x) is real for simplicity. From this point of view, QB

modes are defined similar to CF states with the outgoing boundary condition and the

equations they satisfy (Eqs. (2.33) and (2.35)). However, they differ because the wavevector

of a QB mode is complex both inside and outside the cavity, while the wavevector of a

CF state is only complex in the cavity. There are normally a countably infinite set of

such QB modes. Due to their complex wavevector, asymptotically the QB modes vary as

r−(d−1)/2 exp(−Im[k̃m]r) and diverge at infinity, so they are not normalizable solutions of

the time-independent wave equation. Therefore we see that QB modes cannot represent

the lasing modes of the cavity, even at threshold, as the lasing modes have real frequency

and wavevector outside the cavity with conserved photon flux.

For an active cavity however, the effective index ǫ(x) = ǫc(x) + ǫg(x) in Eq. (2.15)

becomes complex and its imaginary/amplifying part increases continuously when we turn

on the pump. The S-matrix is no longer unitary, and its poles move continuously “upward”

towards the real axis until one of them crosses the axis at a particular pump value, D
(1)
th

(see Fig. 2.3), which gives the first threshold. Suppose ǫc(x) is a constant and we pump

the cavity uniformly, the first lasing mode is then a CF state with

km(ω = ω(1)) =

√

1 +
D

(1)
th

ǫc

γ⊥
(ω(1) − ωa) + iγ⊥

k(1). (2.58)

Which pole reaches the real axis first depends not only on the Q-value of the passive cavity

resonance before gain is added, but also on the parameters of ǫg(x) which include the

atomic transition frequency, the gain linewidth γ⊥ and the spatial pump profile D0(x). If

we keep increasing D0, Ψ1(x) in the denominator of ǫg(x) is no longer zero, which affects

the behavior of the other poles. The S-matrix is now non-linear. Above threshold the pole

of the first lasing mode can only move along the real axis since the corresponding frequency

is the lasing frequency.

If we neglect the modal interaction and gain saturation, Eq. (2.15) reduces to a linear
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equation for the amplitude of each lasing mode

[

∇2 +

(

ǫc(x) +
D0(x)γ⊥

(ωµ − ωa) + iγ⊥

)

kµ2
]

Ψµ(x) = 0. (2.59)

This is similar to the linear gain model in which the effect of the gain is treated as adding an

imaginary part to the index of refraction inside the gain region. In this model the real part

of the index is normally considered to be unchanged in the presence of gain, but Eq. (2.59)

tells us that this assumption is not true in general. If the detuning (ωµ − ωa) ≪ γ⊥, the

effective index can be written as

n(x) =
√

ǫc(x) + ǫg(x) ≈
√

ǫc(x)

(

1 +
δ(x)2

8
+ o(δ(x)2)

)

− i

√

ǫc(x)

2
(δ(x) + o(δ(x)))

(2.60)

where δ(x) ≡ D0(x)/ǫc(x). The first order correction to the cavity index nc(x) =
√

ǫc(x)

only affects its imaginary part (we have assumed ǫc(x) is real); hence the linear gain model

can be justified if the D0(x) ≪ ǫc(x) as all the higher order corrections, including those

to the real part of n(x), can be dropped. In Chapter 8 we will use the linear gain model

to study the emergence of new modes in a one-dimensional uniform edge-emitting laser

cavity with a spatial inhomogeneous gain medium.

We will refer to the solution Ψµ(x) of Eq. (2.59) as the threshold lasing modes (TLMs).

Since we dropped the modal interaction and gain saturation, the behavior of the poles of

the S-matrix corresponding to the higher order lasing modes are similar to that of the

first mode when we turn on the pump. The place where each pole crosses the real axis is

the real lasing frequency ωµ for that particular TLM (see Fig. 2.3), and the corresponding

eigenvector of the S-matrix gives the spatial profile Ψµ(x). Note that the poles do not

move vertically to reach the real axis but always have some shift of the lasing frequency

from the passive cavity frequency, mainly due to line-pulling effect [55] towards the atomic

transition frequency. As the Q-value of the cavity increases, the distance the poles need to

move to reach the real axis decreases so that the frequency shift from the corresponding

Re[ω̃m] can become very small and the conventional picture becomes more correct. From

this argument one sees that the TLMs are in one to one correspondence with the QB modes

and thus are countably infinite. But here we emphasize that for any cavity only the lowest
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threshold TLM describes an observable lasing mode for fixed pumping conditions, the first

lasing mode at threshold.

36 38 40 42
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Re[km ]
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[k
m
]

(a) (b)

Re[km ]

Im
[k
m
]

Figure 2.3: Shift of the poles of the S-matrix in the complex plane onto the real axis to
form threshold lasing modes when the imaginary part of the dielectric function ǫ ≡ ǫc + ǫg
varies for a simple one-dimensional edge-emitting laser of length L. The cavity index
is nc = 1.5 in (a) and 1.05 in (b). The squares of different colors represent Im[ǫg] =
0,−0.032,−0.064,−0.096,−0.128 in (a) and Im[ǫg] = 0,−0.04,−0.08,−0.12,−0.16 in (b).
Note the increase in the frequency shift in the complex plane for the leakier cavity. The
center of the gain curve is at kL = 39 which determines the visible line-pulling effect.

If the uniform index cavity is pumped uniformly, not only the first lasing mode but

all the TLMs are single CF states, associated with different real frequencies ωµ, (again

neglecting non-linear interactions). As we will discuss in Chapter 4, this is true in general

if D0(x) is proportional to ǫc(x). We find that the TLMs are still nearly diagonal in the

CF basis even if this criterion is not met. Thus it is useful to study the CF states more

closely as we do in the next chapter.
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Chapter 3

CF states in various geometries

We introduced the concept of the constant-flux states in Section. 2.4. Our algorithm for

solving the nonlinear SALT equations (2.15) and (2.19) relies on the CF basis; hence

calculating these states in many geometries is central to the theory. In this chapter we will

discuss various aspects of the CF states in different geometries.

3.1 Homogeneous one-dimensional edge-emitting laser cav-

ities

We first discuss the properties of the CF states in a one-dimensional edge-emitting laser

cavity of index n1 with a uniform gain medium showing in Fig. 3.1. The left side of the

cavity (x = 0) is terminated by a perfect mirror, and the right side (x = a) is an interface

with a medium of index n2 which partially reflects the light. Here we don’t assume n1 is

real, i. e., the cavity can be absorbing in the absence of gain. The CF states of such a laser

cavity are then given by











(∇2 + n2
1 k

2
m)ϕm(x, ω) = 0, 0 < x ≤ a,

(∇2 + n2
2 k

2 )ϕm(x, ω) = 0, x > a.

(3.1)

The last scattering surface in this case is the right side of the cavity. The CF boundary

condition requires there is only an out-going wave outside the cavity (x > a), which
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Figure 3.1: Schematic of a one-dimensional edge-emitting laser cavity of index n1 and
length a in a medium of index n2.

translates into
∂ϕm

∂x

∣

∣

∣

∣

x=a

= i n2k ϕm |x=a . (3.2)

This defines a countably infinite set of CF states which depend on the external real fre-

quency k, and the complex CF frequencies are determined by

tan(n1kma) = −i
n1km
n2k

. (3.3)

The orthogonality of the CF states

ϕm(x, ω) =







Am sin(n1kmx), 0 < x,≤ a

ein2kx, x > a
(3.4)

can then be checked explicitly

∫

cavity
dx ǫc(x)ϕm(x, ω)ϕm′(x, ω)

= n2
1

∫ a

0
dx sin(n1kmx) sin(n1km′x)

=
an2

1

2

[

sin(n1(km − km′)a)

n1(km − km′)a
− sin(n1(km + km′)a)

n1(km + km′)a

]

=
an2

1

2
cos2(n1kma) cos2(n1km′a)×

[

tan(n1kma)− tan(n1km′a)

n1a(km − km′)
− tan(n1kma) + tan(n1km′a)

n1a(km + km′)

]

=
an2

1

2

[

1− sin(2n1kma)

2n1kma

]

δmm′ . (3.5)

In the last step we used the eigenvalue relation for complex CF frequencies given by

Eq. (3.3), finding that the two terms in the brackets cancel each other if m 6= m′.
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In Section 2.5 we mentioned that QB modes in a passive cavity are defined similarly to

CF states; they satisfy the same Helmholtz equations and an outgoing boundary condition.

In the one-dimensional case discussed here the QB modes satisfy the same equations (3.1)

and (3.2), but the external frequency k is taken to be the same as the internal frequency

km. To avoid confusion, we will denote these QB frequencies by k̃m. Since the Fresnel

reflection coefficient does not depend on Re[k̃m], if we neglect the frequency-dependence

of the refractive index, the k̃m’s are equally spaced in the complex plane and have a fixed

imaginary part

k̃m =
1

n1a

[

(m+
1

2
)π − i

2
log(

n1 − n2

n1 + n2
)

]

, (m = 0, 1, 2, ...). (3.6)
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-0.5
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-0.3

-0.2

-0.1

0

Re[ω
m
]

Im
[ω
m
]

CF eigenvalues

QB eigenvalues

(a) (b)

Figure 3.2: (a) Complex frequencies of the CF and QB states in a one-dimensional edge-
emitting laser with refractive index n1 = 2 and length a = 1. The refractive index n2

outside the cavity is taken to be 1. The CF frequencies are calculated using k = Re[k̃m]
of the QB mode k̃m = 10.2102 − 0.2747i (filled black triangle), and one of them with
km = 10.2191−0.2740i (filled red circle) is very close to this QB mode. (b) Spatial profiles
of the pair of CF state (red solid curve) and the QB mode (black dashed curve) marked
by filled symbols in (a). They are very similar in the cavity but the QB mode grows
exponentially outside.

.

If the cavity has a relatively high quality factor and the external frequency k is chosen

to be close to the real part of one of the QB frequencies k̃m, there is one CF frequency

which is essentially the same as this k̃m and their spatial profiles look identical in the

40



cavity (Fig. 3.2). The difference of these two frequencies reduces as we increase k or

the index contrast (see Appendix. A). But since the QB mode has a complex frequency

outside the cavity, its spatial profile grows exponentially as x → ∞ while the amplitude

of the CF state is a constant and conserves the photon flux. The other km’s, while they

have Re[km] ≈ Re[k̃m] (hence their free spectral ranges are similar), have quite different

imaginary parts, emphasizing that CF states are not QB modes.

The shape of the CF spectrum shown in Fig. 3.2(a) can be understood analytically. To

simplify the notation, we define Zm = n1kma ≡ qm − iκm and Z = n2ka and call their

ratio Zm/Z ≡ ǫm. Eq. (3.3) can then be rewritten in terms of Zm and ǫm:

e2iZm = − 2

ǫm − 1
− 1. (3.7)

By taking the logarithm of the modulus on both sides, we have

κm =
1

2
ln

∣

∣

∣

∣

2

ǫm − 1
+ 1

∣

∣

∣

∣

. (3.8)

From the equation above we know κm approaches zero when ǫm ∼ 0 or |ǫm| ≫ 1. This

explains why the complex CF frequencies become closer to the real axis in the limits

0 ≤ qm ≪ |Z| and qm ≫ |Z|. In these two limits the r.h.s of Eq. (3.2) becomes close

to either zero or infinity, and we know from the properties of the tangent function that

qm ≈ πm (m = 0, 1, 2, ...) and qm ≈ (π + 1/2)m in the two limits, respectively. Therefore

we see that there is a “phase shift” in the real part of the complex CF frequencies when

it increases, which is different from the behavior of the QB modes whose real parts are

always proportional to half integer times π.

The r.h.s of Eq. (3.8) is maximized when ǫm ∼ 1, which means the CF spectrum has a

minimum in the imaginary part near Zm ∼ Z (see Fig. 3.2(a)). One interesting question

is whether the minimum tends to infinity as one frequently encounters when dealing with

complex tangent functions. To answer this question, we first write ǫm ≡ ǫ0 − iǫ1 and

emphasize that both ǫ0 and ǫ1 are positive1. For simplicity, we take n2 = 1 and n1 to be

1Eq. (3.3) is even in km, and by default we take the complex CF frequencies with a positive real part.
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real, and drop the subscript of the latter. The modulus of Eq. (3.7) can be rewritten as

e2Zǫ1 =

∣

∣

∣

∣

1 + ǫ0 − iǫ1
1− ǫ0 − iǫ1

∣

∣

∣

∣

=

[

1 +
4ǫ0

(1− ǫ0)2 + ǫ21

] 1
2

. (3.9)

For any given ǫ0, the l.h.s of Eq. (3.9) increases monotonically with ǫ1 while the r.h.s

decreases monotonically with ǫ1, which means ǫ1, and hence Im [km], is bounded. To give

an estimate of the maximum of ǫ1, we use the fact that ǫ0 ∼ 1 near the bottom of the

valley and Eq. (3.9) is simplified to

Zǫ1 =
1

4
ln

[

1 +
4

ǫ21

]

. (3.10)

Since Z = ka is normally chosen to be larger than ln 5
4 ∼ 0.4, we know immediately that

ǫ1 has to be smaller than unity. In the case shown in Fig. 3.2 the above expression gives

ǫ1 = 0.1329, or min(Im[km]) = −0.6784, which is just below the imaginary part of the CF

state near the bottom of the valley (km = 5.6894 − 0.6326i). If we vary k so that there is

one CF frequency which sits right at the bottom of the valley, the estimated lower limit

of Im[km] is even closer to the numerical value. For example, the two values are −0.7080

and −0.7050 when k = 12.0 in this one-dimensional case.

3.2 Multi-layer one-dimensional edge-emitting laser cavities

If the cavity index ǫc(x) is not a constant, for examples, in a multi-layer system such as a

Distributed Feedback (DFB) laser (see Fig. 3.3), the analytical form of the equation that

the complex CF frequencies satisfy is rather complicated. In practice we mainly use two

numerical approaches to find the complex CF frequencies and the corresponding Ψµ(x):

(1) discretizing space and turning ∇2 into a matrix (2) using the transfer matrix approach.

The implementation of the outgoing boundary condition in the first approach was pointed

out to me by our colleague, Stefan Rotter, and the second approach is adapted from the

description in Ref. [76]. We will assume the cavity emits in both the forward and the

backward directions for generality.
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Figure 3.3: Schematic of a multi-layer one-dimensional edge-emitting cavity. This setup
can be applied to Distributed Feedback lasers and one-dimensional aperiodic and random
lasers.

3.2.1 Discretization method

p
0

p
1

p
N-1

p
N

Figure 3.4: The discretization scheme of a one-dimensional laser cavity.

In the discretization method N equally spaced grid points are placed in the cavity. The

refractive indices outside the two sidewalls are denoted by nl and nr, respectively. The

first point p1 is placed ∆/2 from the left boundary of the cavity, where ∆ is the spacing

between two nearby grid points. Two facilitative points p0 and pN+1 are placed outside the

cavity (one on each side), each ∆/2 away from the boundary on its side. The Helmholtz

equation at the nth point pn is

φn+1 + φn−1 − 2φn

∆2
= −ǫnk

2
mφn, (3.11)

where φn and ǫn are the values of the CF state and the dielectric function at pn. At p1 the

out-going boundary condition (φ1 − φ0)/∆ = −inlk(φ1 + φ0)/2 gives

φ0 =
2 + inlk∆

2− inlk∆
φ1 ≡ βlφ1, (3.12)
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with which we to eliminate φ0 in Eq. (3.11) at p0

(βl − 2)

∆2
φ1 +

1

∆2
φ2 = −ǫ1k

2
mφ1. (3.13)

The Helmholtz equation at pN can be derived similarly using βr ≡ (2+inrk∆)/(2−inrk∆).

These N discretized Helmholtz equations constitute an generalized eigenvalue problem























2−βl
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φ1
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(3.14)

with the eigenvalue λm = k2m and the eigenvector Φm = {φ1, ..., φN}T . Since the matrix

operator H on the left hand side of Eq. (3.14) is symmetric, the transpose of each of its

right eigenvectors is its left eigenvector with the same eigenvalue. Therefore, we recover

the orthogonality relation

{Φm}TBΦm′ = δmm′ (3.15)

where B is the diagonal matrix containing all the ǫn in Eq. (3.14).

If the dielectric function ǫ(x) has a certain parity, the problem above can be reduced

to half of its size by imposing either a Dirichlet (odd parity) or Neumann (even partiy) at

the symmetry center. The CF solutions of the one-sided case are exactly the solutions in

the first scenario.

3.2.2 Transfer matrix method

Consider a monochromatic wave traveling through the dielectric laser cavity shown in

Fig. 3.3. To avoid losing any generality, we write the wavefunction as
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ϕ(x) =



























α0 e
−i nl k0 (x−x0) + β0e

i nl k0 (x−x0), x < x0

αν e
−i nν kν (x−xν) + β2e

i nν kν (x−xν), xν−1 < x < xν

αN+1 e
−i nr kN+1 (x−xN ) + βN+1e

i nr kN+1 (x−x0), x > xN

(3.16)

and ν runs from 0 to N . The amplitudes of the left and right traveling waves in the νth

layer (αν , βν) and in the (ν+1)th layer (αν+1, βν+1) can be connected using the continuity

condition of ϕ(x) and its derivative at xν :





αν

βν



 = D−1
ν Dν+1Pν+1





αν+1

βν+1



 . (3.17)

The matrices in the equation above are defined by

Dν ≡





1 1

nνkν −nνkν



 , Pν ≡





einνkν(xν−xν−1) 0

0 e−inνkν(xν−xν−1)



 . (3.18)

Due to the phase convention we use in Eq. (3.16), the transfer matrix connecting the

amplitudes across the Nth interface (x = xN ) is slightly different from Eq. (3.17):





αN

βN



 = D−1
N DN+1





αN+1

βN+1



 , (3.19)

and nN+1 should be taken as nr. The total transfer matrix M connecting (α0, β0) and

(αN+1, βN+1) is then obtained by applying the operator in Eq. (3.17) repeatedly at each
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interface from x0 to xN−1 and multiplying the matrices in Eq. (3.19):





α0

β0



 = D−1
0 D1P1





α1

β1





= D−1
0 D1P1D

−1
1 D2P2





α2

β2





= D−1
0 D1P1D

−1
1 D2P2...D

−1
N DN+1





αN+1

βN+1





=
{

D−1
0

[

ΠN
ν=1DνPνD

−1
ν

]

DN+1

}





αN+1

βN+1





≡ M(k0, k1, ..., kN+1)





αN+1

βN+1



 . (3.20)

To find the mth CF frequency km, we first take the two external frequencies to be the

same k0 = kN+1 ≡ k and replace all kν ’s (ν = 1, 2, ..., N) by km. The transfer matrix

M is then a function of the two frequencies k and km. The outgoing boundary condition

requires β0 = αN+1 = 0, which means the matrix element

M22(k, km) = 0. (3.21)

km is then obtained by solving this equation at the given external frequency k. Once km

is known, we choose a normalization (e. g., βN+1 = 1) and calculate (αν , βν) sequentially

from the right to the left using Eq. (3.19) and (3.17).

In the one-sided case where there is a perfect mirror at x0, we derive the transfer matrix

connecting (α1, β1) and (αN+1, βN+1) by repeating the procedure leading to Eq. (3.20).

The Dirichlet boundary condition at x0 requires α1 = −β1, which means the equation that

determines km is

M22(k, km) +M12(k, km) = 0. (3.22)
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3.2.3 Inhomogeneous gain medium

As we will see in Section 4.1, threshold lasing modes are not CF states in general if ǫc(x)

is not a constant. This is to be expected for example in a cavity with uniform index but

with a inhomogeneous gain medium or pump profile. The amplification rate of each CF

state is homogeneous inside the last scattering surface, but this is not the case for TLMs

when either the gain medium or the pump profile is inhomogeneous. In the extreme case

where D0(x) has abrupt discontinuities similar to the one shown in Fig. 2.2, we are better

off using the gain region CF states instead. The GRCF approach is most suitable if the

index of refraction within each gain/pump region is a constant, for example, in a DFB

laser where the gain medium resides in only the odd or even layers. For now we neglect

the possibility of reabsorption of emitted photos by the uninverted gain medium in the

umpumped gain regions, thus treating inhomogeneous pump and inhomogeneous gain as

equivalents.

As a simple illustration, we consider a two-layer edge-emitting laser cavity shown in

Fig. 3.5. Layer I and II are separated by an dielectric interface at x = x0, and only Layer I

is filled with the gain medium and externally pumped. We will refer to the outside region

on the right as Region III.
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Figure 3.5: Schematic of a one-dimensional edge-emitting laser cavity with gain medium
only in Layer I (0 < x < x0).

The GRCF states of this cavity are determined by the following equations



























(∇2 + n2
1 k

2
m)ϕm(x, ω) = 0, 0 < x < x0,

(∇2 + n2
2 k2)ϕm(x, ω) = 0, x0 < x < a,

(∇2 + k2 )ϕm(x, ω) = 0, x > a.

(3.23)
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By imposing the Dirichlet boundary condition at x = 0 and the outgoing boundary condi-

tion at x = a, we write the formal solution of a GRCF state as

ϕm(x, ω) =



























sin (n1kmx), 0 < x < x0

αm ein2kx + βm e−in2kx, x0 < x < a

cm eikx, x > a

. (3.24)

Notice that the wavevector in Layer II is the same as the external k, which is a real quantity.

This choice is quite natural since, due to lack of the gain medium, the lasing states are not

amplified in Layer II. The GRCF frequencies km are the solutions of the following equation

tan (n1kmx0) =
n1km
i n2 k

1 + n2−1
n2+1 e

2 i n2k(a−x0)

1− n2−1
n2+1 e

2 i n2k(a−x0)
, (3.25)

which is obtained by requiring that ϕm(x, ω) and its derivative at x = x0 and x = a are

continuous.

ω

Figure 3.6: The real (red solid curve) and imaginary part (black dashed curve) of the
effective index n′

2. We use n2 = 3 and x0/a = 0.5. The dotted line indicates the position
of zeros.
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If we define

n′
2 = n2

1− n2−1
n2+1 e

2 i n2k(a−x0)

1 + n2−1
n2+1 e

2 i n2k(a−x0)
, (3.26)

and substitute it into Eq. (3.25), we end up with an equation which has the same form

as Eq. (3.3). This implies that the system under discussion is equivalent to a uniformly

pumped cavity of length x0 placed in an environment with the index n′
2. For a given

x0, the dispersion curve of the effective environment shows multiple resonances and is a

periodic function of k (see Fig. 3.6). Re [n′
2] varies between n−2

2 and 1, and it reaches its

extremes where k satisfies sin[2n2k(a − x0)] = 0. There are also the frequencies where

Im [n′
2] varnishes.

Fig. 3.7 shows the quantized GRCF frequencies calculated with k = 20 and different

values of x0. All these series have similar shapes as the original CF states, which is not

surprising after the analogy introduced above. The bottom of the valley varies with x0

(Re [km] ≈ Re [n′
2] k/n1), and the spacing between adjacent GRCF frequencies increases

as we decrease x0. Notice that the inhomogeneous gain profile changes the density of the

the GRCF spectrum and shifts it downwards in the complex plane, which means that it

effectively reduces the size of the cavity.

5 10 15 20 25 30 35
−2.5

−2

−1.5

−1

−0.5

0

Re[km]

Im
[k
m
]

 

 

Figure 3.7: Series of gain region CF frequencies in the edge-emitting cavity shown in Fig.
3.5. The color scheme used are: blue (x0 = 0.9), purple (x0 = 0.7), green (x0 = 0.5), red
(x0 = 0.3). The parameters used are k = 20, a = 1, n1 = 1.5 and n2 = 1.1.

The coefficients determining the spatial profile of the GRCF states in Eq. (3.24) depend
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strong on x0:



























αm = 1
2

[

sin (n1kmx0) +
n1km
in2k

cos (n1kmx0)
]

e− i n2kx0 ,

βm = 1
2

[

sin (n1kmx0)− n1km
in2k

cos (n1kmx0)
]

e i n2kx0 ,

cm = 2n2
n2+1 e

i (1−n2)k αm.

(3.27)

For comparison we plot the GRCF states with different values of x0 in Fig. 3.8. They are

normalized to have the same intensity at the right boundary, and they look quite different

from the uniformly amplified CF state. We note that the amplification rate of the GRCF

states in Layer I becomes larger when the length of the gain region is reduced, indicating a

higher pump is need to compensate for the increasing cavity loss. Therefore, we expect that

the lowest threshold D
(1)
th will increase as a result of a shortened gain region. A reasonable

guess is that D
(1)
th is inversely proportional to x0, and the numerical calculation agrees

with this prediction (see inset of Fig. 3.8). The fluctuation of the threshold around the

fitting curve reflects the fluctuation of the distance between the atomic transition frequency

and the closest GRCF eigenvalue when x0 is varied. The method we use to calculate the

threshold will be introduced in Section 4.1.

Figure 3.8: GRCF states calculated in the edge-emitting cavity shown in Fig. 3.5. The
amplification rate of the wavefunction in Region I becomes larger when we decrease x0. The
parameters and color scheme used are the same as in Fig. 3.7. Inset: The lowest threshold

D
(1)
th increases as 1/x0 as x0 is reduced. The fitting curve is given by D0 = 1.6 · x−1

0

.

50



The frequencies of the GRCF states have a complex dependence on the external fre-

quency k even when the passive cavity has no index mismatch between the layers. They

can shift a distance a few times the average spacing along the real axis and the absolute

values of their imaginary parts can be very large (see Fig. 3.9(b)). Thus the spacing of the

real parts of the GRCF states may not be a good measure of the free spectral range, and

the spatial profiles of the GRCF states can be dramatically different at different values of

k. For example, the GRCF frequency km(k = 20) = 29.82− 1.609i shifts to 18.72− 7.459i

when k is reduced to 18, and its amplitude becomes exponentially increasing inside the

gain region towards the gain boundary inside the cavity (see inset, Fig. 3.9(b)). As a com-

parison, we plot in Fig. 3.9(a) the shifts of the CF frequencies when varying the external

frequency assuming a homogeneous gain; their real parts change slowly with k while their

imaginary parts are bounded by the value given by Eq. (3.10). It should be noted, however,

a GRCF state becomes a threshold lasing mode only when the external frequency is tuned

to the corresponding lasing frequency. The frequency and spatial profile of the threshold

lasing modes in this case is studied more closely in Chapter 8.

The general methods of finding the GRCF states will be discussed in Section 3.6,

but the transfer matrix approach introduced in Section 3.2.2 is probably the best way to

obtain them in multi-layer one-dimensional systems. The modification is straightforward:

we replace the CF frequency km in the gain-free region inside the LSS by the real frequency

k and solve the two-component equation (3.20) for km.

3.3 Uniform micro-disk lasers

When introducing the CF states in Section 2.4, we used the two-dimensional micro-disk

cavity as an example to show how to reconstruct the degenerate CF subspace to preserve

the orthogonality (2.39). In fact, we can also introduce a set of dual functions {ϕ̄m(x)}
and use the biorthogonality relation (2.48) when decomposing the lasing modes and the
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Figure 3.9: (a) Shift of CF frequencies when the external frequency k is tuned from 10 to
30. The cavity is a uniform one-dimensional slab of index n = 1.5 with a constant D0(x).
The ones calculated at k = 20 are highlighted by black squares. The dashed line shows the
lower bound Im[km] = 2.0 of the imaginary part of the CF states given by Eq. (3.10) using
k = 30. (b) Shift of GRCF frequencies when the external frequency changes from k =10
to 30. The cavity is the same as in (a) but with the gain medium fills only the left half of
the cavity. The GRCF states calculated at k = 20 are highlighted by black squares. The
spatial profile of the circled state km(k = 18) = 18.7192 − 7.4593i is shown in the inset.

Green’s function in the CF basis. In this approach the CF states can be written as

ϕ(m, n)(r, φ, ω) =











Jm(n1k(m, n)r) e
imφ, r < R,

Jm(n1k(m,n)R)

H+
m(n2kR)

H+
m(n2kr) e

imφ, r > R,
(3.28)

where (m, n) are the angular and radius quantum numbers and n1 and n2 are the refractive

indices inside and outside the cavity. Notice we have included the continuity condition of

the CF state at r = R explicitly in the equation above. The outgoing boundary condition

is incorporated by using the Hankel function of the first kind outside the cavity, and k(m,n)

is determined by the continuity of the radius derivative of ϕ(m,n):

n1k(m, n) J
′
m(n1k(m, n)R)

Jm(n1k(m, n)R)
=

n2kH
+′

m (n2kR)

H+
m(n2kR)

(3.29)

We will refer to the CF states within the cavity as CF Bessel functions.

The dual states {ϕ̄m(x)} are the solutions of the wave function (2.33) and (2.35) with
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the incoming boundary condition:

ϕ̄(m, n)(r, φ, ω) =











Jm(n1k(m, n)r) e
imφ, r < R,

Jm(n1k(m,n)R)

H−
m(n2kR)

H−
m(n2kr) e

imφ, r > R.
(3.30)

It is easy to check that when m 6= m′ the biorthogonality holds due to the vanishing

integral in the azimuthal direction. For the CF states with the same angular momentum

number m but different radial quantum number, the integral in Eq. (2.48) can be rewritten

as

∫

r<R
dx ϕ̄∗

m,n(x, ω)ϕm, n′(x, ω)

=
1

k2m,n − k2m,n′

∫

r<R
dx
[

ϕ̄∗
m,n′(x, ω)∇2ϕm,n(x, ω)− ϕm,n(x, ω)∇2ϕ̄∗

m,n′ν(x, ω)
]

=
1

k2m,n − k2m,n′

∫

Rdθ

[

ϕ̄∗
m,n′(x, ω)

∂ϕm, n(x, ω)

∂r
− ϕm,n(x, ω)

∂ϕ̄∗
m, n′(x, ω)

∂r

]

=
2πn1R

k2m,n − k2m,n′

[

k(m,n)Jm(n1k(m, n′)R)J′m(n1k(m, n)R)− k(m, n′)Jm(n1k(m, n)R)J′m(n1k(m, n′)R)
]

.

By substituting the derivatives of the Bessel’s functions by their values given in Eq. (3.29),

we see that indeed the biorthogonality holds.

In Fig. 3.10 we compare the spatial profiles of two CF states and the nearby QB modes.

The quality factor of the extreme whispering-gallery (WG) modes in an ideal micro-disk

laser cavity without defects can easily reach 1011, and Fig. 3.10(a) shows one of them. In

this high-Q limit, the difference between the CF and QB frequencies is extremely small,

and their spatial profiles look identical both in the cavity and within a few radii from the

boundary. Eventually the amplitude of the QB mode grows exponentially when r → ∞
as given by the asymptotic form of the outgoing Hankel function. The ray correspondence

of the extreme WG mode is a bundle of light rays undergoing total internal reflection in

the cavity, but in the wave picture the mode still couples to the outside by evanescent

tunneling due to the finite curvature of the cavity boundary [23]. This holds true for both

the QB modes and the CF states. For lossy WG modes like the one shown in Fig. 3.10(b),

we see the spatial profile of the QB mode differs from that of the CF state immediately
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Figure 3.10: Radial spatial profiles of two pairs of QB (black dashed line) and CF (red
solid line) states inside a micro-disk cavity of refractive index n = 2.5. (a) An extreme
WG mode with m = 35. The QB frequency is k̃p = 19.9268 − 1.153 × 10−11i, and the
CF frequency is kp(k = 19.9268) = 19.9268 − 1.161 × 10−11i. (b) A lossy WG mode
with m = 5. The QB frequency is k̃q = 10.8135 − 0.1543i, and the CF frequency is
kq(k = 10.8135) = 10.8165 − 0.1543i.

outside the cavity. From the position of the caustic (i. e., the position of the first maxima

of the spatial profile which is at r ≈ 0.24R in Fig. 3.10(b)) we can tell that the incident

angle of the rays in the cavity is smaller than the critical angle (χc = arcsin(1/n) = 0.41).

Due to the isotropic symmetry of the micro-disk, the angular momentum is a conserved

quantity in all physical states associated with it as long as the pump is homogeneous in

the azimuthal direction. Therefore, each lasing mode, even above threshold, is made up

of the CF states of the same angular momentum number m. Although the CF spectrum

is much denser than that in the one-dimensional case, this implies that we only need to

consider the few WG CF states with the lowest threshold and the ones nearby in frequency

with the same m’s in our calculation.

In the above discussion we assumed the light field in the cavity is TM polarized per-

pendicular to the plane of the disk, and the scalar Helmholtz equations (2.33) and (2.35)

are satisfied by the electric field which is normal to the disk. The CF states can also be

defined for TE polarized light with the same Helmhotlz equation of the magnetic field Hz.

The outgoing boundary condition is similar to that in Eq. (3.29) by using the continuity
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of the quantity ǫ(x)−1 ∂Hz

∂r at the boundary.

3.4 Two-dimensional asymmetric resonant cavity lasers

The lasers we have discussed in this chapter so far are essentially all one-dimensional (the

Helmholtz equation in the micro-disk geometry is separable). In order to probe more

interesting lasers, e. .g., the ARC lasers and random lasers introduced in Chapter 1, we

need a general CF state solver in 2D and 3D. In this chapter we will focus on the 2D

case, and the methods we will introduce can be easily generalized to 3D. One challenge

of finding the CF states in these lasers is implementing the outgoing boundary condition

since the boundaries of these cavities can be quite complicated.

One solution is to use a Generalized Fourier Series expansion, the CF Bessel functions

(defined in the preceding section) expansion. In this approach we choose a circular LSS

that encloses the laser cavity, representing a nominal gain region, and assume the index nD

inside the LSS is a constant. Depending on the properties of the cavity, nD can either be

chosen as the cavity index nc (e. g., in a quadrupole cavity; see Fig. 1.2(b)) or the average

index within the LSS (e. g., in a random laser with nano-particles in a dye solution). The

CF Bessel function inside the LSS form a complete and orthogonal basis, and the lasing

modes are obtained by solving the SALT equations 2.50 by treating the region inside the

LSS as our cavity. This approach is mostly pursued by Y. D. Chong in Prof. A. Douglas

Stone’s group. In this approach we sacrifice the resemblance of the CF states to the lasing

modes, which means a very large basis set is needed when the true cavity boundary is very

different from a circle or the index inhomogeneities inside the LSS is strong.

In this thesis we use a different method: the discretization method in polar coordinates.

We choose to work in polar coordinates because the outgoing boundary condition in two

dimensions can be conveniently expressed in them. This method was initially developed

by Stefan Rotter and Prof. A. Douglas Stone (see the online supplemental material of

Ref. [65]), which is the two-dimensional generalization of the method introduced in Sec-

tion 3.2.1. Similar to the method outlined above, we assume a disk-shaped gain region

and choose its boundary as the LSS. We do not assume the index inside the LSS is a

constant when constructing the CF basis. Cavities of any shape (e. g., the solid curve in
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Fig. 3.11) can be centered and placed inside the LSS. The cavity does not necessarily have

to be convex or single-connected as the out-going boundary condition is imposed on the

circular LSS. Although the actual gain region may differ from the disk region we choose,

we take into account the index inhomogeneity inside the cavity in this approach, which is

a significant improvement compared with the CF Bessel functions expansion. The results

given by the discretization method can be refined following the approaches introduced in

Section 3.6 to take into account the spatial variation of the gain medium.

Figure 3.11: Discretization scheme of the two-dimensional geometry in polar coordinates.

As illustrated in Fig. 3.11, Nθ equally spaced grid points are laid on each ring, with the

first one placed in the θ = π/Nθ direction. The discretization in the radial direction [77]

is similar to the scheme used in the preceding section: The first radial grid point is placed

∆r/2 from the origin, where ∆r is the distance between two nearby radial grid points. It

is pointed out in Ref. [78] that the direct replacement of the Laplacian by finite differences

in the polar coordinates can lead to serious discretization errors, and a variational method

[79] needs to be used to derive a better discretization scheme. This variational method
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is best suitable for problems with a non-Cartesian grid, and it is guaranteed to produce

a symmetric discretization [80]. We will briefly discuss how it works in the following

paragraphs.

The Helmholtz equation in an arbitrary domain (we will call it D) can be viewed as

the result of extremizing the functional

E[φm] ≡
∫

D
d2x

[

−(∇φm)2

2
+

k2m
2
ǫφ2

m

]

(3.31)

with the constraint δφm|∂D = 0:

δE[φm] =

∫

D
d2x

[

−∇φm · ∇δφm + ǫk2mφmδφm

]

= −∇φm · δφm|∂D +

∫

D
d2x

[

∇2φm + ǫk2mφm

]

δφm

=

∫

D
d2x

[

∇2φm + ǫk2mφm

]

δφm. (3.32)

∂D indicates the boundary of Domain D. The first step towards the proper discretization

is to replace the integral in Eq. (3.31) by the sum over all the grid points p(µ, ν) in Domain

D:

E(φm
1,1, ..., φ

m
µ0, ν0 , ..., φ

m
Nr ,Nθ

)

≡ 1
2

∑Nθ
µ=1 ∆θ

∑Nr

ν=1∆r

[

−rµ+ 1
2

(

φm
µ+1, ν−φm

µ, ν

∆r

)2
− 1

rµ

(

φm
µ, ν+1−φm

µ, ν

∆θ

)2
+ rµ

(

ǫµ, νk
2
mφm

µ, ν

)2
]

.

(3.33)

∆θ is the angular distance between two nearby azimuthal grid points, and the notation

rµ± 1
2
stands for the center point between rµ and rµ±1. Note that the first place ∇2φm is

evaluated in the radial direction in Eq. (3.33) is at r = r3/2 as r1/2 in this notation is the

origin.

The next step is to extremize E with respect to the amplitude of the wave function at

all the grid points in side the domain:

∂E

∂φm
µ, ν

= 0. (3.34)
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The calculation is straightforward, which gives

rµ− 1
2
φm
µ−1, ν + rµ+ 1

2
φm
µ+1, ν − 2 rµ φ

m
µ, ν

rµ(∆r)
2 +

φm
µ, ν−1 + φm

µ, ν+1 − 2φm
µ, ν

(rµ∆θ)
2 + ǫµ, νk

2
m φm

µ, ν = 0.

(3.35)

Since the integrand in Eq. (2.50) is proportional to rµφ
m
µ, νφ

n
µ, ν in the absence of modal

interaction, we use a more convenient form of Eq. (3.35) in terms of ρmµ, ν ≡ √
rµφ

m
µ, ν :

r
µ− 1

2√
rµrµ−1

ρmµ−1, ν +
r
µ+1

2√
rµrµ+1

ρmµ+1, ν − 2ρmµ, ν

(∆r)
2 +

ρmµ, ν−1 + ρmµ, ν+1 − 2 ρmµ, ν

(rµ∆θ)
2 + ǫµ, νk

2
m ρmµ, ν = 0.

(3.36)

Note that if we had directly discretized the continuous differential equation ρm satisfies

(

∂2

∂r2
+

∂2

r2∂φ2
+

1

4r2
+ ǫk2m

)

ρm = 0, (3.37)

we would had ended up with an equation different from Eq. (3.36):

ρmµ−1, ν + ρmµ+1, ν − (2− δ2µ
4 ) ρ

m
µ, ν

(∆r)
2 +

ρmµ, ν−1 + ρmµ, ν+1 − 2 ρmµ, ν

(rµ∆θ)
2 + ǫµ, νk

2
m ρmµ, ν = 0, (3.38)

where δµ ≡ ∆r

rµ
. Close to the origin δµ is of order unity, and the equation above differs

dramatically from Eq. (3.36) which can be rewritten as

ρmµ−1, ν + ρmµ+1, ν − (2 +
δ2µ
2 )ρ

m
µ, ν

(∆r)
2 +

ρmµ, ν−1 + ρmµ, ν+1 − 2 ρmµ, ν

(rµ∆θ)
2 + ǫµ, νk

2
m ρmµ, ν = O(δ3µ). (3.39)

The outgoing boundary condition in the two-dimensional case is considerably harder

than that in the one-dimensional cavities: There is no local relation between φm
Nr , ν

and

φm
Nr+1, ν

for a given angle because the angular momenta of the wave functions are not known

in advance. In the continuous form the CF states and their radial derivatives outside the
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disk have the following formal solutions:

φ> =
∑

m

am
H+

m(kr)

H+
m(kR)

eimθ,

∂φ>

∂r
=

∑

m

am
H+′

m (kr)

H+
m(kR)

eimθk. (3.40)

k is again the external lasing frequency. Now suppose the wave function on the Nrth and

(Nr + 1)th rings can be written as

φNr, ν =
∑

m bm eimθν ,

φNr+1, ν =
∑

m bm(1 + cm∆r) e
imθν ,

(3.41)

the radial derivative at r = R and θ = θν can then be approximated by

φNr+1, ν − φNr , ν

∆r
=
∑

m

bm cm eimθν . (3.42)

Combine it with Eq. (3.40) and we have

cm = k
am
bm

H+′

m (kR)

H+
m(kR)

. (3.43)

The other equation involving the three expansion coefficients am, bm and cm is obtained

by equating the discretized and continuous expressions for the mth Fourier coefficient of

the CF state on the (Nr + 1)th ring

bm(1 + cm∆r) = am
H+

m(k rNr+1)

H+
m(kR)

, (3.44)

which when combined Eq. (3.43) gives

cm =
kH+′

m (kR)

H+
m(k rNr+1)− k∆rH

+′

m (kR)
. (3.45)
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In the end we have

φNr+1, ν =
∑

m

bm(1 + cm∆r) e
imθν

=
∑

ν′

[

∆θ

2π

∑

m

eim(θν−θν′ )

(

1 +
k∆rH

+′

m (kR)

H+
m(k rNr+1)− k∆rH

+′

m (kR)

)]

φNr , ν′

≡
∑

ν′

Vν, ν′φNr , ν′ , (3.46)

or

ρNr+1, ν =
∑

ν′

Vν, ν′

√

rNr+1

rNr

ρNr , ν′ . (3.47)

By combining the set of (Nr×Nθ) equations given by (3.36) and eliminating ρNr+1, ν using

Eq. (3.47), we once again derive a general eigenvalue problem

H Φm = k2mBΦm (3.48)

which is similar to Eq. (3.14). The eigenvector Φm is a column vector containing all the

ρµ, ν

Φm = {ρ1,1, ρ1,2, ..., ρ1,Nθ
, ρ2,1, ρ2,2, ..., ρ2,Nθ

, ..., ρNr ,1, ..., ρNr ,Nθ
}T , (3.49)

andB is a (Nr×Nθ) by (Nr×Nθ) diagonal matrix withB(µ−1)Nθ+ν,(µ′−1)Nθ+ν′ = ǫµ, νδµ,µ′δν, ν′ .

The operator H is made up of a banded matrix H0 and a (Nθ ×Nθ) block H ′ in the lower

right corner. H0 is symmetric with nonzero elements on the 0, ±1, and ±Nθ diagonals



















H(µ−1)Nθ+ν, (µ−1)Nθ+ν = 2
(∆r)2

+ 2
(rµ∆θ)2

,

H(µ−1)Nθ+ν, (µ−1)Nθ+ν+1 = − 1
(rµ∆θ)2

,

H(µ−1)Nθ+ν, µNθ+ν = −
r
µ+1

2
(∆r)2

√
rµrµ+1

,

(3.50)

and H ′ comes from the boundary condition when eliminating ρNr+1, ν , which is also sym-

metric:

H ′
ν, ν′ = − 1

(∆r)2

rµ+ 1
2

rµ
Vν, ν′ = − 1

(∆r)2

rµ+ 1
2

rµ
Vν′, ν = H ′

ν′, ν . (3.51)

Here we used the relation H+
−m(z) = (−1)mH+

m(z) and the definition of Vν, ν′ in Eq. (3.46).

Therefore, the matrix operator H is symmetric and {Φm} satisfy the orthogonality relation

60



Eq. (3.15) as in the one-dimensional case.

If the cavity has ns symmetry axes, one can reduce the number of grid points in the

azimuthal direction to Nr/ns by imposing either Dirichlet or Neumann boundary condition

on the symmetry axes. This procedure does not only help to reduce the execution time of

the CF state solver, but more importantly, enables one to calculate the CF states in the

deep semiclassical limit (nkR ≫ 1) which is otherwise impossible due to the limitation of

computer memory. To check this method we calculate the CF frequencies in a micro-disk

laser by discretizing the cavity in the first quadrant and imposing symmetry boundary

conditions along the θ = 0 and 180◦ directions. The CF states with an odd angular

momentum number m are given by the {+,−} (or {+,−}) symmetry, and the ones with

an even m are obtained using the {+,+} (or {−,−}) symmetry. The results agree well

with the solutions of the analytical expression (3.29) (see Fig. 3.12).

If the dielectric function within the LSS varies smoothly in the azimuthal direction, we

can also solve for the coefficients of the Fourier transform of the wave functions on each

ring instead (see Appendix C).

18 19 20 21 22

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Re[ω
m
]

Im
[ω
m
]

Figure 3.12: CF frequencies in a micro-disk cavity of index n = 1.5 and radius R = 1.
The Red circles and blue squares represents the CF frequencies with even and odd angular
momentum numbers, respectively. They are calculated using the discretization method
with Nr = Nφ = 600 and symmetry boundary conditions along the θ = 0 and 180◦

directions. The black crosses are the result of solving the analytical expression (3.29).
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Standard methods of finding the QB modes in micro-cavities such as the S-matrix

method [81, 82, 83, 84] and the boundary integral method [85] can also be applied to the

ARC lasers when modified to include the CF outgoing boundary condition. But in practice

they are not as convenient as the discretization method which outputs the CF frequencies

in the given frequency window all at once.

3.5 Random lasers

Random lasers (RLs), as discussed in the introduction, are extremely open and the pho-

tons generated by stimulated emission escape rapidly from the gain region. The linear

resonances in a RL are strongly overlapping, which means the distribution of the QB

eigenvalues is peaked far from the real axis and the distance is large compared with the

spacing of nearby QB eigenvalues. In our model we treat the two-dimensional RL as an

aggregate of sub-wavelength particles embedded in a disk-shaped gain medium of radius R

(see Fig. 3.13(a)). To find the CF states we use the discretization method which was intro-

duced in the preceding section to treat ARC lasers. Notice that the S-matrix method, as

introduced in Ref. [83], cannot be applied to RLs because it requires that the boundary of

the cavity is smooth and convex and that the refractive index in the cavity is a constant2.

The boundary integral method in principle can be used to find CF frequencies in RLs,

but it requires a boundary integral for each of scatterers in the system and the numerics

become hard to track once we have hundreds or even thousands of scatterers.

Fig. 3.13(b) shows that the CF and QB frequencies in this case are significantly different

but statistically similar. Although we can find some instances where a CF frequency and

a QB frequency are close to each, there is no one-to-one correspondence between them in

general, which is different from the what we have shown in high-Q cavities. Fig. 3.14 shows

the comparison of the intensity of a CF state and the QB mode whose complex frequency

is closest to that of the CF state. They have similar features, including the bright speckles

near the edge of the cavity and the mixture of semi-straight and distorted wavefronts, but

the overall intensity of the QB mode is much higher. In Chapter 7 we will show that the

large amplification towards the cavity boundary is also a noticeable feature of the lasing

2Efforts of removing these limitations have been reported [84].
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Figure 3.13: (a) Schematic of the configuration of nanoparticle scatterers in the disk-shaped
gain region of a RL. (a) Comparison of CF and QB frequencies in a RL. The red circles and
the black triangles represent the CF and QB frequencies, respectively. They have similar
lifetimes and are statistically similar, but there is no one-to-one correspondence between
them in general.

modes, which is due to the leaky nature of the RL.

3.6 General methods of finding the gain region constant-flux

states in all dimensions

There are two general approaches to find the GRCF states in arbitrary dimensions. The

first approach is treating GRCF states as TLMs and find them using the CF expansion.

Although we still need a relatively large CF basis to obtain the GRCF states, once they

are obtained we will use them in the nonlinear (above threshold) calculation. The size of

the basis and the number of equations we need to solve simultaneously are then greatly

reduced. To distinguish the GRCF states from the original CF states {φm}, we will refer

to them and their frequencies as {φ(g)
m } and {k(g)m } in the following discussion.
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(a) (b)

Figure 3.14: False color plots of (a) a CF state and (b) the QB mode whose complex
frequency (k̃m = 29.8813 − 1.3790i) is closest to that of the CF state (km(k = 30) =
30.0058−1.3219i). The wave functions are normalized by the orthogonality relation (2.39).

By expanding the GRCF state in the CF basis φ
(g)
m (x) =

∑

m′ am′φm′(x) and substi-

tuting it into the Helmholtz equation φ
(g)
m (x) satisfies, we derive







∑

m′ am′((k
(g)
m )2 − k2m′) ǫ(x)φm′(x) = 0, x ∈ gain regions

∑

m′ am′(k2 − k2m′) ǫ(x)φm′(x) = 0, x ∈ D
. (3.52)

D is the gain-free region inside the LSS. Now we apply the operator
∫

gain dxφn′(x) to the

first equation and the operator
∫

D dxφn′(x) to the second equation. By adding the results

and using the orthogonality relation, we have

(k(g)m )2
∑

m′

I
(1)
n′,m′ am′ + k2

∑

m′

I
(2)
n′,m′ am′ = k2n′an′ , (3.53)

where






I
(1)
n′, m′ ≡

∫

gain dxφn′(x) ǫ(x)φm′ (x)

I
(2)
n′, m′ ≡

∫

D dxφn′(x) ǫ(x)φm′ (x) = δn′m′ − I
(1)
n′,m′

. (3.54)

Eq. (3.53) can be rewritten as an generalized eigenvalue problem with the introduction of

a diagonal matrix Q = δnn′kn′ :

(

Q− k2I(2)
)

a = (k(g)m )2 I(1) a. (3.55)
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The advantage of this approach is that one can obtain N GRCF states and their eigen-

values simultaneously, where N is the number of the original CF states used. If N is not

sufficiently large, the eigenvalues near the edges of the frequency window may be not as

accurate as the ones in the center. For example, if the gain medium covers 70% of the disk

area in a 2D random laser similar to the one studied in Fig. 3.14 and we use 50 CF states

as the basis, the absolute values of the off-diagonal elements Li, j 6=i in the orthogonality

relation (B.5) are in the range
[

10−15, 10−8
]

with an average of 1.6× 10−10. This problem

can be solved using the second approach below as a complement. It should be noted that

if N is too large the calculated GRCF frequencies will scatter all over the complex plane,

and some of them may even have a positive imaginary part. A rule of thumb for clearing

up the calculated GRCF frequencies is to discard those with a positive imaginary part and

whose real part are outside the frequency window containing the original CF states.

The second approach to find the GRCF states is based on the observation that the

dielectric function ǫc(x) always appears as the pre-factor of the wavevector in the Helmholtz

equation. Therefore, we can vary the dielectric constant in D from its physical value ǫ< to

ǫm such that

ǫm =
k2

k
(g)
m

2 ǫ<. (3.56)

What we are doing physically is adding a certain amount of absorption to the index in D to

counteract the unphysical amplification caused by each Im[km]. Therefore, ǫm differs from

one GRCF state to another, which can be an inconvenience if we want to obtain many

GRCF states at the same time. The implementation of this method involves an iterative

process: one first calculate N CF frequencies km for a given k, replace ǫ< in D by ǫm

given by Eq. (3.56), then solve for one CF eigenvalue near the original km using ǫm (now

there are N of them). By repeating this process we find that km converge to the desired

GRCF frequencies within a few iterations. This method is very efficient if D covers a small

fraction of the disk. For a quadrupole cavity (see Chapter 6) with a deformation of 0.16

and a disk gain region whose radius is 70% the length of the minor axis, it only takes ten

iterations for the difference of km in two consecutive iterations to fall below 10−8, and the

modulus of the off-diagonal elements of the orthogonality relation (B.5) are smaller than

10−12.
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In practice it is best to combine these two methods together if we want a relatively

large GRCF basis or the gain regions cover only a small part of the whole cavity. In this

way we don’t need to use as large a CF basis as we do when using the first approach alone,

and we can refine each GRCF frequency as much as required using the second approach.
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Chapter 4

Solution algorithm of the SALT

Equipped with the methods we introduced in the preceding chapter for calculating CF

and GRCF states in various geometries, we now proceed to solve the SALT equations in

the CF and GRCF basis (Eq. (2.50) and (2.57)). First we discuss the calculation of the

threshold lasing modes defined in Section 2.5.

4.1 Threshold analysis

We introduced the threshold lasing equation (2.59) in Section 2.5, and we mentioned that

the threshold lasing mode with the lowest threshold is by definition the first lasing mode

when we turn on the pump. The others are not true lasing modes when modal interaction

is considered. To find the threshold of each TLM, we can gradually increase D0 and

monitor the distance of each pole of the S-matrix from the real axis as shown in Fig. 2.3.

Eq. (2.59) can also be solved in a way similarly to how we solve for the CF states (see

Chapter 3). Besides the fact that we are using the gain modified dielectric function ǫ(x)

instead of the passive cavity index ǫc(x), the only difference is that we are now looking

for real eigenvalues kµ. We first choose an initial guess for each kµ and solve the linear

equation (2.59) which returns a set of complex eigenvalues. We then update each kµ by

the closest one in the complex plane from the previous result and repeat this process until

it converges to a real value. A more efficient method to find all the TLMs is solving the

expansion of Eq. (2.15) in the CF basis (2.50) without the modal interaction denominator
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(1 +
∑

µ Γµ|Ψµ(x)|2):

aµm = − γ⊥
(ωµ − ωa) + iγ⊥

kµ2

kµ2 − k2m

∫

D
dx′D0(1 + d0(x

′))ϕm(x′, ωµ)
∑

p

aµp ϕp(x
′, ωµ),

(4.1)

which determines not only the spatial profiles but also the lasing frequencies of each TLM.

4.1.1 A special case: uniform index cavities with spatially homogeneous

gain

The task of finding the thresholds and the corresponding lasing frequencies is particularly

simple for the first lasing mode if both D0(x) and ǫc(x) are constants inside the cavity.

Using the orthogonality relation (2.39) we find all the off-diagonal terms in the integrand

vanish, and Eq. (4.1) reduces to the following simple form:

aµm = − Ξγ⊥
(ωµ − ωa) + iγ⊥

kµ2

kµ2 − k2m
aµm, (4.2)

where Ξ is defined as the ratio D0/ǫc. For the mode Ψµ(x) this equation must hold for all

m’s with the same kµ, which means either all aµm’s are zero (the trivial solution) or only

one aµm is nonzero, which makes the “single-pole approximation” exact for this nontrivial

solution. The latter reiterates the observation that the TLMs are CF states with km given

by Eq. (2.58) when both D0(x) and ǫc(x) are constants. Above threshold however, the

“single-pole” picture is only approximate as we will see in later sections. For the nontrivial

solution of aµm the coefficient on the r.h.s. of Eq. (4.2) must be real and equal to unity.

The reality condition determines that the possible lasing frequencies at threshold are

ω
(m)
th = ωa +

γ⊥qm(ω
(m)
th )

γ⊥ + κm(ω
(m)
th )

(4.3)

where ωm−ωa ≡ qm(ω)− iκm(ω) (we suppress the index µ here). In deriving Eq. (4.3) we

made the approximation kµ2 − k2m ∼ 2kµ(kµ − km) to make the resulting equation more

compact, which is not necessary in the actual calculation. Furthermore, the modulus unity
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condition determines the threshold value of the pump strength:

Ξ
(m)
th =

2κm
kµ

[

1 +
q2m

(γ⊥ + κm)2

]

. (4.4)

The TLM with the lowest threshold will be the first lasing mode. Note that in contrast to

the traditional line-pulling formula [55] where the cavity mode frequency is a fixed value,

here the single-mode laser frequency is determined by the solution of a self-consistent

equation. Nonetheless for high finesse cavities this condition agrees with standard results:

the lasing frequency is very close to the cavity resonance nearest to the gain center, pulled

towards the gain center by an amount which depends on the relative magnitude of γ⊥ vs.

κm (which is approximately the resonance linewidth).

In fact the discussions in this section doesn’t only apply to a cavity with uniform index

and gain; Eq. (4.2-4.4) hold as long as D0(x)/ǫc(x) is a constant within the cavity. One

of such cases is given in the following subsection.

4.1.2 The general case

In the general case where D0(x) and ǫc(x) are uncorrelated, the amplitude equation (4.1)

is still linear and it can be solved as an eigenvalue problem:

T aµ = λµaµ . (4.5)

Tmn is a linear operator acting on the properly truncated N -dimensional vector space of

complex amplitudes aµ = (aµ1 , a
µ
2 , . . . , a

µ
N ):

Tmn(k) = Λm(k)

∫

D
dx′(1 + d0(x

′))ϕm(x′, ω)ϕn(x
′, ω), (4.6)

where the pre-factor Λm(k) is defined as iγ⊥k2/[(γ⊥ − i(ω−ωa))(k
2 − k2m(k))]. The eigen-

value λµ is the inverse threshold Dµ
th which is by definition a real quantity. The reality

condition cannot in general be satisfied except at discrete values of k. If D0(x)/ǫ(x) is a

constant in space, Tmn is diagonal and we recover Eq. (4.2). In general Tmn is non-diagonal

and non-hermitian, which has N complex eigenvalues λµ(k) for an arbitrary value of k. As
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k is varied, the eigenvalues λµ(k) flow in the complex plane, each one crossing the positive

real axis at a specific kµ, determined by Im[λµ(k = kµ)] = 0 (see Fig. 4.1). The modu-

lus of the eigenvalue defines the “non-interacting” lasing threshold corresponding to that

eigenvalue, Dµ
th = 1/λµ(k

µ) (these real eigenvalues will be denoted by λµ = λµ(k = kµ)),

the real wavevector kµ is the non-interacting lasing frequency, and the eigenvector aµ gives

the “direction” of the lasing solution in the space of CF states. Among these solutions,

the smallest D
(1)
th (i.e., the largest of the real eigenvalues λµ) gives the actual threshold

for the first lasing mode; the frequency k(1) is the lasing frequency at threshold and the

eigenvector a(1) defines the “direction” of the lasing solution at threshold. The “length”

of a(1) cannot be determined from the linear equation (4.5) but rises continuously from

zero at threshold and is determined by the non-linear equation (2.50) infinitesimally above

threshold. The remaining real eigenvalues of T (k) define the non-interacting thresholds for

other modes, and the actual thresholds of all higher modes will differ, often substantially,

from their non-interacting values due to the non-linear term in Eq. (2.50).

The condition for having a diagonal threshold matrix is relaxed if we use the GRCF

basis, which only requires D(x)/ǫ(x) to be a constant inside each gain region. One simple

example is given in Section 2.4, and the orthogonality relation (B.5) and the resulting

self-consistent equation (2.57) are given in the specific forms assuming constant D(x) and

ǫ(x) in all the gain regions. From them it is clear that the threshold matrix is indeed

diagonal, and the TLMs are the GRCF states themselves. Therefore, we can use Eq. (4.4)

and (4.3) to obtain the thresholds and the lasing frequencies for each TLM easily. As a

test we calculate the threshold lasing mode with the lowest threshold for the cavity shown

in Fig. 3.5 using the CF basis and compare it to the GRCF state whose complex frequency

is closest to the gain center. As we can see from Fig. 4.2 the spatial profiles of the GRCF

state and that of the superposition of 16 CF states are almost identical . The lasing mode

is amplified in the left half of the cavity (where there is gain) and the flux is conserved in

the right half. We will also show in Section 4.3 that in this case the sideband ratios in the

GRCF basis are much smaller than those in the CF basis in the multi-mode regime. Thus

we can truncate the GRCF basis to have just a few states, which makes it a more desirable

basis.
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Figure 4.1: Eigenvalue flow for the non-interacting threshold matrix T (k) in a one-
dimensional edge-emitting laser of length a = 1 and refractive index n = 1.5. Col-
ored lines represent the trajectories in the complex plane of 1/λµ(k) for a scan ω =
(ωa − γ⊥/2, ωa + γ⊥/2) (ωa = 30, γ⊥ = 1). Only a few eigenvalues out of N = 16 CF
states are shown. The direction of flow as k is increased is indicated by the arrow. Star-
shapes mark the initial values of 1/λµ(k) at ω = ωa − γ⊥/2. The full red circles mark the
values at which the trajectories intersect the real axis, each at a different value of k = kµ,
defining the non-interacting thresholds Dµ

th.

4.2 Interacting threshold matrix

We will discussion the algorithm for solving the full nonlinear equation (2.50) in Section 4.3.

An indispensable tool we will need is the interacting threshold matrix to be described below.

Suppose that we have solved Eq. (2.50) for a given pump value D0 above the first threshold

and obtained the non-trivial solution Ψ1(x), we need a tool that indicates whether there

are new lasing modes at a slightly increased pumpD0+∆D. For this purpose we introduce

the interacting threshold matrix, which is constructed by restoring the modal interaction

term in the denominator of Eq. (4.5):

Tmn(k) = Λm(k)

∫

D
dx′ (1 + d0(x

′))ϕ̄∗
m(x′, ω)ϕn(x

′, ω)
ǫ(x′)(1 + Γ(k1)|Ψ1(x′)|2) . (4.7)
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Figure 4.2: Threshold lasing mode with the lowest threshold in a cavity of n = 1.5 and
ωa = 20. The left half of the cavity is filled with the gain medium. We include 16 states

in the CF basis, and the predicted threshold value D
(1)
th = 0.224 and the corresponding

frequency k1 = 19.886 are the same as those of the single GRCF state.

Its largest real eigenvalue at k(1) is the inverse of D0 at which Ψ1(x) is obtained. Its

second largest real eigenvalue at k(2) determines the second interacting threshold, D
(2)
th .

This procedure can be generalized as additional modes turn on to define the second, third,

etc. interacting threshold matrices. For example, the pth interacting threshold matrix has

the following form:

Tmn(k) = Λm(k)

∫

D
dx′ (1 + d0(x

′))ϕ̄∗
m(x′, ω)ϕn(x

′, ω)

ǫ(x′)(1 + Σp
νΓ(kν)|Ψν(x′)|2) . (4.8)

This procedure gives us a way to monitor when (2.50) has a second, third, etc. non-trivial

solution. We diagonalize the matrix (4.7) and plot D0λ
µ(D0) as we increase D0 in small

increments solving the non-linear equation (2.50). An example in a simple one-dimensional

edge-emitting cavity (see Fig. 3.1) is shown in Fig. 4.3. When D0λ
µ(D0) reaches unity, a

new mode has reached threshold. One can confirm that the nth threshold matrix has n

eigenvalues equal to unity until threshold, when the (n + 1)th appears. Such a diagram

is appealing because it shows the strong effects of mode competition. The eigenvalues

of the non-interacting threshold matrix are fixed numbers λµ = (Dµ
th)

−1, independent of
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pump, D0, so that a plot D0/D
µ
th vs. D0 just gives straight lines intersecting unity at the

non-interacting thresholds. The interacting threshold matrix depends strongly on D0, so

that the interacting eigenvalues will be sub-linear, leading to much higher thresholds, and

some will even be decreasing with increasing D0, indicating modes which are completely

suppressed by mode competition and will never turn on. Thus the interacting threshold

matrices give us access to the mode competition below threshold, as well as the lasing

frequencies below threshold, even though the modal amplitudes are strictly zero below

threshold in the semiclassical theory. This is extremely useful when we discuss the proper-

ties of random lasers in Chapter 7. Note this information is not obtainable from brute-force

simulations and is a major advantage of the SALT.
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Figure 4.3: Evolution of the thresholds as a function of D0 for a uniform slab cavity of
index n = 3. The lasing threshold corresponds to the line D0λ

µ(D0) = 1, so values below
that are below threshold at that pump. Once a mode starts to lase its corresponding
value D0λ

µ(D0) is clamped at D0λ
µ = 1. The dashed lines represent the linear variation

D0λ
µ(Dµ

th) of the non-interacting thresholds. In this case three modes turn on before D0

reaches 0.125, and they suppress the higher order modes from lasing even at D0 = 0.75
(not shown).

The information obtained by these successive linearizations of the lasing map (4.8) also

facilitate our iteration process of the non-linear problem with a very accurate approxima-

tion to the lasing frequencies and the vectors aµ defining each lasing mode. This allows
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the iterative solution to converge in a reasonable time.

4.3 Nonlinear solution

The approaches to solve for the non-trivial solutions of the nonlinear equation (2.50) can

be roughly put into two categories. Here we first discuss the first one in which we use the

existing form of Eq. (2.50) and solve it iteratively.

4.3.1 Iterative method

For a pump strength slightly larger than the first threshold, we choose the lasing wavevec-

tor, k = k
(m)
th , calculate the CF basis {ϕm} corresponding to that choice and then iterate

Eq. (2.50) starting from the trial vector aµ(0) to yield output aµ(1). A natural choice for

the initial vector is that of the corresponding threshold lasing mode times a small quan-

tity. As noted, the “lasing map” has the property that below the lasing threshold, Dth,

the iterated vector, aµ → 0, and above this threshold it converges to a finite value which

defines the spatial structure of the lasing mode in terms of the CF states. There is one

crucial addition necessary to complete the algorithm. Note that Eq. (2.50) is invariant

under multiplication of each aµ by a global phase eiθ, so iteration of (2.50) can never

determine a unique non-zero solution. Therefore it is necessary to fix the “gauge” of the

solution by demanding that we solve (2.50) with the constraint of a certain global phase

(typically we take the dominant aµm to be real). Thus after each iteration of (2.50) we

must adjust the lasing frequency to restore the phase of am; it is just this gauge fixing

requirement which causes the lasing frequency to flow from our initial guess to the correct

value above threshold. The invariance of (2.50) under global phase changes guarantees

that the frequency thus found is independent of the particular gauge choice. Details of

how to implement the “gauge condition” can be found in Appendix D. For multi-mode

lasing we repeat this procedure for each vector aµ. In the single-mode regime only one of

these vectors will flow to a non-zero fixed point.

This behavior of the multi-mode lasing map is illustrated in Fig. 4.4 for the simple

uniform one-dimensional laser illustrated in Fig. 3.1. Below the first threshold, determined

from Eq. (4.4) (or (4.5) in general), the entire set of vectors aµ flow to zero; above that
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Figure 4.4: Convergence and solution of the multimode lasing map for a one-dimensional
edge-emitting laser with n1 = 1.5, ωa = 19.89 and γ⊥ = 4.0 vs. pumpD0. Three modes lase
in this range. At threshold they correspond to CF states m = 8, 9, 10 with the threshold

lasing frequencies ω
(8)
th = 18.08, ω

(9)
th = 19.91, and ω

(10)
th = 21.76, and the non-interacting

thresholds D
(9)
0 = 0.054,D

(10)
0 = 0.065,D

(8)
0 = 0.066 (green dots). ω

(9)
th ≈ ωa and m = 9

has the lowest threshold. Due to mode competition, modes 2,3 do not lase until much
higher values (D0 = 0.101, 0.113). Each mode is represented by an 11 component vector
of CF states; we plot the sum of |am|2 vs. pump D0. Below threshold the vectors flows
to zero (blue dots). For D0 ≥ 0.054 the sum flows (red dots) to a non-zero value (black
dashed line), and above D0 = 0.101, 0.113, two additional non-zero vector fixed points
(modes) are found (convergence only shown for modes 1,2).

threshold the first lasing mode turns on and its intensity grows linearly with pump strength.

Due to its non-linear interaction with other modes, the turn-on of the second and third

lasing modes is dramatically suppressed (aµ>1 still flows to zero beyond its non-interacting

threshold), leading to a factor of four increase in the interval of single-mode operation. The

actual lasing frequencies of higher modes have a relatively weak dependence on D0 and

differ little from their values given by Eq. (4.3) in the absence of modal interaction. The

modal intensity shows slope discontinuities at higher thresholds as seen in normal laser

operation.

We expect the lasing mode to involve several CF states and differ most from a single

cavity resonance for a low finesse cavity; thus we consider relatively small index, n0 = 1.5.
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Figure 4.5: Non-linear electric field intensity for a single-mode edge-emitting laser with
n = 1.5, ωa = 19.89, γ⊥ = 0.5,D0 = 0.4. The full field (red line) has an appreciably larger
amplitude at the output x = a than the “single-pole” approximation (blue) which neglects
the sideband CF components. Inset: The ratio of the two largest CF sideband components
to that of the central pole for n0 = 1.5 (△, ×) and n0 = 3 (�,+) vs. pump strength D0.

The actual lasing mode will be the sum of several of these CF modes with different spatial

frequencies and amplification rates. In Fig. 4.5 we plot such a mode. Standard modal

expansions in laser theory are equivalent to choosing only the central CF state and missing

the contribution of these spatial “side-bands”. The inset to Fig. 4.5 shows that near

threshold only one CF state dominates (one can show that the other components are of

order the cube of the dominant component). But well above threshold the two nearest

neighbor CF states are each 15% of the main component and since one of these has higher

amplification rate, the final effect is to increase the output power by more than 43%

(see Fig. 4.5). The sidebands are still 6% of the dominant component when the index is

increased to n0 = 3, leading to an increase in output power by 26% (see inset, Fig. 4.5).

The iterative algorithm of solving Eq. (2.50) using the GRCF states is essentially the

same. For the case shown in Fig. 4.2, we increase the pump strength to reach the two-

mode regime (D0 = 250) and excellent agreement is found between the results given by

using the CF basis and the GRCF basis. In the CF basis the largest normalized expansion

coefficients ξµ ( ξµ ≡ |aµ|max/
∑

i |a
µ
i |) for these two modes are 0.68 and 0.66, while in the
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GRCF basis they both are 0.91. A larger ξµ means the µth mode can be characterized

better by a single basis function and a smaller basis is needed to meet the convergence

criterion. In more complex geometries where the density of CF states is larger or the gain

structure is more complex, the lasing modes are well spread out in the CF basis and we

benefit from using the GRCF basis.

There are two important things to keep in mind when a higher order mode Ψν(x) is

expected to turn on at a given pumpD0+∆D. First, we need to know in advance which CF

state is the largest component for the new mode. This information can be obtained from

the eigenvector of the interacting threshold matrix associating with the smallest inverse

eigenvalue (λµ)−1 above D0. Suppose φmν is the most important CF state of Ψν(x), but

somehow we choose the wrong one φm′ to impose the gauge condition. The vector aν will

flow to that of another mode in which φm′ has the largest weight. If the other mode is not

already lasing, then it is mostly likely that the iteration will give us a trivial zero solution

for the higher order mode unless ∆D is large, which should be avoided in the first place.

In fact, this could also happen if we chose the right CF state but an inappropriate overall

scale for the initial guess of aν . It then brings us to the second important point: checking

the eigenvalues of the interacting threshold matrix to see whether a trivial zero solution is

what one should get for that mode. If indeed the mode is below threshold, all D0λ
µ(D0)

should be equal to or less than 1; If there is one or more λµ(D0) > 1/D0, we know that

there is at least one nontrivial solution that we fail to find. We then need to check whether

we have a wrong implementation of the gauge condition or an inappropriate initial guess

for |aν |.

4.3.2 Using standard nonlinear system solvers

For lasers with strong modal interactions, the iterative approach described above sometimes

fails to converge and we need a more robust numerical method. Instead of writing it

ourselves, we decide to utilize numerical packages that are readily available. To implement

the nonlinear SALT solver in MatLab, we adopt the sophisticated function fsolve which

solves systems of nonlinear equations. We first formulate Eq. (2.50) into a square system

and tell fsolve which quantities it needs to solve for. Suppose for a given pump value D0
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we expect there are Q lasing modes and the CF basis is truncated to have N states, then

there are (2N + 1)Q unknown real quantities we need to solve for: Q lasing frequencies,

and the real and imaginary parts of N × Q CF expansion coefficients. Eq. (2.50) gives

us a total of (2N × Q) real equations, and the missing Q equations are the Q “gauge”

conditions. To implement the “gauge” condition explicitly, we demand that the dominant

aµm in each of the Q modes is real. Therefore, the (2N ×Q) equations from Eq. (2.50) are

sufficient and necessary to solve for the (2N ×Q) unknowns. When ordering the argument

list, we put the lasing frequency kµ in the position of the eliminated imaginary part of the

dominant aµm for convenience.

When solving the self-consistent equation (2.50) using the second approach we fre-

quently find that some modes are more likely to converge to the trivial zero solutions

instead of the non-trivial ones. To solve this problem, we divide each aµ by its dominant

component aµmµ (which we choose to be real) and rewrite Eq. (2.50) in the following way:

bµm = − γ⊥
(ωµ − ωa) + iγ⊥

kµ2

kµ2 − k2m

∫

D
dx′D0(1 + d0(x

′))ϕm(x′, ωµ)
∑

p b
µ
p ϕp(x

′, ωµ)

1 +
∑

ν(a
ν
mν

)2Γν

∣

∣

∣

∑

p b
ν
p ϕp(x′, ων)

∣

∣

∣

2 .

(4.9)

bµm is the complex quantity aµm/aµmµ with the exception bµmµ = 1, and the new 2N unknown

real quantities for each mode are the real and imaginary parts of bµm6=mµ
(2(N−1) in total),

the real dominant CF coefficient aµmµ and the lasing frequency kµ. It is easy to check that

bµm6=mµ
= aµmµ = 0 is not a solution of the equation above, and we eliminate the trivial zero

solutions of the original self-consistent equation (2.50). When using this method we need

to be completely sure that all the modes included in the nonlinear calculation should give

non-trivial aµ. Otherwise the nonlinear solver won’t be able to find any solution. Thanks

to the interacting threshold matrix, we only need to consider this problem when D0 is

close to the threshold of a higher order mode. In this case we linearize the curve D0λ
µ(D0)

and find the value Dth
0 where it becomes unity. We then increase D0 by small amounts

in the vicinity of Dth
0 while keeping the number of lasing modes included in the nonlinear

calculation the same. The D0 value at which D0λ
µ(D0) first becomes greater than unity

is slightly larger the true threshold of the higher order mode, and we can safely include

the new mode in the multi-mode calculation beyond that pump value.
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4.4 Summary of algorithm

To summarize our solution procedure for (2.50) in the general case where D(x) the in-

homogeneous: the inputs are the dielectric function of the resonator, ǫ(x), the atomic

frequency, ωa and gain width γ⊥.

• The CF states ϕm and wavevectors km are found for a range of k values near ωa by

solving the linear non-hermitian differential equation (2.33).

• The non-interacting threshold matrix T (k) is constructed from the CF states (and

their adjoint partners) and frequencies following (4.5). k is varied and the largest

real eigenvalue of T (k) is found at k = k1; this defines the first threshold and k1

is the corresponding lasing frequency; the corresponding eigenvector gives the trial

solution just above threshold, the overall amplitude of which is to be determined by

the non-linear equation (2.50).

• The pump D0 is increased in small steps and the solution from the previous step is

used as the trial solution for the next step to solve the non-linear equation (2.50)

efficiently by iteration. The lasing frequencies are allowed to flow to maintain the

gauge condition as discussed above.

• The solution for the non-linear equation with n lasing modes is used to construct

the interacting threshold matrix, T (k), which is continuously monitored for the ap-

pearance of an additional eigenvalue D0λ
µ(D0) = 1, signaling the threshold for mode

(n+ 1), and the need to increase the number of solutions to the non-linear equation

(2.50).

The flow chart of the above steps is illustrated in Fig. 4.6. Codes based on this al-

gorithmic structure have been developed successfully for arbitrary 1D cavities, for 2D

uniform dielectric cavities of general shape (see Chapter 6), and for 2D disordered cavities

embedded in a disk-shaped gain medium (see Chapter 7).
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linear solver: CF states

nonlinear solver

threshold matrix interacting threshold

matrix

{k  , φ  }m m

{D   , a }th

(1) 1

{D   , a  }th

(ν) ν

{k  , φ  }m m

{k  , φ  }m m

{a  }
μ

input: cavity, gain

output: lasing modes 

and frequencies

Figure 4.6: Algorithmic structure of the implementation of the SALT.
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Chapter 5

Quantitative verification of the

SALT

In this chapter we compare the numerical simulations of the Maxwell-Bloch (MB) equations

(with no approximation) with the SALT presented in this thesis. We found the agreement

to be very good in the regime where the stationary inversion approximation is valid. As

discussed in Section 2.1 the stationary inversion approximation is good when the two

criteria γ‖/∆ωµν ≪ 1 and γ⊥/γ‖ ≪ 1 are meet. In Section 5.2 we derive the perturbation

corrections to the SALT in terms of the these two small quantities.

5.1 Comparison with numerical simulations

To perform a well-controlled comparison of MB simulation and SALT results we chose to

study the simple one-dimensional edge-emitting laser shown in Fig. 3.1. The MB equations

are simulated in time and space using a finite-difference-time-domain (FDTD) approach for

the Maxwell equations, while the Bloch equations are discretized using a Crank-Nicholson

scheme. To avoid solving a nonlinear system of equations at each spatial location and

time step, we adopt the method proposed by Bidégaray [86], in which the polarization and

inversion are spatially aligned with the electric field, but are computed at staggered times,

along with the magnetic field. Modal intensities are computed by a Fourier transform of

the electric field at the boundary after the simulation has reached the steady state. The

81



numerical integration of the MB equation was done by another graduate student Robert

J. Tandy in Prof. A. Douglas Stone’s group.

When comparing the modal intensities given by the numerical simulation to the results

calculated from the theory presented in Refs. [52, 66] (the SALT with the slowly-varying

envelope approximation), we find systematic deviations, as one can see in Fig. 5.1. Besides

numerical errors that might be introduced in the simulation, two possible factors could

have led to these differences: the stationary inversion approximation and the slowly-varying

envelope approximation used in the steady-state theory. We have ruled out the rotating-

wave approximation since all the lasing frequencies in our current investigation are in the

vicinity of ωa, and the second-order harmonic terms can be safely dropped. When analyze

the Fourier spectrum of the inversion in steady state, we find a sharp peak at the zero

frequency in the spectrum with minute sidebands. This indicates that the SIA is almost

exact in the case under study. Therefore, we conclude that the discrepancy of these two

approaches is most likely due to the SVEA. This prompts us to remove the SVEA in the

steady-state theory, which leads to the formulation of SALT introduced in Chapter 2.

In Figs. 5.1a, 5.1b we show modal intensities and frequencies in two cavities with

n = 1.5 and 3, finding remarkable agreement between MB and SALT approaches with

no fitting parameters for the case of three mode and four mode lasing respectively. Both

thresholds, modal intensities and frequencies are found correctly by the SALT approach.

Note that all of these quantities are direct outputs of the SALT, whereas they must be found

by numerical Fourier analysis of the MB outputs, which can introduce some additional

numerical error. If the SALT approach is used with the SVEA then significant discrepancies

are found, for example for n0 = 3 the threshold of the third mode is found to be higher

than from MB while the fourth threshold is too low. Note however that the theory with the

SVEA does get the right number of modes and the correct linear behavior for large pump

values, and we believe that it does solve very accurately the SVEA-based Schrödinger-Bloch

equations [87].

Almost all studies of the MB equations in the multimode regime have used the ap-

proximation of treating the non-linear modal interactions to third-order (near threshold

approximation) and in fact this approximation is used quite generally and uncritically
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Figure 5.1: Modal intensities as functions of the pump strength D0 in a one-dimensional
microcavity edge emitting laser of γ⊥ = 4.0 and γ‖ = 0.001. (a) n = 1.5, kaL = 40. (b)
n = 3, kaL = 20. Square data points are the result of MB time-dependent simulations;
solid lines are the result of steady-state ab-initio calculations (SALT) of Eq. (2.19). Ex-
cellent agreement is found with no fitting parameter. Colored lines represent individual
modal output intensities; the black lines the total output intensity. Dashed lines are re-
sults of SALT calculations when the slowly-varying envelope approximation is made as in
Ref. [66] showing significant quantitative discrepancies. For example, in the n = 3 case
the differences of the third/fourth thresholds between the MB and SALT approaches are
46% / 63%, respectively, but are reduced to 3% and 15% once the SVEA is removed. The
spectra at the peak intensity and the gain curve are shown as insets in (a) and (b) with the
solid lines representing the predictions of the SALT (Eq. (2.19)) and with the diamonds
illustrating the height and frequency of each lasing peak. The schematic in (a) shows a
uniform dielectric cavity with a perfect mirror on the left and a dielectric-air interface on
the right.
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throughout laser theory. From examination of the form of the SALT equations (2.15)

and (2.19) it is clear that the non-linear interactions are treated to all orders, while the

third order treatment would arise from expanding the denominator to the leading order

in |Ψν |2. This third-order version of the SALT then becomes similar to standard treat-

ments of Haken [61, 60], with the improvement of correctly treating the openness of the

cavity and the self-consistency of the lasing modes in space [66, 52]. An early version of

this improved third order theory was found to have major deficiencies: it predicted too

many lasing modes and the intensities did not scale linearly at large pump, but exhibited a

spurious saturation [52, 88]. In Fig. 5.2 we present comparisons of the third order approx-

imation to Eq. (2.19), which is improved over Ref. [52] because it drops the SVEA and the

“single-pole approximation” used there. We find that this improved third order theory still

does a very poor job of reproducing the multimode MB results: it still predicts too many

modes (in this case seven, when there should only be four at D0 = 1 in Fig. 5.2), and shows

the same spurious saturation as found earlier [52] because the third-order approximation

cannot give the correct linear behavior for large pump values. The infinite order treatment

of Eq. (2.19) is both qualitatively and quantitatively essential.

5.2 Perturbative correction to the stationary inversion ap-

proximation

The central approximation required for Eq. (2.19) is that of stationary inversion. Previous

work by Fu and Haken [60] argued that SIA holds for the MB equations when γ‖ ≪ γ⊥,∆,

where γ‖ is the relaxation rate of the inversion and ∆ is the frequency difference of lasing

modes. For a typical semiconductor laser γ⊥ ≃ 1012 − 1013s−1 and γ‖ ≃ 108 − 109s−1,

or equivalently γ‖/γ⊥ ≃ 10−3 − 10−5. For the microcavity edge-emitting laser we are

modeling we took γ⊥,∆ ∼ 1 and γ‖ = 10−3, and we found the excellent agreement shown

in Figs. 1a, 1b. In addition, direct analyses of the inversion vs. time obtained from the MB

simulations confirm very weak time-dependence in the steady state, justifying the use of

SIA. The previous work did not develop a systematic theory in which γ‖/γ⊥, γ‖/∆ appear

as small parameters in the lasing equations, allowing perturbative treatment of corrections
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Figure 5.2: (a) Modal intensities as functions of the pump strength D0 in a one-dimensional
edge-emitting laser of n = 3,kaL = 20, γ⊥ = 4.0 and γ‖ = 0.001; the solid lines and data
points are the same as in Fig. 1b. The dashed lines are the results of the third order
approximation to Eq. (2.19). The frequently used third order approximation is seen to
fail badly at a pump level roughly twice the first threshold value, exhibiting a spurious
saturation not present in the actual MB solutions or the SALT. In addition, the third order
approximation predicts too many lasing modes at larger pump strength. For example, it
predicts seven lasing modes at D0 = 1, while both the MB and SALT show only four. (b)
The same data as in (a) but on a larger vertical scale.
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to the SIA; we are now able to do this within the SALT formalism.

Note first that in Eq. (2.19) the electric field is measured in units ec ∼ √
γ‖ but,

unlike γ⊥, γ‖ does not appear explicitly. Hence the solutions of Eq. (2.19) depend on γ‖

only through this scale factor, and Eq. (2.19) makes the strong prediction of a universal

overall scaling of the field intensities: |E(x)|2 ∼ γ‖ when dimensions are restored. The

perturbative corrections to Eq. (2.19) are obtained by including the leading effects of the

beating terms between the different lasing modes which lead to time-dependence of the

inversion at multiples of the beat frequencies. These population oscillations non-linearly

mix with the electric field and polarization to generate all harmonics of the beat frequencies

in principle, but the multimode approximation assumes all the newly generated Fourier

components of the fields are negligible. The leading correction to this approximation is

to evaluate the effect of the lowest sidebands of population oscillation on the polarization

at the lasing frequencies and on the static part of the inversion, both of which will enter

Eq. (2.19). For simplicity we present a sketch of the correction to Eq. (2.19) in the two-

mode regime where there is a lasing mode on each side of the lasing transition frequency

ωa, and the result in multi-mode cases can be obtained similarly. We assume the electric

field and the polarization can still be written in the multi-periodic forms (Eq. (2.10)), and

keep the lowest non-zero frequencies (±(ω1 −ω2)) terms in the coupling term in Eq. (2.3).

The resulting equation can be separated into two equations, the first of which is the one

we used to derived the stationary inversion Eq. (2.13):

0 = γ‖(D0(x)−Ds(x)) −
2

i~
(Ψ1(x)p

∗
1(x) + Ψ2(x)p

∗
2(x)− c.c.) (5.1)

We put the subscript, s, on the inversion Ds(x) to distinguish it from the total inversion

D(x, t). The second equation can be written as

Ḋ∆(x, t) = −γ‖D∆(x, t)−
2

i~

{

[Ψ1(x)p
∗
2(x)−Ψ∗

2(x)p1(x)]e
−i(ω1−ω2)t

}

, (5.2)

and D∆(x, t) oscillates at the frequency equal to the difference of the two lasing frequency.

The total inversion is given by D(x, t) = Ds(x) + (D∆(x, t) + c.c.). Although we start by
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assuming that E and P only have two frequencies, the coupling of E and the two time-

dependent inversion terms in Eq. (2.8) will lead to components of frequency ±(2ω1 − ω2)

and ±(2ω2 − ω1) in P . Here we drop these terms since they are further away from the

transition frequency. The polarization oscillating at ω1 has two sources. One is the driving

electric field at frequency ω1, and the other is the coupling of the electric field oscillating

at ω2 and the inversion beating at (ω1 − ω2):

ṗ1 = −(i(ωa − ω1) + γ⊥)p1 +
g2

i~
(Ψ1Ds +Ψ2d∆), (5.3)

in which d∆(x) is the time-independent amplitude ofD∆(x, t) (D∆(x, t) = d∆(x)e
−i(ω1−ω2)t).

A similar equation can be written for p2 with the subscripts 1,2 exchanged and d∆(x) →
d∗∆(x) in Eq. (5.3).

For the zeroth order expansion, we neglect D∆ and recover the stationary inversion

D(0)(x, t) = Ds(x) and the zeroth order polarization

p(0)µ (x) =
g2

i~

Ds(x)Ψµ(x)

γ⊥ − i(ωµ − ωa)
. (5.4)

By inserting p
(0)
µ (x) into Eq. (5.2), we obtain the fist order correction to D(x, t), a non-zero

d∆(x):

d∆(x) =
γ‖

i(ω1 − ω2)− γ‖

γ2⊥ − iγ⊥(ω1 − ω2)/2

γ2⊥ + (ω1 − ωa)(ω2 − ωa)− iγ⊥(ω1 − ω2)

DsΨ1(x)Ψ
∗
2(x)

e2c

≡ fn(ω1, ω2)
DsΨ1(x)Ψ

∗
2(x)

e2c
. (5.5)

Here the dimensionless quantity fn(ω1, ω2) can be thought as a correlation function between

the lasing frequencies. It has the property that fn(ω2, ω1) = (fn(ω1, ω2))
∗, and its modulus

is peaked at ω1 = ω2. When ∆ ≡ ω1 − ω2 is of the same order as γ⊥, the modulus of fn is

largely determined by the ratio γ‖/∆. When this ratio is small, fn and d∆ are negligible

and we recover the results with the SIA. As the ratio increases, fn becomes more important

and we need to consider its correction to the polarization

p
(1)
1 (x) =

g2

i~

1 + fn(ω1, ω2)|Ψ2(x)|2
γ⊥ − i(ω1 − ωa)

Ds(x)Ψ1(x). (5.6)

87



p
(1)
2 (x) satisfies the same equation with the subscripts 1 and 2 interchanged. So far we

have used Ds(x) as a known quantity without specifying its actual form. By replacing the

polarization by p
(1)
µ (x) in Eq. (5.1), we have

D(1)
s (x) =

D0(x)

1 +
∑

ν Γν |Ψν(x′)|2 + fd(ω1, ω2)|Ψ1(x′)Ψ2(x′)|2 , (5.7)

and the coefficient fd of the interference term is a real function of the lasing frequencies

fd(ω1, ω2) =
γ‖
γ⊥

(2 +
∑2

ν=1w
2
ν)(1 − w1w2)

∏2
ν=1(1 + w2

ν)
2

(5.8)

where wν is the shorthand notation for the dimensionless quantity (ων − ωa)/γ⊥. No-

tice D1
s(x) differs from the zeroth order result by having a new term proportional to

|Ψ1(x)Ψ2(x)|2 in the denominator, and its prefactor fd(ω1, ω2) is explicitly proportional to

the second small parameter γ‖/γ⊥ and symmetric in its two arguments. The full correction

to the non-linear polarization in Eq. (5.6) is obtained by replacing D
(0)
s with D

(1)
s , which

leads to the corrected version of Eq. (2.19) of the SALT:

Ψ2(x) =
iγ⊥D0ω

2
2

γ⊥ − i(ω2 − ωa)

∫

dx′ (1 + fn(ω1, ω2)|Ψ1(x
′)|2)G(x,x′;ω2)Ψ2(x

′)
(1 +

∑

ν Γν |Ψν(x′)|2 + fd(ω1, ω2)|Ψ1(x′)Ψ2(x′)|2) , (5.9)

in which we have restored the natural units of the the electric field. Ψ1(x) satisfies the

same equation with the subscripts 1 and 2 interchanged.

Eq. (5.9) predicts corrections to the universal behavior of the threshold and modal

intensities we mentioned before, with the exception of the value of the first threshold and

the intensity of the first lasing mode before the second threshold. This is because the

correction terms to Ψ1(x) all vanish below the second threshold (there needs to be two

modes to have beats). However, the theory predicts a non-trivial correction to the threshold

of the second mode. Note that the correction to Ψ2(x) (Eq. (5.9)) in the numerator does

not vanish below the second threshold but contributes self-consistently to that threshold.

This correction can be regarded as modifying the dielectric function of the microcavity

to take the form ǫ′(x) = ǫ(x)/[1 +
γ‖
∆ fn(ω2, ω1)|Ψ1(x)|2]; the effective dielectric function

then becomes complex and varying in space according to the intensity of the first mode.
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This in turn changes the threshold for the second mode. If the modes are on opposite

sides of the atomic frequency as we assumed and ω2 < ω1, the imaginary part of the

effective index is always amplifying and tends to decrease the second threshold; we find

this effect dominates over the change in the real part and increasing γ‖ uniformly decreases

the thresholds. The opposite effect is possible and observed in other cases we have studied

(not shown). In Fig. 5.3 we show the results of MB simulations as γ‖ is varied from

0.001 to 0.1 (with γ⊥ = 4). Note that the universal behavior (in units scaled by γ‖) is

well obeyed until γ‖ = 0.1, encompassing most lasers of interest. The qualitative effect

predicted by the perturbation theory is clearly seen, the higher thresholds are reduced as γ‖

is increased. The effect is small for the 2nd threshold but large for the third as we expect

as the corrections scale with the product of the intensities of lower modes. Fig. 5.3(b)

shows that the perturbation theory for the third threshold (a suitable generalization of the

two-mode Eq. (5.9)) yields semi-quantitative agreement with the threshold shifts found

from the simulations. Note that the simulations also find additional modes turning on for

γ‖ = 0.1 but their intensities are very small and they are not shown in Fig. 5.3.
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Figure 5.3: (a) Modal intensities for the microcavity edge emitting laser of Fig. 3.1 as γ‖
is varied (n = 1.5, kaL = 20, γ⊥ = 4.0 and mode-spacing ∆ ≈ 1.8. Solid lines are SALT
results from Fig. 5.1(a) (with γ‖ = 0.001); dashed lines are γ‖ = 0.01 and dot-dashed are
γ‖ = 0.1. The color scheme is the same as in Fig. 5.1(a). (b) Shifts of the third threshold
as a function of γ‖. The perturbation theory (circles, with the line to guide the eyes)
predicts semi-quantitatively the decrease of the threshold as γ‖ increases found in the MB
simulations. The MB threshold is not sharp and we add an error bar to denote the size of
the transition region.
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Chapter 6

ARC lasers

ARC lasers have smooth boundaries deformed from a circle; the most well studied shapes

include the quadrupole [28, 89, 90, 91, 92] and the limaco̧n [15, 93, 94]. The boundary of

the quadrupole is described by R(φ) = R0[1 + ǫ cos (2φ)], where φ is the polar angle and

R0 is the average radius. The limaco̧n has a similar boundary with cos (2φ) replaced by

cos (φ), thus it only has one symmetry axis along the φ = 0 direction. In Ref. [14] a series

of quadrupole-shaped quantum cascade lasers (QCLs) with ǫ varying from 0 to 0.2 were

fabricated, and it was found that the peak output intensity of the laser increases rapidly

with the deformation. Meanwhile, the inplane directionality of the output beams change

from isotropic to four narrow peaks in the φ = (j/2 + 1/4)π (j = 0, 1, 2, 3) directions.

The special emission pattern was attributed to the second order bow-tie modes [14] (see

Fig. 6.2), but it was unclear why they were favored over other cavity modes with higher

Q-values. In this chapter we apply the SALT to the quadrupole cavities and analyze

the mechanisms leading to these surprising observations. Due to the high-Q nature of

quadrupole cavities, we scale the pump strength D0 by kaR
−2(∼ 103 in the cases studied

below) for convenience. This convention is also used in the succeeding chapter.

6.1 Directional emission: mode selection

In this section we focus on explaining why the second bow-tie modes are the first lasing

modes when ǫ > 0.16. Here we briefly review the evolution of cavity modes in a quadrupole
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Figure 6.1: Examples of asymmetric resonant cavity (ARC) lasers. (a) Limaco̧ns with
ǫ = 0.4, 0.8. (b) Quadrupoles with ǫ = 0.1, 0.2.

cavity when the deformation increases from zero. In the semi-classical limit (kR ≫ 1) the

solutions of the Helmholtz equation, including both the CF states and the QB modes,

have their classical correspondences in the ray model [28], which assumes light travels in

straight lines and neglects wave effects such as interference. In this model one follows an

ensemble of rays which undergo specular reflections when they impinge on the boundary,

and records the coordinates of their bouncing points and the momenta of the emerging

rays. The coordinate is normally chosen to be the azimuthal angle (φ) on the boundary

or the arclength measured from φ = 0, and the the conjugate momentum is conveniently

expressed as the sine of the incident angle χ since the energy, or the length of the momentum

vector, is conserved in a closed cavity. The Poincaré surface of section (SOS) [95, 96] is the

projection of the phase space motion onto the boundary in terms of these two quantities.

At zero deformation, i. e., in a microdisk cavity, the motion of the ray follows a straight

line in the SOS with a constant sinχ since the angular momentum is conserved. There

are infinite numbers of these trajectories, but only those satisfying the Einstein-Brillouin-

Keller quantization criterion give rise to the cavity modes [97, 98, 99]. In standard ray

model analysis the cavity is assumed to be closed and a ray is trapped indefinitely. In lasers

however, the leakage, including both the evanescent tunneling and the refraction loss, gives

rise to the output beam and the open boundary condition needs to be adopted [100, 28, 31].

This is incorporated by assigning an intensity to each ray and using the modified Fresnel

Law [101] to calculate the remaining and refracted intensities each time the ray collides
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Figure 6.2: False color plots of the 0th, 1st and 2nd bow-tie modes with {−,−} parity in a
quadrupole cavity at ǫ = 0.16 and with refractive index n = 3.3+0.02i. Other parameters
used are: R0 = 34.5238 µm and ka = 1.216 µm−1. The circular region shown is the last
scattering surface chosen for this calculation, and the white curve indicates the true cavity
boundary.

with the boundary. Note that even when χ is above the critical angle χc = sin−1(1/n)

there are still output beams due to the evanescent tunneling [23]. It results in the extreme

WG modes introduced in Section 3.3 (see Fig. 3.10(a)), which have high Q-values and will

be the first lasing modes when gain is added to the cavity.

When the circular cavity becomes deformed, the angular momentum is no longer a

conserved quantity; sinχ oscillates in the SOS, which follows unbroken curves close to

sinχ = 1 [102] but becomes partially chaotic for small sinχ [14, 51]. Structures formed by

closed curves appear in the SOS which correspond to stable motions; these structures are

known as “islands” and the structureless chaotic region are sometimes called the “chaotic

sea”. Two of such islands are located near (sinχ, φ) = (0,±π/2), representing the diametral

Fabry-Perot modes along the minor (compressed) axis. When the deformation becomes

greater than 0.1 the bow-tie orbits, together with the unstable V-shaped orbits, emerge

from these two islands (see Fig. 6.3). The bow-tie islands move upwards in the SOS when

ǫ increases, and they become the only large island near or above the critical angle when

ǫ > 0.16. The QB modes supported by these orbits have the same frequency spacing as in

the experiment, and the ones with the second-order transverse excitation give the observed

directionality. Thus the authors in Ref. [14] suggested that the lasing modes are most likely
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the second-order bow-tie modes at large deformations.
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Figure 6.3: Surface of section for a quadrupole cavity of refractive index n = 3.3 at
deformation ǫ = 0.16 (center). Four types of modes are shown: (a) chaotic (b) diametral
(c) bow-tie (d) V-shaped, but only (b) and (c) are stable. The red horizontal line indicates
the critical angle sin(χ) = 0.303.

However, two crucial questions remain to be answered. First, although the islands of

the bow-tie modes in the SOS are the most noticeable ones near or above the critical angle,

there are other modes further above the critical angle. Fig. 6.4 shows the CF frequencies

calculated at ǫ = 0.16 near the gain center ka = 1.2160µm−1. The bow-tie modes are

found to be near the bottom of the CF spectrum, with quality factors higher than the

low-lying diametral Fabry-Perot modes but lower than the deformed WG modes and other

“librational” modes (in contrast to “rotational” modes such as the WG modes). Therefore,

we need to determine the factors that favor the bow-tie modes over the other ones with

higher quality factors. Türeci et al [90] suggested that a spatially inhomogeneous pump

due to the reduction of injected current near the edge of the cavity may favor the bow-ties

modes over the WG modes as it overlaps more with the former. They used the third order

Haken-Sauermann theory discussed in Chapter 1, and found the thresholds of the bow-tie

modes are greatly reduced by using a Gaussian pump profile peaked at the center of the

cavity. But the chosen pump profile also favors other librational modes which have lower

thresholds and larger output intensity at pump power. Similar to the first question but

probably more challenging, one finds that the second-order bow-tie modes have the lowest
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quality factors compared to the zeroth-order and first-order the bow-tie modes, making it

puzzling why they turn on before the others.
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Figure 6.4: Complex frequencies of CF states in a quadrupole cavity at deformation
ǫ = 0.16. Shown are modes with either {+,+} (circles) and {+,+} (crosses) symme-
try. Bowties modes are indicated by red squares ({−,−}) and diamonds ({+,+}), blue
right ({−,−}) and left ({+,+}) triangles, green up ({−,−}) and down ({+,+}) triangles.
The CF states are calculated at k = 1.2160µm−1, and the cavity index and average radius
are n = 3.3 and R0 = 34.5238µm.

To answer these questions, we analyze the possible factors that can change the order of

lasing thresholds given by the SALT. The modes in a quadrupole cavity we consider have

high quality factors, and the threshold matrix is approximated diagonal even though the

pump may not be homogeneous. Therefore, we use Eq. (4.4) in our analysis which states

that the threshold is proportional to κm, the imaginary part of the complex frequency.

Two factors contribute to κm: the cavity loss κcav and the out-coupling loss κout. The CF

frequencies shown in Fig. 6.4 are calculated assuming κcav = 0, and κm = κout which is

inversely proportional to the quality factor, or equivalently, the lifetime of the mode. In a

QCL, however, the cavity loss usually dominates [14] and it affects modes with high quality

factors more since they have a longer lifetime inside the cavity. Therefore, a large κcav

reduces the fractional difference of a high-Q and a lower-Q modes. But this effect alone
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cannot change the order of their threshold. Another factor in Eq. (4.4) that affects the

order of thresholds is the distance of the CF frequency to the gain center on the real axis.

Since the CF spectrum is very dense (see Fig. 6.4), it is unlikely that only the thresholds of

the bow-tie modes are reduced. One important factor which is not considered in Eq. (4.4)

is the spatial pump profile. If the overlap of the pump D(x) with one type of mode is

greater than the others, their thresholds are all reduced by a larger fraction which leads to

the reordering of lasing modes. The above mentioned points were also tested in Ref. [90]

using the QB modes, but the results were not as clear as what we are going to demonstrate.

Following these two findings we assume the cavity is lossy and the pump D(x) peaks

near the center of the cavity when applying the SALT. Instead of adding a phenomeno-

logical κcav to the imaginary parts of the CF frequencies, we use a complex cavity index

ǫc with a positive imaginary part instead. Many processes contribute to the the added

imaginary part in a QCL including phonon and free carrier absorption and impurity scat-

tering [103, 104]. Here we also consider another process contributing to the cavity loss,

which is related to the stimulated absorption of emitted photons in the unpumped region

with gain. Since the energy of the lasing modes (~ωµ) are close to the energy difference

of the two gain levels which undergo the lasing transition, the unpumped gain region acts

as a saturable absorber. If there is no other degrees of freedom to which the gain medium

couples, it stops absorbing light in the unpumped gain region once the system becomes

transparent (D(x) = 0), i. e., there are equal numbers of photon being absorbed and re-

emitted at the same time. But processes such as inelastic collisions in an atomic gas and

phonon interactions in a semiconductor cause part of the energy stored in the inverted

gain medium decays into other forms of energy (e. g., heat) other than light. Therefore,

the stimulated absorption rate must be larger than the stimulated emission rate to balance

the non-radiative decay from the upper level to the lower level when the above mentioned

equilibrium is established. This means that there will be more atoms in the lower level

than in the upper level, leading to a persistent absorption.

The laser cavities used in Ref. [14] are made of InGaAs/InAlAs which also act as the

gain medium, and we use n = 3.3+0.0005i inside the pump region and n = 3.3+0.0035i in

the unpumped region. For the pump profileD(x), we assume that it is a constant inside the
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ohmic contact applied to the top and bottom surfaces of the lasers (see Fig. 1.2(b)) and zero

elsewhere. Note that bow-tie modes of {−,+} and {+,+} symmetries are quasi-degenerate;

The same is true for bow-tie modes of {+,−} and {−,−} symmetries [99]. Therefore, we

take into account 300 modes with {+,−} and {−,+} symmetries in the vicinity of the

gain center, including the deformed whispering-gallery modes, and we find the six modes

with the lowest non-interacting thresholds are the zeroth-order bow-tie modes. Fig. 6.5

shows all the thresholds below D0 = 0.14 and the corresponding frequencies, and we can

see clearly the frequencies of the six lowest threshold form a equally-spaced sequence with

δk = 0.009µm−1 (or δλ = 38.2µm), very similar to that found in the experiment. This

result is robust when the area of stadium pump profile is scaled in the range [0.7, 1.7] times

that of the ohmic contact, and it confirms that the bow-tie modes can be the first lasing

modes despite their relatively low quality factors.
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Figure 6.5: Non-interacting threshold versus frequency in a quadrupole cavity with defor-
mation ǫ = 0.16. The vertical lines mark the frequencies of the six modes with the lowest
non-interacting threshold, which turn out to be all zeroth-order bow-tie modes.

In this calculation we also found that each lasing mode is essentially one CF state,

which is consistent with our previous claim that the “single-pole” approximation is good

for high-Q modes. We will use the “single-pole” approximation in the following discussions.

The structure of the self-consistent equation (2.50) also states that the lasing modes have
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certain parities if the pump profile is symmetric about both the horizontal and vertical

axes. In other words, each lasing mode is made up of CF states of the same reflection

symmetry. This is a consequence of the fact that the spatial hole burning is a function of

the intensity of the lasing modes, not their complex amplitudes.

With the above mentioned parameters, however, the second-order bow-tie modes have

relatively large threshold. To distinguish the second-order bow-tie modes from the zeroth-

order and first-order ones, we first note that their internal intensities have different radial

variations: the second-order ones are weakest near the edge of the cavity (see Fig. 6.2).

Therefore, we test a series of disk-shaped pump profiles whose radius rpump varies from

Rminor to 0.4Rminor with bow-tie modes only, and we find the second-order bow-ties do

have the lowest threshold at small rpump when the absorption is relative high. For example,

the average threshold of the four second-order bow-tie modes closest to the gain center is

the lowest one when rpump < 0.75Rminor if we assume n = 3.3 + 0.02i in the cavity (see

Fig. 6.6(a)), and the difference between it and the average thresholds of the other bow-

tie modes peaks at rpump = 0.55Rminor . We use this setup to test the above threshold

behavior of all the bow-tie modes, and find that there are only second-order bow-tie modes

lasing up to the pump value D0 = 0.265 where a first-order bow-tie turns on. Fig. 6.6(b)

shows the far-field pattern just before this mode turns on and it peaks at θ = 43◦, agreeing

reasonably well with the experiment result considering no mode other than the second

order bow-tie modes emit in the θ ≈ 43◦ direction.

To compare quantitatively the results given by the SALT with the experiment result

in Ref. [14], we need to know the exact pump profile D(x) which is difficult to obtain. But

with the reasonable estimation for D(x) based on the limited knowledge we have, we were

able to show in the discussion above that the bow-tie modes in a quadrupole cavity at

deformation ǫ = 0.16 can be the first modes to lase and the second-order ones can have the

lowest threshold among all the bow-tie modes. There might be some physical processes we

leave out in the SALT that are important in QCLs, as we couldn’t find a parameter regime

in which the second-order bow-tie modes are the only lasing modes above threshold when

all modes are considered.
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Figure 6.6: (a) Average non-interacting thresholds (power per unit area) of different orders
of bow-tie modes as a function of pump radius in a quadrupole cavity with ǫ = 0.16 and a
refractive index n = 3.3 + 0.02i. The symbols used are: up triangles (0st), squares (1st),
and right triangles (2nd). Other parameters used are: R0 = 34.5238, n = 3.3 + 0.02i,
ka = 1.216µm−1 and γ⊥ = 0.1. (b) Far-field pattern of all the lasing modes at D0 = 0.262.
The filled circles are the data taken from Ref. [14] and connected by a spline curve (solid
line). The dashed line indicates the result given by the SALT using an aperture of 15◦ as
in the experiment. Inset: Laser spectrum taken from Ref. [14] (solid line) and the SALT
result (dashed lines).

6.2 Output power increase as a function of deformation

Another important observation in Ref. [14] is the quasi-exponential increase of the emitted

power as the deformation ǫ increases. Our calculations show that this feature is quite

general and doesn’t depend much on the pump profile and cavity index as long as the

cavity loss dominates the total loss. For example, we plot in Fig. 6.7 the integrated far-

field intensity of all lasing modes in various deformed quadrupole cavities using rpump =

0.7Rminor and n = 3.3+0.02i. In (a) we note that the first thresholds in all of these cavities

are close to each other (D
(1)
th = 0.2 ∼ 0.25) despite the huge difference of the average out-

coupling loss of the lasing modes. To understand this observation we point out that the

threshold is determined by the total loss of the laser, which is the sum of the cavity loss

and the out-coupling loss. Since the cavity loss (Im [n] = 0.02) in this case prevails against

the out-coupling loss, the latter only has a minor influence on the threshold values.
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The output intensity, however, is determined by the average out-coupling loss of the las-

ing modes and the pump intensity above the threshold. Therefore, as the average Q-value

is spoiled when the deformation becomes large, the out-coupling increases as 1/Q-value,

leading to the quasi-exponential power increase. This is most clear in (b) where we extract

the peak output powers at D0 = 0.5 in Fig. 6.7(a). When performing the comparison we

keep the length of the minor axis Rminor fixed while changing ǫ as in Ref. [14]. At each

deformation 30 modes of {−,−} symmetry with the lowest non-interacting thresholds are

included in the calculation, some of which are suppressed from turning on even at the

peak pump value D0 = 0.5. At small deformations (ǫ = 0.01, 0.02) most of the output

comes from a few deformed whispering-gallery modes which are leakier than the others. At

ǫ = 0.01 there happens to be one such leaky whispering-gallery lasing mode very close to

ka, and its average angular momentum turns out to be smaller than those in the ǫ = 0.02

case. Thus we see a small drop in the peak output power when ǫ increases from 0.01 to

0.02. The large increase of the output power at ǫ = 0.10 is due to the turning on of a few

“fish” modes and one diametral mode with a large transversal quantization number (see

Fig. 6.8), which have much stronger out-coupling compared with the lasing modes at de-

formation ǫ = 0.08. Above ǫ = 0.16 bow-tie modes and other librational modes dominate,

which increase the output power even further.

A similar output boost as a function of deformation is also observed in elliptic cavities,

in which the ray dynamics is regular and no chaos is present. Thus we conclude that

the output power enhancement is due to the Q-spoiling of the cavity as the deformation

increases and this phenomenon is insensitive to the ray dynamics in the cavity.

We have done extensive calculation for the threshold modes in the limaco̧n ARC laser

[106] which doesn’t require the full nonlinear SALT. This work is not reported in this

thesis.
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Figure 6.7: (a) Far-field intensities as functions of the pump strength in various deformed
quadrupole cavities. The symbols used are: right triangles (ǫ = 0.02), left triangles (ǫ =
0.04), up triangles (ǫ = 0.06), down triangles (ǫ = 0.08), diamonds (ǫ = 0.1), pluses
(ǫ = 0.12), squares (ǫ = 0.14) and circles (ǫ = 0.16). (b) Quasi-exponential increase of the
peak output power (at D0 = 0.5) as the deformation of the quadruple cavity increases. The
dashed line representing an exponential curve is to used to guide the eyes. The red vertical
line divide ǫ into two regimes. The lasing modes in the regime on its left are rotational
modes, with the left inset showing a scarred double-triangle mode at ǫ = 0.8; the lasing
modes in the regime on its right are dominated by librational modes, with the right inset
showing a 0th-order bow-tie modes at ǫ = 0.16.
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Figure 6.8: False color plot of a fish mode (a) and a diametral mode (b) in a quadurpole
cavity at deformation ǫ = 0.10. Only the intensity within the circular last scattering
surface is shown, and the white curve indicates the cavity boundary. (c) and (d) show the
projection of their Husimi function [51, 105] onto the Poincaré surface of section, which is
a smoothed version of the Wigner Transform.
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Chapter 7

Random lasers

Random lasing (RL) action with coherent feedback, in which a series of discrete narrow

spectral peaks emerge in a disordered system with gain, was first demonstrated by Cao

et al [37]. The study of the photon statistics [39] confirmed the coherence of the emitted

light, which distinguishes it from the earlier results [107, 108] which were attributed to

amplified spontaneous emissions in random media.

Time-dependent simulations of random lasers in dimensions other than 1D are time-

consuming and computationally challenging since the index homogeneities are sub-wavelength.

In this case the high efficiency of the SALT is more pronounced; our model, which was

introduced in Section 3.5, consists of randomly placed nano-particles in a disk-shaped gain

region of radius R. The CF states Ψµ(x) at frequency k are defined by equations (2.33)

and (2.35)

[

∇2 + ǫc(x)k
2
p

]

ϕp(x, ω) = 0, (r < R),

[

∇2 + ǫ>k
2
]

ϕp(x, ω) = 0, (r > R),

with the out-going boundaries condition, which means the CF states outside the gain region

are superpositions of the out-going Hankel functions. A typical example for a calculation

of the multi-mode electric field both inside the “cavity” and outside is rendered in three-

dimensions in Fig. 7.1. The system we consider has strongly-overlapping linear resonances;

in the language of resonator theory, its finesse, f , (the ratio of the resonance spacing on

103



the real axis to the typical distance of a resonance from the real axis) is much less than

unity (see Fig. 7.2).

Figure 7.1: Three dimensional rendering of the electric field from SALT numerical calcu-
lations in the RL discussed below (see Fig. 7.2), in which the yellow spheres represent the
nano-particles in a cylindrically symmetric gain medium. The electric field, where color
and height indicate intensity, represents the steady state solution of the Maxwell-Bloch
equations at D0 = 123.5. The system is illuminated uniformly by incoherent light, shown
in this figure as coming from above (courtesy of Robert J. Tandy).

The integral in Eq. (2.50) is now over the gain region, whose boundary is chosen to be

the last scattering surface as we assume that there are no scatterers outside the gain region.

As noted, the threshold matrix is diagonal only whenD0(x)/ǫc(x) is a constant. Here ǫc(x)

varies in space due to the randomly placed nanoparticles, and we expect the threshold

matrix to be non-diagonal and there can in principle be many CF states contributing to

one threshold lasing mode. However since the CF states ϕm(x) and ϕp(x) that appear

in the integral of Eq. (2.50) are uncorrelated fluctuating functions of space, it turns out

that the threshold matrix in RLs is approximately diagonal and the threshold modes are

dominated by one, pseudo-random CF state (see Fig. 7.3).

104



29 29.5 30 30.5 31

-1.5

-1

-0.5

0

Im
[k
m
]

Re[k
m
]

29 29.5 30 30.5 31

0.55

1

Γ
(k
)

Figure 7.2: Lasing frequencies of a RL. Black circles represent the complex frequencies
of the CF states. Because their spacing on the real axis is much less than their distance
from the axis the system has no isolated linear resonances and the “cavity” has average
finesse less than unity (f ≈ .05). Solid colored lines represent the actual frequencies kµ

of the lasing modes at pump D0 = 123.5; dashed lines denote the values k
(0)
µ arising from

the single largest CF state contributing to each mode (the CF frequency is denoted by
the corresponding colored circle). The thick black line represents the atomic gain curve
Γ(k), peaked at the atomic frequency, kaR = 30. Because the cavity is very leaky the
lasing frequencies are strongly pulled to the gain center in general, however the collective
contribution to the frequency is random in sign.

7.1 Diffusive versus quasi-ballistic

A key conception in the description of light propagation in disordered media is the (scat-

tering) mean free path ls [109, 110], which is the average distance between two successive

scattering events encountered by a photon. When ls is longer than the system size, pho-

tons generated in the gain region follow approximately ballistic motion, escaping rapidly

to the outside with a small chance of being scattering by the nano-particles. When the

system size, the density of scatterers or the scattering cross section is increased such that

the ls is comparable than the system size, a photon experiences multiple scattering before

it diffuses out, leading to a longer life-time inside the gain region. In three dimensions be-

yond a critical amount of scattering which makes the ls smaller than the wavelength, the

diffusion stops and we enter the Anderson localization regime [111, 112]; the wavefunction
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Figure 7.3: Typical values of the threshold matrix elements T (0) in a two-dimensional RL
schematized in the inset Fig. 7.2 using sixteen CF states. The off-diagonal elements are
one to two orders of magnitude smaller than the diagonal ones. The natural unit of the
pump strength (D0c) determines the scale of the diagonal matrix elements (∼ 0.015), the
inverse of which gives the scale of the threshold (∼ 70).

of the lasing modes decays exponentially inside the cavity giving rise to extremely high-Q

modes. RLs were once proposed as a way to observe Anderson localization of light [113],

but not until recently was such an observation reported [114]. In this chapter we consider

RLs operating away from the localization regime, and the results to be presented below

are in either the diffusive regime or the quasi-ballistic regime.

The first SALT calculations for RLs were done without a reliable method for calculating

the mean free path [65], and we incorrectly assumed that the system was in the diffusive

regime because the spectrum of the CF states was strongly changed from that in the

pure ballistic regime and the CF wavefunctions appeared pseudo-random in the regime as

disorder was varied (e. g., see the inset of Fig. 7.4(a)). Now we know that ls & 30R in

the cases we investigated, and we will refer to this regime as the quasi-ballistic regime.

Recent work [115] shows that SALT calculations in the diffusive regime is possible but

challenging because it requires the grid spacings ∆r and R∆θ used in the discretization
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method (Section 3.4) to be much smaller than the wave length, which in turn is much

smaller than the mean free path, now only a fraction of the system size in the diffusive

regime. Some phenomena are different from the results in the quasi-ballistic regime as we

will briefly discussed below.
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Figure 7.4: Spatial variation of the CF states in the quasi-ballistic regime (a) and in the
regime approaching the diffusive regime (b). The curve in (a) shows the corrected data
from Fig. 4 in Ref. [65]. The mean free paths are about 70R and 3R in these two cases, and
the insets show the false color plots of the multi-mode electric field far above threshold.
kR used in (a) is kR = 30, the radius and index of the nanoparticles is r = R/80 and
n = 1.2, and the filling fraction is 20%. The parameters used (b) are given in the caption
of Fig. 7.8.

7.1.1 Spatial inhomogeneity of lasing modes

We first discuss a noticeable difference of RLs in these two regimes, the spatial inhomo-

geneity of the electric field shown in Fig. 7.4. The intensity of the multi-mode electric

field in the quasi-ballistic regime displays a striking property: it is consistently brighter at

the edge of the disk than at its center, even though the gain is uniform and there are no

special high-Q modes localized near the edge. To demonstrate that this effect is not a sta-

tistical fluctuation associated with this particular disorder configuration we have averaged

the behavior of the entire basis set of CF states over disorder configurations. The result is

a non-random average growth of intensity towards the boundary. The origin of this effect
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is known from earlier work on Distributed Feedback Lasers with weak reflectivity [116]; if

the single-pass loss is large, then the single-pass gain must also be large in order to lase,

leading to a visible non-uniformity of the lasing mode, with growth in the direction of the

loss boundary (on average the radial direction for the RL). As the RL has fractional finesse

(which is not achievable in a one-dimensional geometry) this effect is much larger in these

systems and should be observable. This effect means that the electric field fluctuations in

RLs will differ substantially from the random matrix/quantum chaos fluctuations of linear

cavity modes [117], first because each mode is a superposition of pseudo-random CF states

and second because these CF states themselves are not uniform on average. We find that

this effect to become weaker as the disorder strength is increased and eventually becomes

negligible (see Fig. 7.4(b)).
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Figure 7.5: Modal intensities of a RL as a function of D0 in the quasi-ballistic regime (a)
and in the diffusive regime (b). Parameters used here are the same as in Fig. 7.4.

7.1.2 Modal intensities versus pump strength

In the quasi-ballistic regime the behaviors of modal intensities, measured by the length

of the vector of CF coefficients I =
∑NCF

m=1 |a
µ
m|2, show complex non-monotonic behaviors

(see Fig. 7.5(a)). Interestingly, we see that modes can be “killed” (e. g., the black mode)

and some of them can “reincarnate” themselves at a higher pump (the purple mode).
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Analysis reveals that these complex behaviors are due to the strong spatial hole burning

interactions in these systems as we will see below. In contrast, the modal intensities of

a RL in the diffusive regime increase monotonically as a function of the pump strength

(Fig. 7.5(b)), which is similar to what we have shown for the conventional multi-mode laser

(Fig. 4.4). However, we do observe strong modal interaction in the diffusive regime also

as we now show by analyzing the eigenvalues of the interacting threshold matrices defined

in Section 4.2 and the frequency distribution of lasing modes.
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Figure 7.6: Evolution of the quantities D0λ
µ(D0) of a RL as the pump is increased in the

quasi-ballistic regime (a) and in the diffusive regime (b). The lasing threshold corresponds
to the line D0λ

µ = 1. The full colored lines represent the modes which start lasing
within the calculated range of D0, and the gray dashed lines represent the non-interacting
thresholds for the modes shown. The mode represented by the dark dotted line in (b) is
the third mode in the absence of mode interaction, but it doesn’t turn on at all when the
interaction is included. Parameters used here are the same as in Fig. 7.4.

7.1.3 Lasing frequencies versus pump strength

In Fig. 7.7 we plot the lasing frequencies of the modes shown in Fig. 7.5 when the pump

is increased. Of the eight lasing modes in the quasi-ballistic case, there are six which

form three pairs nearby in frequency and their behavior is highly correlated. Evaluation

of the overlap of the aµ vector associated with each pair of modes confirms that not only

their frequencies, but also their decomposition into CF states is similar. When two lasing
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Figure 7.7: Lasing frequencies of a RL versus pump above (solid) and below (dashed)
threshold in the quasi-ballistic regime (a) and in the diffusive regime (b). Gray dashed
lines indicate the frequencies of the modes that don’t turn on. The black dotted line in (b)
represents the dotted line in Fig. 7.6(b). Parameters used here are the same as in Fig. 7.4.

frequencies approach one another, instead of repelling, one of the frequencies disappears

(e.g., the “black” frequency in Fig. 7.7(a)), because the corresponding mode is driven to

zero, an effect which cannot happen in a linear system. Recall that these frequencies are

not the eigenvalues of a random matrix but rather the parameter values kµ at which the

random operator Tmn has a real eigenvalue.

It is possible to analyze this condition in terms of the interacting threshold matrices.

In order for frequency degeneracy to occur this random complex matrix would have to

have two degenerate real eigenvalues at the same value of kµ. We argue that level repul-

sion in the complex plane prevents this from happening. However, instead of leading to

frequency repulsion, this effect leads to frequency locking, i. e., the two interacting modes

merge into one. We can confirm this effect by noting that after one modes “dies”, the

CF decomposition of the surviving mode has large components associated with the mode

which was driven to zero. So instead of the “exchange of identity” familiar from linear

level repulsion, we find “merger of identity”. In a time-dependent treatment, this kind of

cooperative frequency locking is well-known, and it has been studied in a chaotic cavity

laser in [88]. The interesting “reincarnation” behavior happens when the frequency of a
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“killed” mode moves far enough away from that of the dominant mode (see the modes

represented by the purple and green line in Fig. 7.7(a)). In the specific case shown, all the

non-lasing modes at the highest pump we study have decreasing D0λ
µ(D0) as the pump is

increased (Fig. 7.6(a)). Therefore, they are highly unlikely to be lasing at a higher pump

value and the spectrum will stay well spaced (solid lines in Fig. ??(a)).

Although the modal intensities in the diffusive regime behave quasi-linearly, the modal

interaction does lead to important consequences. For example, we observe strong frequency

repulsion as shown in Fig. 7.8, which convinces us that we are not in the regime of An-

derson localization [19, 118]. For each of the 100 disorder configurations we study, the

pump strength is increased until we reach the six-mode regime. The distribution of the

frequency spacing is clearly different from that in the absence of interaction (taken from

the frequencies of threshold lasing modes); the chances of having extremely large or small

spacing is reduced (〈∆k2〉 reduces from 5.59 × 10−3 to 4.52 × 10−3 while 〈∆k〉 is roughly
the same), and the spectrum is more equally spaced as a result.
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Figure 7.8: Distribution of nearest-neighbor lasing frequency spacing of diffusive RLs with
mode interaction (a) and without mode interaction (b). 100 disorder configurations are
studied and we increase the pump strength until it reaches the six-mode regime. In our
calculation kR = 60, the radius and index of the nanoparticles are r = R/30 and n = 1.4,
the filling fraction is 20%, and the mean free path is about 3R.
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Note that this phenomenon is not caused by shifting of individual lasing frequencies as

a function of the pump strength; the pump-dependence of the lasing frequencies is rather

weak in the diffusive regime (see Fig. 7.7(b)). The reason of the statistical change can be

understood in the following way. Modes having similar spatial profiles tend to have similar

lasing frequencies; the modal interaction through spatial hole burning suppresses the modes

which have similar spatial profiles to those already lasing from turning on. Consequently,

the lasing modes don’t overlap much spatially and their frequencies are more likely to

be well separated. For example, the mode which have the third lowest threshold in the

absence of interaction (black dotted line in Fig. 7.7(b) and Fig. 7.6(b)) overlaps strongly

with the second lasing mode (red line) and their frequencies are close to each other; the

modal interaction highly suppresses the former and it doesn’t turn on in the range we

explore. As a result, the frequency spacing between the red mode and the nearest lasing

mode increases from 0.03 to 0.1.

Although the suppressed mode doesn’t turn on in the example above, it passes its

identity to the second lasing mode as D0 increases. In the absence of interaction the

second lasing mode is dominated by the 28th CF state (ξ
(2)
28 = 98%), and the 30th CF

state, which dominates the suppressed mode, has only a negligible contribution to the

second lasing mode (ξ
(2)
30 =1.5%). Here we have a larger basis compared to what we used in

the 1D calculation, and the definition of ξµm is modified accordingly (ξ
(µ)
m ≡ |aµm|2/∑n |a

µ
n|2)

to reduce the weights of the large number of near-zero components. At the largest pump

value we investigate, the second lasing mode is mixed with a much larger amount of the

suppressed mode, and ξ
(2)
m becomes double-peaked with ξ

(2)
28 = 60.1% and ξ

(2)
30 = 28.3%.

Meanwhile, the suppressed mode also takes in a larger percentage of the second lasing

mode and becomes double-peaked with ξ
(3)
30 = 53.9% and ξ

(3)
28 = 28.5%. So we see these

two modes overlaps more heavily as the pump increases, and the “modal gain” of the

suppressed mode in Fig. 7.6(b) becomes more flat at higher pump and it never reaches its

threshold as a result. This mixing phenomenon we describe is not a rare event. It happens

for all the modes in the system; the example we give is just the most noticeable one.
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7.2 Effects of fluctuations

The interaction effects in RLs are strongly non-linear and hence highly sensitive to statis-

tical fluctuations, especially in the quasi-ballistic regime. To illustrate this in Fig. 7.9(a)

we contrast the peak intensities of Fig. 7.5(a), for which the pump was uniform in space

(d0(x) = 0) to a case in which we have added to the uniform pump a random white noise

term d0(x) of standard deviation ±30% (normalized to the same total power). For this

non-uniform pump the third uniform mode (green) now turns on first. It is thus able to

suppress the seventh uniform mode (purple) over the entire range of pump powers and

acquires almost a factor of three greater intensity at the same average pump power. The

intensities of all the interacting pairs show similar high sensitivity to pump profile, while

their frequencies remain relatively stable. Similar behavior is also found in the diffusive

regime (see Fig. 7.9(b)), which was observed in shot to shot spectra of RLs in experiments

[46]. To better understand why the lasing frequency is stable we resort to the SALT for

analytic insights into the question of what determines the frequencies of RLs. By imposing

the gauge condition Im[aµ1 ] = 0 for the dominant CF component at threshold, we derive

from Eq. (2.50) that

kµ = ka +
1

κµ1 + γ⊥



−
D0γ⊥Im

[

∑

p a
µ
pA

µ
1p

]

aµ1
+ (qµ1 − ka)γ⊥



 , (7.1)

in which qµm and −κµm are the real and imaginary part of the CF frequency kµm, and

Aµ
mn is matrix element of the symmetric integral operator in Eq. (2.50). Here we use

the approximation (kµ)2 − k2m ≈ 2ka to emphasize the physical picture below, but it is

not necessary in our calculation. We measure all frequencies from the atomic transition

frequency ka and write Eq. (7.1) as

kµ =
1

1 + κµ1/γ⊥



qµ1 −D0



Im [Aµ
11] +

∑

p 6=1

Im

[

Aµ
1p

aµp
aµ1

]







 (7.2)

≡ k(0)µ + k(c)µ .
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k
(0)
µ = (qµ1 γ⊥)/(γ⊥ + κµ1 ) is the weighted mean of the real part of the cavity resonance fre-

quency and the atomic frequency. We encountered this “conventional” term in Section 4.1

when the threshold matrix was diagonal (Eq. (4.3)). For a typical high finesse system k
(0)
µ

is very close to the cavity frequency Re[kµ] with a small shift (“pull”) towards the atomic

line; k
(c)
µ is a collective contribution due to all the other CF states which has no analog in

conventional lasers. In our parameter regime both the conventional and collective terms

are important (although the conventional term is larger) and the lasing frequencies have no

simple relationship to the “cavity frequencies”. The collective term is random in sign and

does not always generate a pull towards line center (Fig. 7.2). Eq. (7.2) shows explicitly

that the lasing frequency kµ is independent of the “gauge” condition we choose because

only the relative phases of aµp matter. Although we mentioned that the change in D0 can

be visualized as a modification to the effective dielectric function, here we separate the

effective of the gain and stick to the CF basis of the cavity dielectric function ǫc(x). The

“conventional term” k
(0)
µ in Eq. (7.2) is determined only by ǫc(x) and it stays the same

with the pump fluctuation; since D0 is the total pump power which we assume to be a

constant and each mode is still approximately diagonal at threshold, the main contribution

to the shift of k
(c)
µ comes from the change of Aµ

mn =
∫

cavity dx (1 + d0(x))ϕm(x)ϕn(x). If

the white noise d0(x) fluctuates uniformly in space as we assumed, then the average value

of Aµ
mn is the same as in the uniform pumping case. The variance of Aµ

mn certainly de-

pends the fluctuation amplitude of d0(x), but in a well-controlled experiment the latter is

normally small which gives rise to the frequency stability.

7.3 Pump induced far-field directionality

One interesting question about RLs is what happens to the lasing modes in a partially

pumped RL. Xu et al. [119] found that in the diffusive regime the spatial profile of lasing

modes in one-dimension layered systems is significantly different from that of the corre-

sponding cavity mode. Andreasen et al. [64, 67] investigated similar systems but with

weaker scattering from the disorder and found new modes are formed which have high

threshold but good directionality. We will analyze this observation in Chapter. 8 using a

uniform edge-emitting laser. Here the question is whether we can utilize this observation
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Figure 7.9: Intensity and frequency fluctuations of a RL in the quasi-ballistic regime (a) and
in the diffusive regime (b). For fixed impurity configuration we compare lasing frequencies
and intensities in the multi-mode regime for uniform pump (solid lines in (a) and circles
in (b)) and uniform pump with 30% spatial white noise added (dashed lines).

to engineer the emission directionality of a RL. It is well known that in high-Q cavities

one can pump certain areas of a laser to select certain modes [14, 120, 121]. For example,

by pumping near the perimeter of a quasi-stadium laser diode with concentric end mirrors

one can select the ring mode instead of the axis mode [120], and we discussed how the

mode selection affects the emission pattern in a quadruple-deformed micro-cavity in the

previous chapter. By selecting different cavity modes one has some freedom of choosing

the desired emission directionality, but this procedure is limited by the fact that the pump

cannot distort or reshape the spatial pattern of the lasing modes in high-Q cavities.

Our calculations in 2D RLs predict that good emission directionality can be obtained

from locally pumped RLs if the scattering is weak enough (in quasi-ballistic regime; see

Fig. 7.10(b)). As the scattering strength increases, the threshold value of a given mode

is lowered. As a result, the lasing modes are not well confined within the pump region

due to the reduced discontinuity of the imaginary part of the effective dielectric function

at the boundary of the pump region. Therefore, lasing modes in the diffusive regime with

local pumping look similar to those when a uniform pumping is employed and they emit

randomly in all directions (Fig. 7.10(a)). The role of the disorder in the quasi-ballistic

regime is quite interesting. Instead of scrambling the phase of the feedback, they enhance
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the feedback by supplying a more complicated network which effectively increases the

system size and reduces the threshold. To illustrate this point we remove the scatterers

in the system shown in Fig. 7.10(b), and the threshold of the corresponding lasing mode

(with the fundamental transverse excitation) increases by 12.5%.
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Figure 7.10: Near-field (left column) and far-field (right column) pattern of a TLM in a
locally pumped (a) diffusive RL (b) quasi-ballistic RL (c) medium of index n = 1 (air).
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Chapter 8

Threshold lasing modes in

one-dimensional cavities with an

inhomogeneous gain profile

In this chapter we address the question of what determines the lasing frequencies for a

given pump power in a simple 1D edge-emitting laser. We found that the scattering from

the gain boundaries inside the cavity play an important role; this is especially the case in

relative low-Q cavities.

8.1 Conventional wisdom

The conventional wisdom on this problem is based on the cavity mode analysis: Cavity

modes with longer lifetime and frequencies closer to the gain center utilize the gain better,

thus they have the lowest thresholds and appear in the spectrum first when the pump

power is above their thresholds. It is known that the lasing frequencies may shift from

the cavity frequencies due to the interaction with gain, i. e., the line-pulling effect (4.3),

but each laser frequency is still assumed to corresponds to one cavity mode. As the name

suggests, cavity modes are only determined by the properties of the cavity and they are

independent of the spectral and spatial characters of the gain medium and the pump. In

Section 3.2.3 we showed that the threshold lasing modes in a laser with an inhomogeneous
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gain medium are the gain region CF states, whose spatial profiles can be different from

cavity modes. What we haven’t analyzed yet is whether the lasing frequencies still have

a one-to-one relationship with the frequency of the passive cavity modes. It has been

recently reported that lasing modes other than the cavity modes are found numerically

in one-dimensional disordered systems with weak scattering [64, 67]. To understand why

the conventional wisdom could be faulty, we reexamine how the cavity frequencies are

determined in the most simple picture [3].

n

ε

1

1ε2

L

LG

r1 r2

Figure 8.1: Schematic diagram of a simple Fabry-Perot cavity formed by two mirrors with
reflection coefficients r1 and r2. The central block indicates the gain region.

The cavity shown in Fig. 8.1 is defined by two end mirrors with reflection coefficient

r1 and r2, and the gain medium resides in the center block which doesn’t necessarily fill

the whole cavity. The gain medium is characterized by its length LG and the amplification

coefficient (or threshold) αm. The light bounces back and forth between the two mirrors,

amplified when propagating in the gain medium before it eventually leaks out when re-

fracted by the two mirrors. The ratio of the light amplitudes before and after it finishes a

round trip in the cavity can be written as:

E2/E1 = r1r2 exp(2αmLG − 2in1kL), (8.1)

where the two terms in the exponent represent the amplification and the phase shift,

respectively. One underlying requirement of laser action is coherent feedback, and in

the one-dimensional case it simply requires E2 and E1 to be superposed coherently. The

criterion is meet when the phase shift 2n1kL is an integer times 2π, or k = mπ/n1L (m =

1, 2, 3, . . . ). From this derivation we see the cavity frequency k is independent of the both
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the amplification coefficient αm and the gain length LG. In Eq. (8.1) no phase shift due to

the reflections by the two mirrors is added because it is zero when light is reflected from the

optically dilute side of an interface. For other setups (boundary conditions) the possible

phase shifts are known once the cavity is given, and they don’t change the basic conclusion.

However, the gain medium modifies both the real part and imaginary part of the refractive

index (a detailed discussion can be found in Section 2.5 or [3]), but no reflection from

the boundaries of the gain region is considered in Eq. (8.1). This can only be justified in

high-Q cavities where the threshold is low and the change of the refractive index due to

the gain can be neglected. Therefore, one needs to be careful when applying the conclusion

of Eq. (8.1) to low-Q cavities including the one-dimensional disordered systems mentioned

above [64, 67].

n2 n1 n’1n’  2

x=0 x=ax=x0

Figure 8.2: Schematic diagram of a two-sided 1D edge-emitting laser. The blue block
indicates the gain region.

8.2 Linear gain analysis of threshold lasing modes

Below we find and analyze new modes introduced by the gain medium in one-dimensional

slab cavities similar to the one shown in Fig. 3.5 using the linear gain model introduced

in Section 2.5. These modes are shown to be related to the new modes found in [64, 67].

For generality we assume the one-dimensional laser emits through both sides (see Fig. 8.2).

Eq. (2.59) in this case reduces to the following form:

1

n2
sin(θ2 + n2k x0) cos(θ1 + n1k (a− x0)) +

1

n1
cos(θ2 + n2k x0) sin(θ1 + n1k (a− x0)) = 0.

(8.2)

Here k is the real-valued lasing frequency and n2 is the index in the gain region with a nega-

tive imaginary part, representing the amplifying effect. The real part of n2 may differ from
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n1, which is taken to be real. The angles θµ ≡ arcsin(
nµ

√

n2
µ−n′

µ
2
) ≡ arccos( −i

√

n2
µ−n′

µ
2
) (µ =

1, 2) are introduced to simplify this equation, and they can be written explicitly as

θµ =
π

2
+

i

2
ln(

nµ + n′
µ

nµ − n′
µ

). (8.3)

Here n′
µ (µ = 2, 1) are the indices of the two semi-infinite media outside the cavity, and we

take them to be unity (air) in the following discussion. The one-sided case (see Fig. 3.1)

can be treated as a special case where the refractive index outside the left side of the

cavity is infinite. In the following discussion we will take n′
µ to be unity, which doesn’t

affect the phenomena we are going to reveal. We use the linear gain model and assume

the real part of the index region 2 is unchanged (n2 = n1+ ini) in the presence of the gain

medium following Eq. (2.60). The solutions which make the two terms in Eq. (8.2) vanish

seperately have

k =
mπ − i ln(n1+1

n1−1)

2n1(a− x0)
, m = 0,±1,±2, ..., (8.4)

which can be real only if Im[n1] is negative
1, meaning the corresponding modes are ampli-

fied in the region x ∈ [LG, L] in the absence of the gain. These unphysical solutions can

be dropped safely in our analysis, and Eq. (8.2) can be rewritten as

1

n2
tan(θ2 + n2k x0) +

1

n1
tan(θ1 + n1k (a− x0)) = 0. (8.5)

Conventional modes and surface modes

Eq. (8.5) has two distinct sets of solutions at large k. The first set can be approximated by

expanding the above equation to the zeroth order of ni (etc., n2 = n1 and θ2 = θ1) except

in the term n2k a), which gives the equally spaced frequencies

k =
mπ

n1a
, m = 0, 1, 2, ... (8.6)

They are determined by the properties of the cavity (n1 and a) only and resemble the

passive cavity modes. For this reason we will refer to them as the conventional modes.

1Re[n1] is assumed to be real
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Their mode profiles (see Fig. 8.3(a)), however, look different from those of the passive

cavity modes as they are amplified in the gain region. The corresponding solution of ni

can then be shown to be

ni = − n1

mπ

a

x0
ln(

n1 + 1

n1 − 1
) < 0. (8.7)

Its absolute value, which is proportional to the corresponding lasing threshold, decreases

when the gain region is extended, or if the light confinement is enhanced (larger n1) as one

expects.
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Figure 8.3: (a) Mode profile of a conventional mode (k = 6.2886µm−1, ni = 0.0511)
in a one-dimensional cavity of length a = 10µm and index n = 1.5. It is amplified
symmetrically in the gain medium, which resides in the left half of the cavity (light blue
region). (b) Mode profile of a surface mode (k = 6.4013µm−1, ni = −0.6124) localized
inside the right edge of the gain regime. (c) The conventional modes (squares) and surface
modes (circles) with k ∈ [14µm−1, 16µm−1]. The crosses are the approximations given by
Eq. (8.6-8.9). The spacing of the conventional modes is defined by the whole cavity while
the larger spacing of the surface modes is defined by the gain-free region.

The other set of solutions, which we will refer to as the surface modes (see Fig. 8.3(b)),

have larger |ni|’s , which makes tan(θ2 + n2k x0) approximately −i when |ni|kx0 ≫ 1. In
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this limit ni is independent of x0:

ni = (1− n1)
√
n1 < 0, (8.8)

and the lasing frequencies

k =
mπ + arctan(

√
n1)

n1 (a− x0)
, m = 0, 1, 2, ... (8.9)

are also equally spaced. If these frequencies were associated with the effective cavity formed

by the two sides of the gain region, δk would be proportional to the length of the gain

region x0, not the length of the gain-free region (a − x0) as shown in Eq. (8.9). We will

come back to the origin of these modes later in this discussion. The surface modes can be

hard to find numerically if we solve Eq. (8.2) instead of Eq. (8.5). We know that sin(α)

and cos(α) are not truly infinite unless abs(Im[α]) → ∞, but the computer treats them as

infinite if abs(Im[α]) is large enough that exp(−|Im[α]|) falls below the machine precision

β. When this happens, the Jacobian of the left hand side of Eq. (8.2) becomes zero (here

α is (θ2 + n2kx0)) and it is impossible for the numerical solver to converge. If we assume

β = 10−30, |Im[α]| only needs to be larger than 35 to make this happen, which translates

to k > 5µm−1 in the case where n1 = 1.5 and x0 = 10µm. In Eq. (8.5), however, the

argument of the second term has an imaginary part of 1
2 ln(

n1+1
n1−1), which makes it immune

of this problem unless (n1 − 1) ∼ β.

Interaction of conventional modes and surface modes

Fig. 8.3(c) shows {k, ni} of the two set of modes in a cavity of length a = 10µm and

index n = 1.5. In this case the thresholds of the surface modes are orders of magnitude

larger than the conventional modes unless k is minute, which explains why the former

have never been observed in experiments with a similar setup. If we fix the observation

window of k and decrease the index of the cavity n1, the thresholds of the conventional

modes increase slowly (logarithmically) while those of the surface modes decreases much

faster (super-linearly), and eventually they meet each other in the (k, ni) plane. When this

happens, the modes near the crossing point interact strongly, and the approximations 8.7
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and 8.8 are no longer good. The strong interaction leads to the vanishing of a subset of

the conventional modes and the surface modes (see Fig. 8.4 and 8.5), which changes the

mode spacing dramatically.
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Figure 8.4: (a) Conventional modes (squares) and surface modes (circles) with k ∈
[10µm−1, 30µm−1] in a one-dimensional cavity of length a = 10µm and index n = 1.05.
The gain medium (light blue region) resides in the left half of the cavity (x0 = 5µm).
A subset of the conventional modes vanish with the surface modes below the transition
frequency kt ≈ 14µm (dashed line). The crosses are the approximations given by Eq. (8.6-
8.9). (b) Similar to (a) but with x0 = 9.94µm and squares replaced by dots for clarity. The
surface modes (with the m=0 and m=1 ones shown) are far enough from the conventional
modes that their interaction is negligible.

The way the two sets of modes interact depends on the ratio x0/a. Fig. 8.4(a) shows

the x0/a = 0.5 case, where the vanishing of the modes happens as soon as the thresholds

of the conventional modes and surface modes become close. Just beyond the transition

frequency kt we see pairs of conventional mode and surface mode whose wavelengths are

very close to each other. ni’s of the conventional modes oscillate around the values given

by the monotonically decreasing function of k given by Eq. (8.7), and higher order terms of

ni in Eq. (8.5) need to be considered to capture this modulation. If we gradually increase

the length of the gain region to cover the whole cavity, the frequencies of the conventional
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modes stay at the values given by Eq. (8.6) with small shifts, while the frequencies of the

surface modes blue-shift systematically to infinity with increasing spacings (Fig. 8.4(b)). In

this process the thresholds of the surface modes barely change, and when the first possible

surface mode (m=0 in Eq. (8.9)) shifts to a k value large enough that its threshold is again

much higher than those of the nearby conventional modes, the interaction between the

two sets of mode is negligible as we expect from a cavity with an almost homogeneous

gain medium. For other values of x0/a, for example x0/a ≈ 0.415 in Fig. 8.5, there is a

transition region where the conventional modes and surface modes interact strongly, and

the modes in this regime can disappear and then appear at a nearby k value when the

ratio changes slightly. This behavior is very similar to that of the abnormal modes found

in Ref. [64], and we believe they share the same origin.
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Figure 8.5: Lasing modes (squares) in the transition region k ∈ [18µm−1, 24.1µm−1]
when x0 = 4.149µm (a) and x0 = 4.158µm (b). The cavity is the same as described in the
caption of Fig. 8.4. While most of the modes are stable when x0 is slightly changed, the
two modes near k = 20.6µm−1 disappears and two new modes appear near k = 19.5µm−1.
The green and red lines are the zeros of the real and imaginary part of the left hand side
of Eq. (8.2), respectively.
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Uniform curves and x0-dependency

To see why the interaction between the conventional modes and surface modes depend

on the ratio x0/a, we formulate Eq. (8.5) in a different way. For a given cavity index

n1, Eq. (8.5) has four variables: ni which is proportional to the threshold, the lasing

frequency k, the cavity length a and the length of the gain region x0. So far we have been

considering varying x0 with a fixed a and looking for the pairs of solutions {k, ni}. In fact,

by introducing the dimensionless quantities S = x0/a and P = kx0, we not only reduce

the number of unknowns by one (the other unknown quantity is ni) and can also derive

an equation for just P and ni (assuming n1 is real):

Im

{

arctan

[

n1

n2
tan(θ2 + n2P )

]}

= −1

2
ln

(

n1 + 1

n1 − 1

)

, (8.10)

where n2 and θ2 are functions of n1 and ni as defined before. Since this equation doesn’t

depend on S, it gives a set of “universal curves” (see Fig. 8.6) on which the data shown in

Fig. 8.4 and Fig. 8.5 should fall. Notice the horizontal axis in Fig. 8.6 is now P instead

of k, and we see how the conventional modes (the upper side of the open curve) meet the

surface modes (the lower side of the open curve) and form closed loops at small P . The

gaps between the curves means that for a given length of the gain medium there are “dead

zones” where no lasing modes can exist no matter what the length of the cavity is.

To have a better understanding of our origin problem in which x0 is varied while a is

kept fixed, we want to project the solutions of Eq. (8.5) to the {S, ka(= P/S)} plane. This

can be done by repeatedly solving Eq. (8.5) with different S’s, but here we will use a more

clever method. By substituting ni and P by the points on the universal curves, we can

immediately calculate the corresponding value of S by

S−1 = 1 +
mπ − θ1 − arctan

[

n1
n2

tan(θ2 + n2P )
]

n1P
, (8.11)

which is also derived from Eq. (8.5) and the results are families of complex curves above

the {P, ni} plane. We can then easily map these curves to the {S, ka} plane which is

shown in Fig. 8.7. This is the analogy of the level diagram under the influence of an
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Figure 8.6: Universal curves of the solutions {P (≡ kx0), ni} given by Eq. (8.10). The
symbols represent the data from Fig. 8.4 (blue squares: x0 = 5µm, blue triangles: x0 =
9.94µm) and Fig. 8.5 (red squares: x0 = 4.149µm, red triangles: x0 = 4.158µm).

external parameter in the study of resonances/eigenmodes in complex mesoscopic billiards

and optical cavities [122, 123], but now in an active system with the external parameter

being the ratio of the length of the gain medium to the cavity length. The conventional

modes and surface modes have continuous levels at large ka even at their intersections.

The conventional modes are insensitive to the change of x0 as given by Eq. (8.6), so

the corresponding levels are horizontal (one of them is highlighted by the green curve

in Fig. 8.7(a)). The levels of the surface modes have a positive slope (blue tilted lines)

reflecting the blue-shift of surface mode frequencies as x0 increases given by Eq. (8.9).

Both types of levels become broken right at their crossings when ka is small (Fig. 8.7(b)).

As a consequence, a pair of conventional mode and surface mode become degenerate 1)

right before they disappear when S moves into the gap and 2) right after they appear

when S moves out of the gap. This explains why the frequencies of the vanishing pairs

of modes are very close as seen in Fig. 8.4(a). Since the crossings don’t line up vertically,

the disappearing and appearing can happen simultaneously for difference pairs of modes

as shown in the circles in Fig. 8.7(c). In some special cases the crossings are almost
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vertically aligned as the one shown in Fig. 8.7(b), and a subset of the conventional modes

and the surface modes disappear altogether below the level corresponding to the transition

frequency kt.
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Figure 8.7: Level diagram of a one-dimensional cavity near S = 0.5 (a)(b) and S = 0.415
(c). In (a) and (b) the red squares are the solutions shown in Fig. 8.4(a), and we see
again a subset of conventional modes disappear with the surface modes below the level
corresponding to the transition frequency kt (dashed line in (b)). Panel (c) shows the
change of the solutions of when S increases from 0.4149 to 0.4158, and the green circles
highlight the region where a pair of surface mode and conventional mode disappear near
ka = 206 and another pair appear near ka = 195.

Surface mode and resonant scattering

The dramatic difference of the mode profiles of the surface mode and the conventional

mode inside the gain medium (Fig. 8.3(a) and (b)) can be viewed as a consequence of

having different total reflection coefficient r2 at the right edge of the gain region. The

mode profile in the gain region can be decomposed into two amplified waves traveling in

opposite directions: φ(x) = a> exp(i(n1 + ini)k(x− x0)) + a< exp(−i(n1 + ini)kx), where
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a>,< are the maximal amplitudes of these two components. Their ratio
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(8.12)

determines how symmetric the mode profile is. In the last step we used the round trip

phase and amplitude condition inside the gain region r1r2 exp[2i(n1 + ini)P ] = 1. Now

we see the surface modes must have very small |r2| to have the highly asymmetric profile

inside the gain region. This can be achieved if the lasing frequency is close to the resonant

scattering frequency of the structure on the right side of the gain region, here a dielectric

block of length (a− x0) and index n1 (see Fig. 8.8).

x=x0 x=a

n2 n’1n1

Figure 8.8: Schematic diagram of resonant scattering in a dielectric block.

Normally for such a block connecting two semi-infinite media of index n2 and n′
1 = 1,

the resonant scattering condition requires either the system is symmetric or n2 = n2
1 in the

absence of gain or loss. In both cases the reflection coefficients at the two sides of the block

are the same. But if the materials have loss or gain, the resonant scattering can happen

for refractive indices with arbitrary real parts. For example, if n1 is real as in our system

and Im[n2] 6= 0, the resonant scattering condition requires

(Im[n2])
2 = (Re[n2]− 1)(n2

1 − Re[n2]), (8.13)

which gives exactly the same result given by Eq. (8.8) when Re[n2] is taken to be the same

as n1. It follows that the resonant scattering frequencies are also the same as given by

Eq. (8.9). In fact, although the approximation we used to derive Eq. (8.8) |Im[n2]|kx0 ≫ 1

doesn’t require the gain region to be much longer than the gain-free region (x0 ≫ (a−x0))

if the wavelength is already much shorter than the latter, it is certainly satisfied when this

condition is meet. Under this condition the laser cavity shown in Fig. 8.2 is equivalent
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to the single block structure considered here if the wave in the gain region is dominantly

right-traveling. Thus we see that the mechanism leading to the surface modes arises from

a coherent effect involving the gain-free region, it is not surprising that the spacing of the

surface modes is inversely proportional to (a− x0) rather than the length of the “effective

cavity” x0. This argument also explains why we don’t see any surface states localized at

the left side of the gain region which requires |r1| ≪ |r2|. Since r1 is determined simply by

the index contrast of the gain region and the environment (air), it cannot be very small due

to the reflection from the imaginary part of the index of the gain medium. But one needs

to be careful when plotting the mode profile of surface modes with large |n1kx0|. Although
the extremely small amount of reflection from the right side of the gain region is amplified

while traveling to the left, its amplitude should still be very small when it reaches the

left side of the cavity. However, since the reflection coefficient at the resonant scattering

frequencies can be smaller than the machine precision β and the amplification exp(−n1kx0)

may be larger than β−1, one may find their product to be very large numerically, which

gives the illusion that the surface states can localize on the left side of the gain region.

Coupling of surface modes

Instead of having the gain medium in the left part of the cavity, if now we assume that

the gain region sits in the center of the cavity and we want to ask whether there are any

surface states that are determined cooperatively by the two gain-free regions or “cross

talks” between the surface modes localized on the left and on the right side of the gain

region. From Eq. (8.12) we know that if the resonance frequencies of the left and right

gain-free regions don’t coincide, then there doesn’t exist surface modes which localize on

both sides of the gain region and the frequencies of the surface modes localized on either

side don’t change. When the two resonance frequencies do coincide, for example, in the

case that the gain region is placed right in the center, then we see these double localized

surface modes with either even or odd parity. But in this case since the amplitude of

the wave function at the center is vanishingly small, the energy (lasing frequencies) of the

modes with different parities are almost identical; they appear as a quasi-degenerate pair

in the k−ni plane (see Fig. 8.9). This is different from the conventional modes, whose wave
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numbers differ by 1/2 for two successive ones of odd and even parities. If we reduce the

length of the gain region while keeping the widths of the gain-free regions fixed, eventually

the surface modes disappear as the necessary condition |ni|kx0 ≫ 1 is no longer satisfied.
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Figure 8.9: (a) TLM solutions of a one-dimensional slab cavity of length a = 32 with a
gain region of length x0 = 16 sitting in the center. The squares are the predicted value
given by Eq. (8.8), which are quasi-degenerated pairs of different parities. The green and
red lines are the zeros of the real and imaginary part of the left hand side of Eq. (8.2),
respectively. (b) Spatial profiles of the TLMs close to k = 12.437 in the left half of the
cavity. Inset: The quasi-degenerated TLMs solutions of even (black) and odd (orange)
parities.

As a conclusion, we showed in this chapter that interference effect due to the scattering

from the gain boundaries gives rise to new modes other than the cavity modes of the passive

system. Our analysis is done in a 1D cavity with uniform index, but similar phenomenon

is also found in random systems [64, 67]. These new modes generally have much higher

thresholds than the conventional modes, but their differences become small when the index

of the cavity is reduced. Possible applications of these modes are under investigation.
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Chapter 9

Conclusion and open questions

In this thesis we have presented the Steady-state Ab Inito Laser Theory (SALT) developed

from the previous work [52] done in our group, and we have demonstrated its applications

to lasers in various geometries. Four journal papers based on the SALT have been published

[62, 63, 65, 66] and five related works [67, 106, 124, 125, 126] are under preparation.

Starting with the semiclassical Maxwell-Bloch (MB) equations, a set of self-consistent

equations have been derived using two approaches without invoking the slowly varying

envelope approximation (SVEA). In the first approach the effect of the gain medium is

shown to add a complex dielectric function to that of the passive cavity, and the time-

independent SALT equation (SALT I) takes the form of a second-order self-consistent

differential equation; in the second approach the polarization of the gain medium is treated

as the source of the Helmholtz equation the electric field satisfies, and a Green’s function

is employed to invert this equation, leading to a self-consistent integral equation (SALT

II), equivalent to SALT I. The full nonlinear lasing modes and their frequencies are the

output of the SALT, and they bear no a priori relationship to the passive cavity modes

and frequencies. In both SALT equations the nonlinearity of the gain medium is treated

to the infinite order; the widely used third order theory was shown to fail badly. The

Bloch equations describing single lasing transition are generalized to include multi-level

lasing schemes, which can be formulated as a two-level problem using a pump-dependent

transverse relaxation rate.

The constant-flux (CF) state and the gain-region CF (GRCF) states have been defined
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inside the last scattering surface of arbitrary shape, and two interpretations of their or-

thogonality relation are discussed. The differences and relationship of the CF states and

the quasi-bound (QB) states, used in standard cavity analysis, are highlighted. The basis

consisting of CF states is used to expand the SALT equations, which leads to a map for

the complex expansion coefficients. The fixed points of this map give the lasing states,

and stable algorithms for finding the fixed points of this nonlinear map are developed. At

threshold this map reduces to a linear eigenvalue problem parameterized by the frequency

k. When k is tuned to a set of discrete values, the inverse of the corresponding eigenvalue

of the threshold matrix gives the lasing threshold in the absence of modal interaction; these

k values are the corresponding lasing frequencies. The SALT equations are shown to be

basis-independent using the example of a 1D cavity with a non-uniform gain profile; the

thresholds, modal intensities and thresholds are found to be identical in the CF basis and

in the GRCF basis.

In the nonlinear above threshold calculation, the threshold matrix is generalized to

include spatial hole burning, and it is a powerful tool to monitor the modal interactions even

of modes below their thresholds. Two algorithms are introduced to solve the full nonlinear

SALT, using either an simple iterative method or the standard nonlinear solver in MatLab.

The convergence of the former is illustrated using a simple 1D cavity, and the integration of

these algorithms with the interacting threshold matrix is discussed. Using these algorithms

we have explored various properties in simple 1D cavities, which are verified quantitatively

by comparing them to the result of brute-force numerical simulations. Excellent agreement

is achieved in the regime where the stationary inversion approximation is valid, and the

SALT is shown to be much more efficient. We have presented a perturbative approach

to include non-stationary inversions at the beating frequencies of nearby lasing modes.

Its prediction for the shifts of higher thresholds in a three mode case is found to be in

qualitative agreement with the numerical simulations.

We have calculated the CF states in various geometries, which are essential in solving

the nonlinear SALT equations in many cases. In 1D Fabry-Perot and DFB lasers, the CF

states are found using either a discretization method or a transfer matrix method. In 2D

the former is generalized with a special treatment of the outgoing boundary condition; its
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accuracy is verified using a microdisk laser where analytical results are available. We have

applied this method to 2D random lasers and asymmetric resonance cavity (ARC) lasers,

including quadruples and limaco̧ns. Using these calculated CF states, we have discussed

possible mechanisms of the mode selection in a quadrupole cavity at deformation ǫ = 0.16.

When the pump power is increased above threshold, both the spectrum and the far-field

emission pattern are found to be in qualitative agreement with the experimental data

reported in Ref. [14]. The SALT also predicts the observed quasi-exponential growth of

the peak output power when the deformation is increased. In random lasers, modeled

as a disk-shaped gain region containing an aggregate of sub-wavelength particles, the CF

states are found to be statistically similar to the QB modes, but there is no one-to-one

correspondence between them when the main free path is comparatively long. Strong

modal interactions are observed in both the diffusive regime and the quasi-ballistic regime,

which leads to frequency repulsion and even non-monotonic variation of modal intensities

in the latter case. Lasing frequencies are found to be stable when a white noise is added

to the pump, while modal intensities fluctuate strongly. The pump induced directionality

is studied, which could lead to possible applications of the random laser.

We have pointed out that the scattering from the gain boundaries in a low-Q laser with

a spatial inhomogeneous gain profile can lead to non-conventional modes. Such modes are

found for a 1D edge-emitting laser, and their relationship with the resonance tunneling in

the gain-free region has been demonstrated. These new modes localize on the gain side of

the gain/gain-free interface, and their interactions with the conventional cavity modes are

investigated when the gain boundary is shifted.

Although we have explored many aspects of the SALT, there are still a few questions we

would like to investigate further. One of them is the vectorial generalization of the SALT

equations. The preliminary results have been given in Section 2.2, but how to calculate

the CF states in 3D for an arbitrary ǫc(x) remains an challenge. Another question is

whether a more effective method to calculate the GRCF states can be developed, which

will facilitate the exploration of the gain-induced non-conventional modes in dimensions

other than 1D. So far we haven’t considered the noise due to spontaneous emission. Within

the framework of the semiclassical theory, whether a Langevin type stochastic noise term
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can be integrated in the SALT needs to be studied. Entering the regime of quantum optics,

it is still unclear what are the correspondences of the CF states. For each lasing mode

at the external frequency k, there exist an infinite number of CF states with complex

wavevectors {km}. Whether one can associate creation operators for CF states with cavity

photon states requires further investigation. A generalization to operator electromagnetic

fields is necessary to understand fundamental properties such as the laser linewidth and

photon statistics. As for the applications of the SALT, our goals in the near future include

predicting the lasing properties in the newly proposed aperiodic deterministic lasers and

a further investigation of the quadrupole cavity with more detailed information about the

spatial pump profile.
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Appendix A

Analytical approximations of CF

frequencies in a 1D uniform index

laser

In Section 3.2 we showed that in a 1D laser cavity with uniform index there is a CF

frequency close to a given QB frequency k̃m when the external frequency is close to Re[k̃m].

This behavior is shown to be robust for all the QB frequencies in the one-dimensional case

in Ref. [52] where a first order approximation is given for each km at the specified external

frequency k = Re[k̃m]. In this appendix we derive a similar result using a different approach

which can be easily generalized to include higher order corrections.

For simplicity, we take n2 = 1 outside the cavity and n1 to be real inside the cavity,

and drop the subscript of the latter. We first take the logarithm of Eq. (3.7) and use

exp(2ink)|k=Re[k̃m] = −1, which gives

i(m+ 1/2)π(1 + ǫm) = i(m+ 1/2)π +
1

2
ln(

1 + 1
n + ǫm

1− 1
n + ǫm

). (A.1)

ǫm is defined as the ratio n1km/n2k in Section 3.2. The complex branch of the logarithm on

the r.h.s is chosen to be consistent with the QB solutions, and ǫ is defined by (km−k̃m)/k̃m.
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By expanding the second term on the r.h.s to the first order of ǫm

ln(
1 + 1

n + ǫm

1− 1
n + ǫm

) ≈ 1

2
ln(

n+ 1

n− 1
)− n

n2 − 1
ǫm (A.2)

and solving for ǫm, we obtain

ǫ(1)m ≈
ln(n+1

n−1)
2n

n2−1 + i(2m+ 1)π
. (A.3)

To compare the result with that given in Ref. [52], we note

Re [km]− k = Re [ǫm] k

= ln(
n + 1

n − 1
)

2n
n2−1

( 2n
n2−1

)2 + (2nka)2
k. (A.4)

In the limit ka ≫ 1
n2−1

the first term in the denominator can be neglected which leads to

Eq. (A11) in Ref. [52]. The difference of the imaginary parts of the CF and QB frequencies

is given by

Im [km]− Im
[

k̃m

]

= Im
[

ǫ(1)m

]

k − Im
[

k̃m

]

= ln(
n+ 1

n− 1
)

1

2na

1

1 + (n2 − 1)2k2a2

≈
ln(n+1

n−1)

2n(n2 − 1)2k2a3
, (A.5)

Compared with Eq. (A12) in Ref. [52], Eq. (A.5) is smaller by a factor of [1 + ln (n+1
n−1 )],

which is about 1.55 if n = 2. To increase the precision of the approximation we expand

Eq.(A.2) to o( (ǫ
(1)
m )2)

ln(
1 + 1

n + ǫ
(1)
m

1− 1
n + ǫ

(1)
m

) ≈ ln(
n+ 1

n− 1
)− 2n

n2 − 1
ǫ(1)m +

2n3

(n2 − 1)2
(ǫ(1)m )

2
, (A.6)
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and the second order approximation of ǫm is given by

ǫ(2)m =
1

i(2m+ 1)π

(

ln(
n+ 1

n− 1
)− 2n

n2 − 1
ǫ(1)m +

2n3

(n2 − 1)2
(ǫ(1)m )2

)

= ǫ(1)m +
1

i(2m+ 1)π

2n3

(n2 − 1)2
(ǫ(1)m )2. (A.7)

In Fig. A.1 we compare the first- and second-order results with the numerical values

of ǫm. The first order approximation works quite well for the real parts of the complex

CF frequencies, but a higher order approximation is required for the imaginary parts

requires to achieve a comparable accuracy. Besides the k-dependence of the difference of

the corresponding CF and QB frequencies shown in Fig. A.1, Eq. (A.4) and (A.5) also tell

us that the difference becomes small when n is large. Since the first lasing mode in this

simple one-dimensional system is a CF state, this finding partially explains why it is a

good approximation to take QB modes in a high-Q cavity as the lasing modes.
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Figure A.1: Differences of the CF and QB frequencies in a 1D edge-emitting cavity as a
function of the real part of the QB frequency. The refractive index is n = 2. (a) The
real parts of the frequencies, and (b) the imaginary parts. In both plots, the solid-lines
represent the numerical results, the triangles represent the second order result (Eq. (A.7)
) and the dotted lines represent the first order result (Eq.(A.3)). In Fig. A.1(a) the dotted
line is so close to the other two that it can hardly be seen.

In fact a global approximation for all km at the same external frequency k is possible

based on the observation that ς ′m = (km/k̃m) − 1 is small for all m’s when k is large (see
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Fig. A.2(a) ). We start by rewriting Eq. (A.2) as

nkma = (1 + ς ′m)Z̃m = (m+
1

2
)π − i

2
ln

n′(1 + ς ′m) + 1

n′(1 + ς ′m)− 1
, (A.8)

in which Z̃m ≡ nk̃ma and n′ ≡ Z̃m

k . Compared with our previous approach in Section 2.4,

the zeroth order expansion of Eq. (A.8) gives a complex ς ′m, which leads to a correction to

both the real and imaginary parts of the CF eigenvalues

ς
′(0)
m =

ln (n′+1)(n−1)
(n′−1)(n+1)

2iZ̃m

=

ln
(n k̃m

k
+1)(n−1)

(nk̃m
k

+1)(n−1)

i(2m+ 1)π + ln n−1
n+1

. (A.9)

It works well for large m’s as one can see in Fig. A.2. For small m’s the Z̃m is of the order

of 101 and the first order correction needs to be considered

ς
′(1)
m =

ln (n′+1)(n−1)
(n′−1)(n+1)

2iZ̃m + 2n′

n′2−1

, (A.10)

or equivalently

ς
′(1)
m =

ln (n′+1)(n−1)
(n′−1)(n+1) − 2n′

n′2−1
ς
′(0)
m

2iZ̃m

(A.11)

by expanding the denominator of Eq. (A.10). ς
′(2)
m can be obtained similarly to how we

derived ς
(2)
m in in Section 2.4

ς
′(2)
m =

ln (n′+1)(n−1)
(n′−1)(n+1) −

2n′

n′2−1
ς
′(1)
m + 2n′3

(n′2−1)2
ς
′(1)
m

2

iZ̃m

. (A.12)

The first order approximation (A.11) and second order approximation (A.12)) work

exceptionally well for the CF eigenvalues away from the “valley” of the spectrum. The m-

dependent index n′ becomes close to unity in the valley, and the small quantity ς ′m/(n′2−1)

is no longer tiny (though in most cases it is still smaller than 1) which prevents higher

order corrections from converge quickly.
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Figure A.2: (a) ς ′m ≡ km/k̃m − 1 as a function of Re[km]. ς ′m reaches its minimum at
Re [km] ∼ k ∼ Re[k̃m] and is larger on the left of the valley due to the phase shift of
Re [km] from half integer times of π to integer times of π. (b) CF eigenvalues (blue crosses)
and their approximation values: 0th order (red circles), 1st order (black squares) and 2nd
order (green triangles).
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Appendix B

Orthogonality of GRCF states in

multi-layer 1D cavities

In this appendix we prove the orthogonality of the GRCF states in the multi-layer case

shown in Fig. B.1. We choose to have 2p layers in the cavity for the convenience of labeling

the layers, but the result is independent of this choice. The gain medium is distributed

uniformly in the odd-number layers of index n1 and the wavevector is the CF frequency km;

In the even-number layers the index is n2 and the wavevector is the same as the external

k. The equation that defines the GRCF in this cavity can be written as



























(∇2 + n2
1 k

2
m)ϕm(x, ω) = 0, x2i−2 < x < x2i−1,

(∇2 + n2
2 k2)ϕm(x, ω) = 0, x2i−1 < x < x2i,

(∇2 + k2 )ϕm(x, ω) = 0, x > a,

(B.1)

in which i = 1, 2, 3, ..., p.
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Figure B.1: Schematic of a one-dimensional edge-emitting cavity with alternate layers of
refractive index n1 and n2.
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To prove the orthogonality of the GRCF states, we first consider the following quantity

(k2m − k2n)

∫ x2i−1

x2i−2

dxϕm(x, ω)ϕn(x, ω)

=

∫ x2i−1

x2i−2

dx
[

ϕm(x, ω)∇2ϕn(x, ω)− ϕm(x, ω)∇2ϕn(x, ω)
]

=

∫ x2i−1

x2i−2

dx∇ · [ϕm(x, ω)∇ϕn(x, ω)− ϕm(x, ω)∇ϕn(x, ω)]

=

[

ϕm(x, ω)
∂ϕn(x, ω)

∂x
− ϕn(x, ω)

∂ϕm(x, ω)

∂x

]x2i−1

x2i−2

. (B.2)

In the last step we used the Green’s theorem to reduce the integral to the difference of

the “cross flux” at the two edges of the gain layers. By summing over the above equations

with different i, we have an expression for the overlapping integral of ϕm and ϕn in the

gain region

(k2m − k2n)

∫

gain
dxϕm(x, ω)ϕn(x, ω)

≡ (k2m − k2n)

p
∑

i=1

∫ x2i−1

x2i−2

dxϕm(x, ω)ϕn(x, ω)

=

p
∑

i=1

[

ϕm(x, ω)
∂ϕn(x, ω)

∂x
− ϕn(x, ω)

∂ϕm(x, ω)

∂x

]x2i−1

x2i−2

=

[

ϕm(x, ω)
∂ϕn(x, ω)

∂x
− ϕn(x, ω)

∂ϕm(x, ω)

∂x

]x1

x2p

+

p
∑

i=2

[

ϕm(x, ω)
∂ϕn(x, ω)

∂x
− ϕn(x, ω)

∂ϕm(x, ω)

∂x

]x2i−1

x2i−2

= −
p
∑

i=1

[

ϕm(x, ω)
∂ϕn(x, ω)

∂x
− ϕn(x, ω)

∂ϕm(x, ω)

∂x

]x2i

x2i−1

. (B.3)

In the last but one step we removed the term [ϕm(x, ω) ∂xϕn(x, ω)−ϕn(x, ω)∂xϕm(x, ω)]x0

using the hard wall boundary condtion at x = 0, and added the term [ϕm(x, ω) ∂xϕn(x, ω)−
ϕn(x, ω)∂xϕm(x, ω)]x2p which vanishes because of the outgoing boundary condition we im-

pose at the emitting edge of the cavity. In the gain-free regions we repeating the derivation
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which leads to Eq. (B.2), and we find all the terms on the r.h.s of Eq. (B.3) vanish:

0 = (k2 − k2)

∫ x2i

x2i−1

dxϕm(x, ω)ϕn(x, ω)

=

∫ x2i

x2i−1

dx∇ · [ϕm(x, ω)∇ϕn(x, ω)− ϕm(x, ω)∇ϕn(x, ω)]

=

[

ϕm(x, ω)
∂ϕn(x, ω)

∂x
− ϕn(x, ω)

∂ϕm(x, ω)

∂x

]x2i

x2i−1

, (B.4)

Therefore, we prove that the GRCF states are orthogonal in the gain regions

∫

gain
dxn2

1 ϕm(x, ω)ϕn(x, ω) = δmn (B.5)

with the proper normalization. We remind the reader that the “cross flux” has no physical

meaning despite the similarity of its definition to the real flux. Therefore, it is conserved

in the gain-free layers (Eq. (B.4)) even in the presence of absorption (a complex n2).
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Appendix C

Spectral method

Instead of directly solving for the CF state as we did in Section 3.4, we can also solve for

its Fourier transform coefficients:

̺m(r) ≡ 1

2π

∫ 2 π

0
φ(r, θ) e−imθ. (C.1)

Substituting Eq. (C.1) into the Helmholtz equation and equating the Fourier coefficients,

we have
(

∂2

∂r2
+

1

r

∂

∂r
− m2

r2

)

̺m(r) + k2I
∑

n

σm−n(r) ̺n(r) = 0. (C.2)

σn(r) is the Fourier coefficients of the spatial dependent dielectric function ǫ(r, θ), and n

runs from −M to M where M is the absolute value of the cutoff angular momentum. We

will direct discretize this equation since we have shown that it leads to the same result of

the variational method in Section 3.4. ̺µ,m ≡ ̺m(r)| r=rµ satisfies

rµ− 1
2
̺µ−1, m + rµ+ 1

2
̺µ+1, m − 2 rµ ̺µ,m

rµ(∆r)
2 − m2

r2µ
̺µ,m + k2I

∑

n

σµ,m−n ̺µ, n = 0, (C.3)

and the boundary condition at r = R is given by Eq. (3.42), or

̺Nr+1,m = ̺Nr ,m

(

1 +
k∆rH

+′

m (kR)

H+
m(k rNr+1)− k∆rH

+′

m (kR)

)

. (C.4)
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{̺µ,m}’s are obtained by solving the eigenvalue problem

HΦI = k2IBΦI . (C.5)

We relabel the second subscript of ̺µ,m by ν and let it run from 1 to Nm ≡ 2M + 1. H is

a tri-diagonal matrix with nonzero elements on the 0 and ±Nm diagonals with























H(µ−1)Nm+ν, (µ−1)Nm+ν = 2
(∆r)2

+ m2

r2µ

−δµ,Nr

r
µ+1

2
rµ(∆r)2

(

1 + k∆rH
+′
m (kR)

H+
m(k rNr+1)−k∆rH

+′
m (kR)

)

,

H(µ−1)Nm+ν, µNm+ν = HµNm+µ, (µ−1)Nm+ν = −
r
µ+1

2
rµ(∆r)2

.

(C.6)

B is a block diagonal matrix

B =

















σ1

σ2

...

σNr

















, (C.7)

and σµ is a (2M + 1) by (2M + 1) matrix

σµ =

















σµ, 0 σµ,−1 ... σµ, 1−Nm

σµ, 1 σµ, 0 ... σµ, 2−Nm

... ... ... ...

σµ,Nm−1 σµ,Nm−2 ... σµ, 0

















. (C.8)

The eigenvectors

ΦI = {̺1, 1, ̺1, 2, ..., ̺1, Nm , ̺2, 1, ̺2, 2, ..., ̺2, Nm, ..., ̺Nr , 1, ..., ̺Nr, Nm}T (C.9)

don’t necessarily need to be orthogonal since they are not the real space CF states. If

ǫ(r, θ) is symmetric about the x-axis (e.g. limaçon and quadruple cavities), we only need

to solve for ̺m≥0(r) (Nm = M + 1) and use the parity to determine ̺m<0(r).
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Appendix D

Finding lasing frequencies above

threshold in the iterative method

In this appendix we discuss the details of how to implement of the “gauge” condition in

finding the non-trivial solutions of Eq. (2.50) above threshold. Suppose that there are Q

lasing modes at a given pump strength and we have iterated Eq. (2.50) p times to obtain

{aµ(p)} and {kµ(p)}. To find the Q kµ(p+1) we impose the “gauge” condition by solving

a set of Q equations:

0 = Im
[

aµmµ
(p + 1)

]

= Im
[

Gµ
mµ

(k1(p+ 1), k2(p+ 1), ..., kQ(p+ 1); {aµ(p)})
]

. (D.1)

aµmµ is largest CF coefficient of the µth mode, and Gµ
mµ is the r.h.s of Eq. (2.50) which

is now taken a function of {kµ(p + 1)} only; the other quantities in it, including {aµ(p)},
are treated as known quantities. We obtain aµ(p) by calculating the real parts of Gµ

m once

{kµ(p + 1)} are found. Notice the k-dependence of Gµ
mµ comes not only from the pre-

factor in Eq. (2.50) but also from the k-dependence of the CF basis {Ψµ(kµ;x), km(kµ)}.
Therefore, solving Eq. (D.1) during each iteration can be quite time consuming in the

multi-mode regime if there is no analytical expression for km(kµ) (e. g., in asymmetric

resonant cavities lasers).
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To speed up each iteration we relax the “gauge” condition by replacing Eq. (D.1) by

0 = Im
[

aµmµ
(p+ 1)

]

= Im
[

G′µ
mµ

(kµ(p+ 1); {kν 6=µ(p),aµ(p)})
]

, (D.2)

in which G′µ
mµ is treated as a function of kµ(p + 1) only. Thus the set of Q coupled

equations become separate, and it takes much less time to solve them. One can easily

check that the fixed points of Eq. (D.1) and Eq. (D.2) are the same. One can further

relax the “gauge condition” by drop the the k-dependence of the CF basis which turns

Eq. (D.2) into quadratic equation of kµ(p + 1). Once kµ(p + 1) is obtained we calculate

{Ψµ(kµ(p+ 1);x), km(kµ(p+ 1))} and use them in G′µ
m for the next iteration.
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