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Directionality and Vector Resonances of Regular
and Chaotic Dielectric Microcavities
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Dielectric microcavities/ microlasers are a key component for novel opto-electronic
devices. We model such devices as a dielectric rod and analyze the vector wave-
equation for an infinite dielectric rod with arbitrary cross-section. Analytic results
for the resonance condition and polarization properties are given for the cylinder.
With the parabolic equation method we derive the resonance condition and the
polarization properties for modes related to 2d stable periodic ray orbits. The po-
larization of hybrid emitting modes of cylindrical resonators is shown to be linear
up to a polarization critical angle and elliptical beyond this angle, which always
lies between the Brewster and the total-internal-reflection angles of the dielectric.
Arbitrary cross-sections in general give rise to non-integrable ray dynamics. We
review classical Hamiltonian dynamics and billiards and expand the theory to di-
electric billiards. Analysis of periodic ray orbit bifurcations and unstable manifolds
enables us to understand the emission directionality of differently deformed polymer
microlasers. We report new experiments on the first whispering gallery laser from a
resonator with a single reflection symmetry axis, and analyze a number of different
Gallium Nitride resonators/ lasers.
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5.9 Comparison of the Poincaré surface of section for (a) the quadrupole
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5.10 Poincaré surface of section for the quadrupole with ε = 0.18. The grey
line indicates the critical angle of incidence. The diamonds indicate
the location of the fixed points of the (now) unstable “diamond” orbit
and the squares the fixed points of the unstable rectangular orbit.
In the inset we show the trace of the monodromy (stability) matrix
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5.11 left: Surface of section of the quadrupole ARC with ε = 0.12 and index
of refraction n = 1.5. The portion of the SOS below sinχc = 1/n is
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flection, with the refracted amplitude “collected” in the far-field. The
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5.12 (a) Ray simulations of short-term dynamics for random initial condi-
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wave equation; no experimental data was taken for this shape. The
ray simulation was performed with random initial conditions exactly
as in Fig. 5.5. The numerical solutions were for resonances with kR =
50.5401− 0.0431i with Q = 2342.71 and kR = 48.7988− 0.1192i with
Q = 818.83 for ε = 0.12 and 0.18 respectively. The inset shows the
shape of the stadium; it is defined by two half circles with radius one
and a straight line segment of length 2ε. . . . . . . . . . . . . . . . . 102

5.16 Ray emission amplitude (color scale) overlaid on the surface of section
for the stadium with ε = 0.12 (a) and ε = 0.18 (b). Solid blue curve is
the unstable manifold of the periodic rectangle orbit. The green curve
is the line of constant 55◦(a) and 48◦ (b) emission direction into the
far-field. The thick black lines mark the end of the circle segments of
the boundary and coincide with discontinuities in the manifolds. . . . 102



LIST OF FIGURES xvi

6.1 Difference between the exact numerical resonances of Chapter 4 for
the TM Ez(m = 2, j) and TE Bz(m = 1, j) field. . . . . . . . . . . . . 105

6.2 Error of the approximation Eq. (6.15) vs. the radial quantum number
j in a system with m = 10, kz = 5 and n = 1.5. The black curve
indicates the difference between the resonances ko calculated for the
circle, the red curve using the approximation for the TE and TM
resonances Eq. (E.20) and Eq. (E.23). . . . . . . . . . . . . . . . . . . 106

6.3 Elastic-scattering spectra detected at 90◦ scattering angle from a tilted
fiber that is illuminated by an unfocused beam. The tilt angle is θ. A)
Both the incident and scattered light were horizontally polarized (TE-
TE). B) Blue-shift of the a, b and c resonances with θ2 dependence.
Note that the angle θ in this graph corresponds to the outside angle
α in our notation. Figures from Poon [10]. . . . . . . . . . . . . . . . 107

6.4 A) Schematic of wave-front-matching argument. Internal spiral wave
of a tilted optical fiber with respect to. B) The effective length of for
the tilted wave is 2πa cos θ, where a is the radius of the fiber. Figures
from Poon [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Reflection probability po at each collision with a circular interface ver-
sus the sine of the angle of incidence, assuming n = 1.5. A) for the
TM polarization and B) for the TE polarization. In A) we additionally
plot in blue the perturbative solution for narrow resonances Ref. [11]
with kR = 31 In the inset of B) shows the magnification of the Brew-
ster angle, where the resonance width diverges. Note, one does not
get an exact Brewster zero for the cuved case. For comparison the
Fresnel formulae for a plane interface are plotted as solid lines. . . . . 108

6.6 A) θ = 0.1, B) θ = 0.2, C) θ = 0.3, Escape probability in the cylin-
der with n = 2 vs. sinχ. (red dots) exact numerical solutions with
γ1 ∈ [98, 112], following Eq. (6.21), (black dashed) classical Fresnel
coefficient rs, (black dash dot) classical Fresnel coefficient rp, (vertical
red dashed) effective Brewster angle, (vertical black dashed) effective
critical angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7 A) Path of the first curve Γ1. B) Second path Γ2, of length L. . . . . 111
6.8 Absolute value of the eigenvalues of the R matrix (solid red and blue

lines) with n = 2 and tan θ = 0.2 vs. sinχ. The imaginary part of the
eigenvalues is also plotted in dashed. The dotted horizontal line is the
Brewster angle and the dashed the critical angle. Red indicates TM
like component and black the TM. . . . . . . . . . . . . . . . . . . . 112

6.9 Local and global coordinate system for Gaussian optics. Here a cut on
the plane of incidence. xm and ym are the local coordinates attached
to each segment. At every point of the boundary we define a global
set of coordinates in the normal n̂ and the tangent t̂ direction. . . . 114

7.1 Schematic for reflection and transmission at a plane interface. . . . . 120



LIST OF FIGURES xvii

7.2 Fresnel coefficients for total internal reflection at interface with no = 1
and n = 2.65. In red we have rp, in blue rs. (real part dashed,
imaginary solid). The curve in black is the phase shift between the
two components. The vertical dashed black line indicates the Brewster
angle at which rp = 0 and the vertical green line is the critical angle
(CA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3 Schematic for the rays traveling in a 3-d cylinder. . . . . . . . . . . . 124
7.4 Absolute value of the two eigenvalues ν1,2 of the rotated Jones matrix

(solid red and blue). Imaginary part of the eigenvalues is plotted in
dashes. The Eigenvalues become complex at the point where the two
curves meet and join. This point lies between the Brewster angle
(dashed vertical black) and the effective critical angle (solid vertical
green). In dots we plot the eigenvalues of the Λ for the R-matrix given
in Chapter 6. Calculated for tan θ = 0.2, n = 2. . . . . . . . . . . . . 125

7.5 A) Absolute value of the two eigenvalues ν1,2 of the rotated Jones ma-
trix (solid red and blue). Imaginary part of the eigenvalues is plotted
in dashes. The Eigenvalues become complex at the point where the
two curves meet and join. This point lies between the Brewster angle
(dashed vertical black) and the effective critical angle (solid vertical
green). In dots we plot the eigenvalues of the Λ for the R-matrix given
in Chapter 6. Calculated for tan θ = 0.2, n = 2. B) (blue) The sine of
the polarization critical angle PCA at which the eigenvalue of R gets
complex. (red) sin of the Brewster Angle, (black) sin of the critical
Angle, were total internal reflection occurs. . . . . . . . . . . . . . . . 127

7.6 A) , B) (blue and red solid) Ratio of the z component of the two
eigenvectors of the electric and magnetic field from the R matrix.
The black circles are the Jones eigenvectors after the transformation
Θ. For n = 2, tan θ = 0.2. The solid vertical black line is the effective
critical angle, the dashed line the effective Brewster angel. . . . . . . 129

7.7 Limiting cases close to the critical angle. A) Phase, B) Ratio of the z
component of Bz/Ez with n = 2 vs. sinχ of the with tan θ = 1.2700
(diamond), tan θ = 0.5774 (circle) and tan θ = 0.5700 (solid), the
values of θ are far above, slightly above and slightly below the critical
angle. The solid vertical black line is the critical angle for tan θ = 0.5700.130

7.8 A) Phase difference and B) Ratio (black and red solid) of the z com-
ponent of the two eigenvectors of the electric and magnetic field from
the R matrix. The circles indicate the outside compoenent of the vec-
tor, given by Eq. (7.35). For n = 2, tan θ = 0.3. The solid vertical
black line is the effective critical angle, the dashed line the effective
Brewster angel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



LIST OF FIGURES xviii

7.9 A) Phase difference , B) Ratio (green and red solid) of the z component
of the two eigenvectors of the electric and magnetic field from the R
matrix. The black circles are the exact numerical solutions following
Eq. (4.16) (m ∈ [0, 50] and γ1 < 50). For n = 2, tan θ = 0.2. The
solid vertical black line is the effective critical angle, the dashed line
the effective Brewster angel. . . . . . . . . . . . . . . . . . . . . . . 132

8.1 Traffic lights in New Haven, CT. The green LED uses InGaN. The red
and yellow LED use aluminum gallium arsenide AlGaAs. More re-
cently, aluminum indium gallium phosphide has emerged as a promis-
ing material for red, amber, and yellow LEDs. . . . . . . . . . . . . . 134

8.2 The structure of the Photolithographic Mask. . . . . . . . . . . . . . 135
8.3 The surface of section for shape D1 and its main periodic orbit. The

fix-points of the periodic orbit are (φo, sinχo) = (±1.38, 0.41), (±π, 0.66).
The line of critical angle of incidence at sinχc = 1/n = 0.377 is indi-
cated by the red horizontal line. . . . . . . . . . . . . . . . . . . . . . 136

8.4 The surface of section for shape D2 and its main periodic orbit. The
fix-points of the periodic orbit are (φo, sinχo) = (±1.28, 0.43), (±π, 0.7998).
The line of critical angle of incidence at sinχc = 1/n = 0.377 is indi-
cated by the red horizontal line. . . . . . . . . . . . . . . . . . . . . . 137

8.5 A) The surface of section for shape P1. B) Two BB orbits. C) The
main periodic orbit with the fixed-points (φo, sinχo) = (±2.33, 0.552), (0.0, 0.3854).
The line of critical angle of incidence at sinχc = 1/n = 0.377 is indi-
cated by the red horizontal line. . . . . . . . . . . . . . . . . . . . . . 137

8.6 center C) The surface of section for shape P2. A) ‘Kite’-orbit with
fix-points (φo, sinχo) = (±π, 0.584), (0.0, 0.73). B) ‘Fish’-orbit with
fix-points (φo, sinχo) = (±2.37, 0.0), (1.136, 0.3049). D) Triangular
orbit with fix-points (φo, sinχo) = (±2.34, 0.558), (0.0, 0.376). E) Cen-
ter BB orbit (φo, sinχo) = (±π/2, 0.0). The line of critical angle of
incidence at sinχc = 1/n = 0.377 is indicated by the red horizontal line.138

8.7 A) Sidewall Photo of a GaN cavity etched with CAIBE. B) Optical
microscope picture of the D2 cavity with d = 500µm. In black we
overlaid the exact shape of D2 scaled a bit smaller to see the faint
boundary of the cavity. . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.8 Setup for the Spectral Analysis . . . . . . . . . . . . . . . . . . . . . 140
8.9 Setup for the Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.10 An axicon lens generating a ring-shaped beam. The use of a converg-

ing lens of focal length f allows for the control of the thickness t of
the ring. The diameter d depends on the distance D. In the actual
setup we will add another converging lens to shorten the distance D. 142

8.11 Spectral profile for the D1 shape (A) and a hexagon (B), pumped at
different pump intensities. . . . . . . . . . . . . . . . . . . . . . . . . 143



LIST OF FIGURES xix

8.12 A) Log–log plot of the Integrated Spectra of the hexagon and D1
shape, pumped at different pump intensities. The slight difference in
the intensity lies most likely in the fact that the area of the hexagon:
(A = 0.398mm2) is slightly larger than that of D1: (A = 0.274mm2). . 143

8.13 Relative width of the boundary of shape D1 vs. far-field angle (angle
of the tangents). (red) mathematical shape; (blue), (black), (green)
width of the CCD camera image with a fixed cutoff (at 91.000) with
a shift far-field angle shift of 15◦ , 5◦ , −10◦, all normalized to one. A
clear correlation of the minima is visible and allows for fine adjustment
of the far-field angle. The 5◦ far-field shift appears to be the best fit.
Human selection of the cutoff for each image graph will get an even
better fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.14 A) wavefunction real-space plot (the outside and inside field are scaled
to the same intensity for display purpose), B) theoretical and exper-
imental far-field emission, C) experimental near-field. The numerical
mode is at kR = 29.0147− 0.009307i, with a Q = 6, 235. . . . . . . . 145

8.15 A) real-space picture of random initial conditions above the critical
line. B) far-field intensity of random initial condition (red) and far-
field for Gaussian bundle started on the periodic orbit (blue). In all
graphs 6000 initial conditions iterated for 300 times. . . . . . . . . . 145

8.16 A) wavefunction real-space plot (the outside and inside field are scaled
to the same intensity for display purpose), B) far-field emission of the
dominant stable triangular orbit with a resonance at kR = 30.1808−
0.01388i and a Q = 4, 349. . . . . . . . . . . . . . . . . . . . . . . . . 146

8.17 A) image data for the GaN ellipse with ε = 0.16. B) theoretical image
data projecting the Husimi distribution into the far-field. C) The
experimental far-field (green) and the calculated far-field (red). The
mode used is shown in Fig. 8.18. . . . . . . . . . . . . . . . . . . . . 147

8.18 A) real-space and B) phase-space projection of a resonance in the
ellipse with n = 2.65, ε = 0.16 and kR = 49.908 − 0.00597i, Q =
16, 722. We clearly see that the associated mode for the image data
is an whispering gallery type orbit. . . . . . . . . . . . . . . . . . . . 147

8.19 A) real-space and B) image of a ‘bouncing-ball’ type resonance in
the ellipse who’s main peak is in the far-field direction comparable to
Fig. 8.21 with n = 2.65, ε = 0.20 and kR = 49.945−0.1034i, Q = 966.
The image data is very different from that in Fig. 8.21. . . . . . . . . 147

8.20 A) image data for the GaN ellipse with ε = 0.20. B) theoretical image
data projecting the Husimi distribution into the far-field. C) The
experimental far-field (green) and the calculated far-field (red). The
mode used is shown in Fig. 8.21. . . . . . . . . . . . . . . . . . . . . 148

8.21 A) real-space and B) phase-space projection of a resonance in the
ellipse with n = 2.65, ε = 0.20 and kR = 49.659−0.05197i, Q = 1, 911.
The associated mode for the image data is of whispering gallery type. 148



LIST OF FIGURES xx

8.22 (a) Experimental data showing in color scale the CCD images (con-
verted to sidewall angle φ) as a function of camera angle θ. Three
bright spots are observed on the boundary for camera angles in the
1st quadrant, at φ ≈ 17◦, 162◦,−5◦. (b) Calculated image field corre-
sponding to the scarred mode shown in Fig. 8.25. (c) Calculated and
experimental far-field patterns obtained by integrating over φ for each
θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.23 The SOS of the quadrupolar billiard at a deformation of ε = 0.12.
The red vertical lines indicate the values of φ at which the bright
spots in the image-field are observed. On the right is a schematic
indicating in red the experimental bright spots in the real space. The
location of these spots is strongly inconsistent with the bowtie orbit at
this deformation but is consistent with modes based the two triangle
orbits shown. These orbits would have the two “dark” bounce points
(indicated in black) that are well above total internal reflection for the
index of n = 2.65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.24 The variation of the trace of the monodromy matrix with respect to
the quadrupolar deformation ε. The black circle indicates the exper-
imental value ε = 0.12, at which TrM = −5.27. The two dashed
lines delimit the regime −2 < TrM < 2 at which the triangular orbit
is stable. In the inset is shown real space simulation of a ray orbit
started with initial conditions which are away from the triangle fixed
point at least by δφ = 10−3, δ sinχ = 10−4, followed for 20 bounces. . 150

8.25 (a) Real-space false color plot of the modulus of the electric field for
a calculated quasi-bound state of nkR0 ≈ 129 (n is the index of re-
fraction, k is the real part of the resonant wave-vector) and ε = 0.12
which is scarred by the triangular periodic orbits shown in the inset
(M. V. Berry has termed this the “Scar of David”). The four points
of low incidence angle which should emit strongly are indicated. (b)
Husimi (phase-space distribution) for the same mode projected onto
the surface of section of the resonator. The x-axis is φW and the y-axis
is sinχ, the angle of incidence at the boundary. The surface of section
for the corresponding ray dynamics is shown in black, indicating that
there are no stable islands (orbits) near the high intensity points for
this mode. Instead the high intensity points coincide well with the
bounce points of the unstable triangular orbits (triangles). The black
line denotes sinχc = 1/n for GaN; the triangle orbits are just above
this line and would be strongly confined whereas the stable bowtie or-
bits (bowtie symbols) are well below and would not be favored under
uniform pumping conditions. . . . . . . . . . . . . . . . . . . . . . . . 151



LIST OF FIGURES xxi

8.26 A) Schematics showing the three emitted “beams” detected in the
experiment (solid lines) and illustrates their strong deviation from
Snell’s law (dashed tangent lines). B) Ray-dynamical simulation using
the intensity of the Husimi distribution in Fig. 8.25 as intensity for a
bundle of rays in the SOS. The ray intensities are then projected into
real-space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.27 A) Far-field emission data for quadrupole-hexadecapole for deforma-
tions of ε = 0.12 (blue), ε = 0.16 (red), ε = 0.18 (green), and ε = 0.2
(black). B) trace of the monodromy matrix vs. deformation for the
triangular orbit in the quadrupole-hexadecapole. For |TrM | < 2 the
orbit is stable, otherwise unstable, see Section 3.2.5. . . . . . . . . . . 153

8.28 (a) A numerically calculated mode for a quadrupole-hexadecapolar
deformation of ε = 0.12 and n = 2.65. (b) Husimi projection of
the mode in (a). Clearly, the projection is localized on a reflection
symmetric pair of stable triangular periodic orbits. (c) The calculated
far-field emission pattern. . . . . . . . . . . . . . . . . . . . . . . . . 153

8.29 (a) A numerically calculated mode for a quadrupole-hexadecapolar
deformation of ε = 0.16 and n = 2.65. (b) Husimi projection of the
mode in (a). The projection is localized on a triangular orbit of the
same geometry as the one in Fig. 8.29, but at this deformation the
motion in its vicinity is unstable, leading to chaotic motion. The
resulting mode is hence a scarred state. (c) The calculated far-field
emission pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.1 Both Bouncing Ball orbits in the quadrupole of ε = 0.08. The solid
orbit is the stable two-bounce, the dashed the unstable orbits. . . . . 157

A.2 Bowtie & Bird orbits born from the period doubling bifurcation of the
stable two bounce orbit at ε = 1/9. Here shown at ε = 0.15. Note
for the Bird that there are two separate orbits but the same number
of fixed-points in the SOS. For the Bowtie we see that χ = π

4
− φ

2
and

Ψ = 3/4π + φ/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.3 Fish (stable) and the Hexagram (unstable) orbits born from the bi-

furcation of the stable two-bounce orbit at ε ≈ 0.0588. Here shown at
ε = 0.08. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.4 Triangular PO in quadrupole with ε = 0.07. The left PO is stable
‘Star of David’, the right unstable. We note for the ‘Star of David’:
Ψ = π/2 + χ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.5 Diamond and Rectangular PO in quadrupole with ε = 0.08. The left
PO is stable, the right unstable. . . . . . . . . . . . . . . . . . . . . 161

A.6 spiral of deformation ε = 0.10 . . . . . . . . . . . . . . . . . . . . . . 163



LIST OF FIGURES xxii

A.7 sinχ vs. the number of iterations in the spiral with ε = 0.07 for an
initial sinχ = −0.8682 and φ = 2π−0.008. The constant curvature of
the spiral results into a monotonic increase in the angle of incidence,
so does a jump over the notch. A reflection at the notch results into
a change in the rotational sense, note the refection point at the notch. 163

B.1 Ray-picture for far-field. . . . . . . . . . . . . . . . . . . . . . . . . . 165

F.1 Symmetric Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
F.2 Nodal appearance in the wavefunction for the four different symmetries.175



List of Tables

3.1 The six bifurcations types. . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Resonances in the cylinder with n = 2, θ = 0.1. We compare the
resonances calculated by zero finding of the Bessel functions, the S-
Matrix method and the EBK method. The agreement is reasonably
well. For the S-matrix calculation it is to be noted that we calculated
and interpolated around kR = 100, thus the values further away from
100 are less exact. We have to note that as the EBK quantization is a
transcendental equation, which we did not attempt to solve. We used
the results from the wave numerics to calculate the sinχ using this we
checked the equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Quantization for the bouncing ball orbit in the hexadecapole with
ε = 0.07 and θ = 0.2. L = 3.71680, ϕ1 = −1.53399, ϕ2 = +1.53399 . . 118

A.1 Positions of the two triangular orbits in the quadrupole with respect
to deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.2 Positions of the two period-4 orbits in the quadrupole with respect to
deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

E.1 First twenty resonances for the TM and TE fields, given in kR. The
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Chapter 1

Introduction

1.1 Overview

Resonators are the basis for music and speech as well as a key component in all
lasers. In this thesis we will analyze the resonances of dielectric cavities used in
microlasers. These lasers have a size of order 100 microns, roughly the diameter
of a human hair. We focus on a type of microresonator of particular theoretical
interest, known as an Asymmetric Resonant Cavity (ARC) [12, 13, 14, 15, 16]. ARC
lasers have been shown to be among the most powerful designs for microlasers, much
more powerful than the whispering gallery micro-disk lasers which preceded them, as
well as providing for the first time directional emission from a resonator which uses
total internal reflection to provide high enough Q-values. Therefore it is hoped that
ARC-based optical devices will find application in the opto-electronics industry for
telecommunications, information processing or sensing. At least one device related
to the ARC, a GaN blue/ UV light source employing a spiral resonator design [17]
is being actively developed at Yale and at PARC as an amplifier/ laser.

1.2 Conventional microlasers

The widest and most used macro-optical resonator is of the Fabry-Perot type, Fig. 1.1
A). Two metal coated mirrors opposite from each other at a distance l confine a
light field with the reflectivity of one mirror slightly less than that of the other.
All standard lasers and amplifiers are based on this resonator, for modern opto-
electronic devices it is however important to reduce the size of resonators. Metal
coated reflectors are very difficult to produce at micron size scales. One way to
get good reflectivity at a micro scale is the Vertical Cavity Surface Emitting Lasers
VCSEL [18] (See Fig. 1.1 B), which consists of multiple layers of different dielectric
material to create a Bragg reflector at each side. The emission of the VCSEL is
perpendicular to the plane. VCSELs have already found their commercial market
in bar-code scanners and gigabit optical fiber communication systems. If we want
to emit in plane, the standard approach is the edge emitter, see Fig. 1.1 C). But as

1
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Figure 1.1: A) Schematic of Fabry-Perot resonator. B) Scanning electron micrograph
picture of a VCSEL [4]. C) Edge emitting laser from the National Institute of
Physics [5].

the dielectric interface at normal incidence is not a good reflector, the resonances are
low Q. Thus the gain region has to be relatively long, which excludes the possibility
for a true micro-resonator. This leads to the concept of the microdisk laser, see

A) B)

Figure 1.2: A) Edge emitting laser from the National Institute of Physics [5]. B) A
field of microdisk lasers by Levi [6]. B) Schematic of whispering Gallery.

Fig. 1.2 A). In a circular dielectric, the angle of incidence χ of a ray is conserved
and by employing near total internal reflection (TIR) the light can be trapped in
a micron scale region. However, studies of the exact solutions for the dielectric
disk [11], sphere [19] and for the cylinder (Section 6.3.1) show that TIR is only perfect
for an infinite plane interface. This results in evanescent leakage due to curvature
effects of the boundary, similar to tunneling in quantum mechanics. Resonators
using this effect are the so-called whispering gallery type resonators, named after
an acoustical analog observed and studied by Lord Rayleigh [20, 21]. Whispering
gallery type resonances are strongly localized at the boundary, as are the acoustical
waves studied by Lord Rayleigh, that traveled along the smooth stone surface of
the St. Paul’s Cathedral in London (see Fig. 1.3). A multitude of resonators have
been studied that operate on these modes, e.g. droplets [22, 23], disks [24, 25, 26],
and rings [27]. Some of them have been shown to have Q-values as high as 1010,
although in practical semiconductor lasers the values are much smaller (in the 103
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range), apparently controlled by surface properties. Their use stretches from the
study of cavity QED effects [28] to channel add-drop filters [29]. Due to the inherent
symmetry of circle these resonator types do not show any preferred directionality
and thus show a strong susceptibility to surface roughness and the environment.

A) B)

Figure 1.3: A) St. Paul’s Cathedral in London on a 1754 painting from Canaletto
B) Whispering Gallery in St. Paul’s Cathedral in London (curtesy of Richard Sea-
man [7]).

Different approaches for achieving directionality have been proposed: an extrinsic
approach by external coupling and an intrinsic by breaking the symmetry of the
shape. Little in Ref. [29] used the extrinsic approach to create a microring resonator
channel dropping filter by placing two waveguides close to the resonator. As the
evanescent field decays exponentially the fabrication of these devices is extremely
sensitive to the etching techniques as both waveguides need to be placed at exactly
the same distance. Levi and coworkers followed the intrinsic approach by breaking
the symmetry of the microdisk by adding a bump [30] to the cavity. Instead of
adding Chu et al. [31] cut a chunk out of the cavity, producing a ‘pac-man’ like
shape. With these methods directionality is achieved but reproduction of the same
shape and prediction of the emission properties is difficult.

1.3 Asymmetric Resonant Cavities

The concept of the ARC developed as an extension of the concept of the whisper-
ing gallery microdisk lasers. A drawback of the original circular disk-shaped lasers
was the isotropic emission from such modes in the absence of additional guiding
elements, and this motivated the ARC concept. The key idea was to deform the
cavity from circular symmetry in order to induce intrinsically directional emission
from the (deformed) WG modes. The deformations were to be smooth so that ray
optical concepts could be employed to predict and understand the resulting emis-
sion patterns. The particular theoretical interest of these resonators is that the ray
dynamics in such a shape is complex and partially chaotic for generic deformations;
the effect of shape on ARC laser emission properties is a main theme of this thesis.
A number of ARC-based lasers have been fabricated and tested using a variety of
gain media, starting with micro-droplets and micro-jets [22, 23], GaAs [32] and GaN
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diode lasers [3], InGaAs and GaAs quantum cascade lasers [8], and polymer lasers [2].
The polymer and GaN lasers have been studied using optical pumping here at Yale;
a set of measurements on a space-capsule shaped ARC are described in Chapter 8 of
this thesis.

1.4 Passive vs. active cavities

A method often used to describe the laser cavity is to consider simply the resonances
of a passive dielectric cavity. This will neglects effects like mode pulling and locking
as well as mode competition effects, which thus makes the lasing mode difficult
to predict in advance. Nonetheless the method is found to be quite adequate for
explaining and even predicting the directionality of lasing modes in low-index ARCs,
as we shall see below. All of the thesis is devoted to the study of passive cavities and
finding their linear resonances, later we will introduce numerical and semiclassical
techniques for finding the resonances. One can imagine probing the dielectric cavity
in two ways:

1) Scattering experiment: An incoming wave from infinity is scattered off the
cavity and collected in the far-field. Varying the frequency of the incoming wave
we can probe the resonances. Resonances refer to the frequencies ω = ck (speed of
light c, and the wave-vector k = 2π/λ in vacuum) at which the light gets confined in
the cavity for a long time. The lifetime τ is defined by the inverse of the resonance
width. An important experimental quantity is the quality factor Q which relates to
the lifetime as Q = τω. A high Q thus denotes a very sharp resonance.

2) Emission experiment: Here we have Sommerfeld boundary conditions with
no incoming wave from infinity. This setup is the typical description used for laser
resonances and used throughout this thesis. In an emission experiment, the cavity
is excited and the emission is recorded in the far-field. A schematic of the setup is
shown in Fig. 1.4. Important for a good understanding of the lasing resonance is the
possibility in this setup to obtain an image of the emitting boundary. Both the far-
field intensity variation and the position on the boundary from which the far-field
radiation originated can be obtained. This setup was first introduced by Nathan
Rex and was used to explore the GaN and Polymer cavities in diameter ranges of
10µm–50µm discussed in this thesis.1 The study of the polymer lasers revealed that
a theoretical description of such lasers introduced by Nöckel and Stone [14] had to
be revised [2]; the results are discussed in Chapter 5. In this thesis, we will use the
above described experimental setup to obtain experimental data for a space-capsule
shaped GaN cavity. This experiment and the theoretical discussion are presented in
Chapter 8.

The resonances of the passive cavity can be found from Maxwell equations with
an index profile independent of the field strength. For the case of a uniform dielec-
tric, assuming harmonic behavior of the fields these equations reduce to Helmholtz

1The emission for the GaN is at a wavelength of 404nm in the ultraviolet, pumped at 355nm
and for the polymer at 612nm visible orange-red light, pumped with 532mn (green light).
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Figure 1.4: Standard experimental setup. The cavity gets pumped with a pump-
beam. Emission is collected through an imaging lens onto a CCD camera for different
fafield angles θ. Details are given in Chapter 8

equation
(
∇2 + γ2

){E(r)
B(r)

}
= 0, with γ2 = n2(r)k2 − k2

z (1.1)

where n(r) is the index of refraction and k the wavenumber and kz the wavenumber
in the z-direction (throughout this thesis we make the approximation of a dielectric
rod or pillar which is infinite in the z-direction). The reduced wavenumber γ is
related to the frequency by ωj = cRe [γ] and the speed of light c. This is the central
equation of this thesis (and for studies ranging from seismic waves trying to predict
volcanos, to the search for U-boats, to quantum mechanics). The equation requires
a set of suitable boundary conditions, which for a general dielectric geometry mix
the electric E(r) and magnetic B(r) field components.

At a given k, kz the solutions to this equation can in general be expanded in an
expansion of incoming waves ψ<µ (r) and outgoing waves ψ>µ (r). To solve the equation
an additional condition in the far-field needs to be considered. This condition at
infinity relates to the two different experiments. For the scattering experiment, an
incoming wave ψ<µ (r) is given, for the emission experiment no incoming wave ψ<µ (r)
exists, only outgoing waves. These so called Sommerfeld boundary conditions require
the Ansatz:

Ψj(r) ∼
∑

ν

γν(γj)ψ
+
ν (γj; r) |r| → ∞. (1.2)

The possible values of γj have to be complex in this equation, coming from the fact
that the energy for the outgoing waves needs to be supplied by the imaginary part
of γ. These resonances occur at discrete complex frequencies and are called quasi-
normal modes and relate to the mode frequency by ωj = cRe [γ] and the lifetime
τj = 2/cIm [γ] and thus the Q value Q = −2Re [γ] /Im [γ]. Here we can see a first
simple connection to the lasing problem, as we can imagine that the pump process
will provide us with the energy necessary to radiate. We will now review various
approaches to finding these resonances.
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1.4.1 Numerical approaches to resonances

Various approaches for calculating resonances of dielectric bodies exist. Simple ge-
ometries like the circle can be solved straight-forwardly; in Chapter 2 of this thesis
we will generalize these results to the vector solutions of the cylinder. For small per-
turbations of the circle Lee [33] and Lai [34] used a perturbative approach. General
Finite Element methods [35, 36] are used and lattice methods (finite-differences) can
be used. These methods though very useful for closed resonators but are difficult
to use in the open, dielectric case, where the area included in the calculations needs
to be greatly expanded. A boundary matching approach was used by Nöckel [11].
Boundary Integral Methods [37] have emerged in the 1950s and where first introduced
to the quantum chaos community by Berry [38]. For the dielectric case, boundary
integral methods where first applied by Wiersig [39]. These methods are very flexible
but involve a relatively high computational effort.

For smoothly deformed cavities which are not too far from the circle methods
based on Bessel function expansions are applicable and convenient, as well as being
helpful for physical interpretation. A powerful and fast approach of this type is
a method based on finding the change of eigenvalues of a generalized eigenvalue
problem and interpolating them to quantization; this method was used by Türeci
and Schwefel [1], in Chapter 4 we present this method and generalize it for three
dimensional resonators. This method is very efficient for finding a large number of
resonances, but fails for too large deformations from the circle and too high values
of kR (as do all the numerical methods). The method is particularly helpful for
semiclassical interpretation of solutions as in this case it is often unnecessary to
quantize the solutions [40, 1].

We will now consider a classical or semiclassical approach to the resonances of
the microcavities.

1.4.2 Semiclassical methods

The semiclassical (or EBK, WKB, short-wavelength) limit, is the limit where a ray
description is possible. As numerical solutions of the wave equation do not always re-
veal the physical picture and are computationally very expensive in the semiclassical
regime, ray optical approaches have been shown to be very useful [14, 2]. Although
direct ray tracing is often used in optics, it is in general not the right approach for
microcavities, as general deformed shape will almost always exhibit chaotic dynam-
ics. In this case most ray-tracing algorithms fail, and in any event do not give the
phase space information which is most useful.

Reflection of rays at the boundary that satisfy the TIR condition follow the
same laws as point mass with specular reflection. Here, we can utilize results of
the non-linear dynamics community and their study of billiards. Billiards are 2d
boundaries generating specular reflection of a point mass confined inside and moving
ballistically. (The name is due to the obvious analogy to the billiard table [41, 42].)
The important difference between dielectric billiards and classical billiards is the
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Figure 1.5: Chaotic behavior in a quadrupole billiard (see Eq. 1.3. A) two initial
conditions have the same direction but deviate in position by 10−13 radians. B)
after 70 iterations they have uncorrelated in both position and momentum, hence all
information is lost. This is a mixed dynamical system and not all initial conditions for
this shape would be uncorrelated, assuming an initial uncertainty of 10−13 radians.
C) Log plot shows the exponential increase of the error. Note that it saturates, as
the angular position is periodic in π.

possibility for light to refract out. The circular billiard has the property that it
conserves the angle of incidence, which is proportional to the angular momentum.
This additional constant of motion results in the integrability of the shape. Such a
system is not very sensitivity to the initial conditions, contrary to a general system
that is chaotic. Chaotic systems are exponentially sensitive to initial conditions,
as shown for a generic billiard in Fig. 1.5. The rise of chaos by smooth general
perturbations of an integrable shape has been studied by Komogorov–Arnol’d–Moser
(KAM) [43] and is reviewed in Chapter 3. For the case of a smooth billiard system
Lazutkin has refined the theory noting that the perturbation strength is not uniform
in such a billiard [44] (see Section 3.3.6). The basic results of the theories is that small
deformations do not break integrability everywhere, and that the chaotic component
of phase space increases gradually. We shall see in Chapter 3 how chaos arises and
how the structures that remain can explain emission directionality in microlasers.
A further tool used is the Poincaré surface of section, SOS. For a 2-d dynamical
system, the phase space is four dimensional. Conservation of energy reduces the
dimension by one. A stroboscopic projection of the 3d motion is given by the SOS.
The SOS consists of the set of points (φi, sinχi) taken by recording the point on the
boundary in polar coordinates φi where a reflection occurs and the sine of the angle
of incidence sinχi. This representation has all the information of the dynamics, and
has a stunning beauty, see Fig. 1.6. In this plot a trajectory for which an additional
constant exists will lie on a 1-d curve. If not, it will cover a 2-d region densely.

A model system for a general billiard geometry is the quadrupole billiard stud-
ied throughout the thesis both theoretically and experimentally (see Fig. 1.5); its
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Figure 1.6: A) Schematic for the coordinates in the cavity. C) Surface of Section
for the quadrupole at deformation ε = 0.09 for 30 different trajectories iterated for
600 reflections. B) a stable period-6 orbits, indicating an island in the SOS; D) a
whispering gallery type orbit, well localized around a particular sinχ in the SOS; E)
a chaotic trajectory, filling a 2-d area in the SOS.
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Figure 1.7: A) Surface of Section for the ellipse at deformation ε = 0.072 for 30
different trajectories iterated for 600 reflections. B) WG type orbit; C) Bouncing
ball type orbit.
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boundary shape is given by

r(φ) = ro(1 + ε cos 2φ). (1.3)

In order to take the leakiness of dielectric billiards into account we have to alter the
billiard dynamics to include the possibility of refractive escape. The critical angle
sinχc at which TIR breaks down can be plotted as a straight line onto the SOS,
Fig. 1.8. The region above the critical angle is TIR, while below it the ray may
refract out with a probability given by the Fresnel coefficients. This picture was
first introduced by Nöckel and Stone [14]. In such a simulation the ray is given
an amplitude and, using Fresnel’s law, at every reflection the output is taken into
account, displayed as the diameter and color change of a set of initial conditions in
Fig. 1.8.

A completely different phase space structures is found for the ellipse, Fig. 1.7.
The ellipse has an additional constant of motion (see Chapter 3) and therefore every
trajectory lies on a one dimensional invariant curve in the SOS. Only two type of
orbits are possible, the WG type (Fig. 1.7 B) and the bouncing ball type (Fig. 1.7
C).

For general ray dynamical simulations, the initial conditions of the rays are im-
portant, and an adiabatic theory [14] was devised to represent WG resonances which
is discussed in the next section.

Figure 1.8: Schematic of Ray escape in a dielectric in the SOS. The shaded area
marks the region below the critical angle, i.e. light will get refracted out. Starting
with the right red dot we iterate to the far left side, both are total internally reflected,
at the green dot we emit and continue with the smaller red dot.

1.4.3 Adiabaticity in low index material

To understand the effect of small but non-perturbative deformations from the cir-
cle/sphere on output directionality Nöckel and Stone devised an adiabatic theory [14,
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45]. It was argued that the flow in the SOS of a smoothly deformed shape would fol-
low for some time an adiabatic curve similar to the invariant curves of the ellipse. On
a short time scale the rays would follow this adiabatic curve and only slowly diffuse
into the lower regions of the phase-space. From this perspective ray-dynamical simu-
lations were run by launching rays initially localized on an adiabatic curve and then
propagating them into the far-field. This theory predicted directionality in agree-
ment with numerical and experimental measurements, e.g. of deformed droplets and
dye jets [46, 47]. Further it was proposed that this directionality would change dra-
matically if regular structures in the SOS would disrupt the adiabatic curves. The
effect was termed dynamical eclipsing and is shown in Fig. 1.9. In this thesis we will
analyze experimental data showing that the Nöckel–Stone prediction of directional-
ity does break down for large deformation, where no regular structures persist [2].
The theory needs to be revised. We were able to show that in this regime it is not
the regular structures that regulate the directionality, but rather the manifolds of
the unstable fixed points, (See Chapter 5). In the low-index material experiments
no spectral information was obtained and thus a linking to specific periodic orbits
was not possible; such linkage was made in semiconductor experiments (see below).
Experiments on low-index material were done on a number of different geometries
and materials: polymers with n ∼ 1.5 − 2 [48, 49, 17, 2], fused silica with n ∼ 1.5
Refs [50, 51] and liquid droplets Refs [52, 53, 23, 54, 55, 56]. For these experiments
the ray-dynamical approach worked very well.

1.4.4 High index materials

Work on higher index materials like the InGaAs quantum cascade micro lasers [8]
with an index of n = 3.3 and GaN micro cavities [3] with an index of 2.65 show dif-
ferent behavior from the low index material. Spurred on by the success of microdisk
resonators, and the directionality in the droplet experiments, Gmachl et al. [8] stud-
ied deformations of a flattened quadrupole shape. They found a strong increase in
directional power output between circular laser and 20% deformed lasers of identical
design. This sudden increase in output power combined with the spectral informa-
tion could be linked to a regular structure in the SOS of the geometry. It turned out
to be the stable period-4 bow-tie orbit in the quadrupole, see inset Fig. 1.10 B). The
sudden onset of directionality was explained by the fact that the orbit gets born at
the period doubling bifurcation of the stable two bounce orbit. Below a deformation
of 14% the periodic orbit is too far below the critical line to sustain enough gain.
At 15% deformation the angle of incidence of the bowtie is sinχ1 = 0.30 which is
right at the critical line sinχc = 1/n = 1/3.3 = 0.30. For the 16% deformation
sinχ1 = 0.32 the bow-tie is above the critical line and has enough gain for the lasing
transition.

Another material studied was Gallium Nitride (GaN). The interest in GaN is
based on its emission frequency which is in the blue to UV. In the GaN experiment
strong directionality was also observed [3]. The image data was analyzed and emis-
sion from a bow-tie orbit could be ruled out. This time a triangular orbit, as shown
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Figure 1.9: A) Emission directionality of the ellipse. B) Emission far-field for the
quadrupole. Green Experimental data, blue ray-dynamical simulation. C) False color
representation of the electric field intensity of a whispering gallery resonance of an
ellipse at n = 1.49 shows generic emission pattern from points of highest curvature
in the tangent direction shown. D) False color representation of the electric field
intensity of a resonance of a quadrupole at n = 1.49.

in Fig. 1.11, gave rise to the emission. The surprising aspect of this finding was that
the triangular orbit is unstable. Quantum localization on an unstable periodic orbits
is known as a scarring in the quantum chaos community [57]. A classical ray would
move away from such an orbit very rapidly.

Ray-dynamic tools need to be adjusted for high index materials as the adiabatic
approximation breaks down, due to the fact that much more light is TIR. Different
ray-dynamics methods can be used, where the localization of the rays is not on an
adiabatic curve but on other structures of the SOS [3]. In this context, an important
tool to correlate wavefunctions to classical structures in the phase space is the Husimi
distribution [58] a smoothed Wigner projection of the wavefunction into the phase
space, see Section 4.10.

A further GaN shape was studied, the hexadecapole [59]. Here it was possible to
link the resonant mode at the lower deformations to a stable triangular orbit, and
to follow it through its pitchfork-bifurcation into a scarred mode, see Section 8.6.4.
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A) B)

Figure 1.10: A) Scanning electron micrographs of the top and side-view of the 16%
deformed cylindrical quantum cascade micro-lasers. B) Angular dependence of the
emission intensity for deformations ε = 0 (triangles), ε = 0.14 (open circles), ε = 0.16
(filled circles). The right inset shows the bowtie orbit at 16% and the left inset shows
the logarithmic plot of the measured power spectrum. The free-spectral range of the
peaks is found to agree with the calculated bowtie free spectral range (Following
Ref. [8]).

A) B)

Figure 1.11: A) Experimental and theoretical far-field for a resonance in the
quadrupole. B) Realspace plot of a triangular mode in the quadrupole. Following
Ref. [3].



CHAPTER 1. INTRODUCTION 13

1.4.5 Three dimensional ARCs

So far all ARC experiments where analyzed with a scalar wave theory, but the real
world and all experiments are on 3d structures, cylindrical, spherical or arbitrary.
The theoretical considerations so far have only been based on a two dimensional
cross section, which is adequate under circumstances to be discussed below. With this
limitation the polarization degree of freedom of light is treated in an essentially trivial
manner. This thesis will change that! The study of the polarization of resonances

PSfrag replacements I

x
yz

Figure 1.12: Schematic for the rays traveling in a 3-d cylinder.

is major part of this thesis. In an infinite dielectric rod of arbitrary cross-section,
the solutions to the vector Helmholtz equation are fully determined by only two field
components, often chosen to be Ez and Bz. They are then mixed via the boundary
conditions. We can relate the wavevector along the z axis, kz to the z-momentum of
a ray spiraling up in Fig. 1.12, by tan θ = kz/

√
n2k2 − k2

z . We will show below that
the general resonance condition in the cylinder can be written as

n2(1− n2)2m2 sin2 θ = GTE ·GTM ,

where GTE = 0 and GTM = 0 define the resonance conditions for the separable
TE and TM modes in the θ = 0 case. In the general case polarization considering
simple TM and TE modes don’t exist and so-called Hybrid polarizations are formed.
The literature mainly deals with the lowest order modes of the cylinder in this case.
These modes are the relevant modes for fiber optics telecommunication and have
been widely studied [60, 61]. Especially for single mode fibers the lowest mode is the
only allowed mode, due to the diameter specification of the fiber. In cladded fibers
the small index mismatch results effectively into rays with a very shallow angle of
incidence. Here we will deal with a much more general class of “leaky” spiral modes
which could be observed in elastic scattering experiments such as those of Poon et
al. [10].

For the cylinder we will write down the Einstein-Brillouin-Keller (EBK) quan-
tization conditions and find a polarization critical angle at which the resonance is
shifted by a generalized Fresnel phase. This generalized Fresnel factor can also be
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found via a polarization ray-tracing method, using a Jones matrix approach. Exper-
iments done by Poon [10] showed a blue-shift in the resonances observed on a tilted
fiber; this blue-shift is explained in Chapter 6.

For a smoothly deformed cylinder we are able to project the ray-dynamics onto a
2-d cross-section with a constant momentum along the z axis. We are thus still able
to use the SOS to analyze the 3d system, noting that the general incidence angle η
will be shifted due to a finite θ by

cos η = cosχ cos θ, (1.4)

where χ is the angle of incidence in the 2-d plane. With this the critical angle gets
shifted and thus modes are more strongly confined with a finite θ.

1.4.6 Deformed cylinders

No prior work has been done on deformed three dimensional cylinders. Resonances
in these structures with a projected motion that is stable are found via a Gaussian
optics approach. Their polarization effects are studied and discussed in Chapter 7.

1.5 Brief survey of chapters

In Chapter 2 we discuss the wave equation in the 3d geometry. The boundary
conditions on the fields are derived for the symmetry of an infinite rod of arbitrary
cross-section, and we derive with the eikonal method Snell’s and Fresnel’s law at a
semi-infinite dielectric boundary.

In Chapter 3 we discuss the ray-dynamics in deformed billiards and make the
connection to ray-dynamics in dielectric media. We will first go over the necessary
Hamiltonian dynamics, discuss the road to chaos via the KAM theory and understand
bifurcations. The maps of the circle, ellipse and quadrupole are studied. For the
latter we provide a survey of its fixed-points. The connection to the dielectric billiard
is made via the Poincaré surface of section and we introduce different methods for
ray-simulations and relate them to experiments.

In Chapter 4 we discuss the resonance condition in three dimensions, and derive
the quasi-bound resonances for the cylinder. For a general deformed geometry we
study the eigenvalues and describe a new algorithm for finding the resonances. We
introduce the Husimi projection, a projection of wave-solutions into the SOS, to
correlate wave solutions with classical structures in the phase space. Finally we
derive the polarization of the far-field radiation.

In Chapter 5 we discuss an experiment on elliptic, quadrupolar and hexadecapolar
shaped lasing polymers. The adiabatic ray model of Nöckel and Stone and dynamical
eclipsing is reviewed. The failure of the model to reproduce the experimental data is
shown and a new model based on the unstable manifolds of short periodic orbits is
introduced. With this model we are able to interpret the data and make a prediction
about directional emission from a completely chaotic shape, the stadium.
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In Chapter 6 we discuss the resonance conditions of the three dimensional wave
equation in the above barrier regime. We relate the resonance width to the classical
Fresnel formula and calculate the resonance condition of the cylinder with the help
of the EBK method. For dielectric rods with an arbitrary cross-section, we derive
the quantization condition for classical structures, that have stable projections in the
plane, based on the Gaussian optics approach.

In Chapter 7 we derive a method for finding the polarization states of resonances
in the cylinder using the Jones algebra of spiraling rays. We then study and interpret
the eigenpolarization conditions for the dielectric cylinder and compare to exact
numerical results.

In Chapter 8 we describe the experimental setup for micro laser experiments.
Experimental data for a space-capsule shaped GaN laser is presented and analyzed
theoretically. The extreme directionality shift in experimental data for different
deformations of the ellipse is explained. The first observation of lasing from a scarred
orbit in GaN is reviewed and lasing of a resonance located around a period orbit in
the hexadecapole is observed as the orbit becomes unstable.

In Chapter 9 we summarize the thesis and mention interesting open problems.



Chapter 2

The Wave-equation for 3d

dielectric structures

2.1 Introduction

As noted in Chapter 1 the focus of this thesis is to understand the emission char-
acteristics of micro-resonators by interpreting the resonances of dielectric cavities
using semiclassical methods. We will set up the connection between the partially
chaotic ray-dynamics in micro cavities to the wave solutions in the next chapter.
In this chapter, we will develop the vector wave equation and derive the nessesary
boundary conditions. The majority of the microcavity experiments analyzed in this
thesis are performed on dielectric structures of cylindrical geometry, with the z-axis
pointing along the cylinder axis. Two cases will be distinguished: 1) the solutions
of the vector wave equation have zero axial momentum i.e., kz = 0. In this case,
the vector equations reduces to the scalar Helmholtz equation and the solutions are
the standard 2-d TM and TE cases known from elementary electro-magnetism. The
majority of past work on microcavities has considered only this case. 2) The so-
lutions have nonzero momentum kz 6= 0. In this case the vector equations do not
separate and a simple eigenpolarization does not exist. Below we will derive from
Maxwell’s equation the vector wave equation for the geometry of an infinite rod with
arbitrary cross-section and show that all the field information is contained in two
scalar components. Within this formalism, the generalized Snell’s and Fresnel’s laws
will be derived by the application of the Eikonal method.

2.2 Wave equation for an infinite dielectric rod

In this section we will derive the vector wave equation for the electromagnetic field
in an infinitely long dielectric rod of arbitrary cross-section. The general Maxwell’s

16
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equations can be written as

∇×E +
∂

∂t
B = 0 ∇ ·D = 0 (2.1)

∇×H − ∂

∂t
D = 0 ∇ ·B = 0 (2.2)

Let’s assume solutions have harmonic time dependence e−iωt.1 For an isotropic linear
medium with D = εE and B = µH , these equations reduce to

∇×E − iωB = 0 ∇ · εE = 0 (2.3)

∇×B + iωµεE = 0 ∇ ·B = 0. (2.4)

Combining the two curl equations for a uniform dielectric with index of refraction
n2 = µε and wave vector ck = ω (in the following we choose c = 1) we obtain the
general vector Helmholtz equation

(
∇2 + n2k2

){E(x, y, z)
B(x, y, z)

}
= 0. (2.5)

These six equations are in general coupled via the boundary conditions. The trans-
lational symmetry along the z-axis (see Fig. 2.1) allows us to express the z-variation
of the fields as

PSfrag replacements
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Figure 2.1: Schematic for the infinite rod with translational symmetry along the
ẑ-axis and arbitrary cross-section.

E(x) = E(x, y)e−ikzz, B(x) = B(x, y)e−ikzz (2.6)

Following Refs. [62, 63], we separate the fields and operators into components parallel
and transverse to the z-axis:

E(x, y) = Ez(x, y) + E⊥(x, y) = E⊥ + ẑEz, ∇ = ∇⊥ + ẑ
∂

∂z
(2.7)

1Since any arbitrary solution can be found by Fourier superposition of harmonic functions.
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With this Eq. (2.3) becomes
∇⊥ ·E⊥ = ikzEz (2.8)

and

ikB = ∇× (E⊥ + ẑEz)

=

(
∇⊥ + ẑ

∂

∂z

)
×E⊥ + (∇Ez)× ẑ

= ∇⊥ ×E⊥ + ẑ × (−ikzE⊥) + (∇⊥Ez)× ẑ

= ∇⊥ ×E⊥ + (ikzE⊥ + ∇⊥Ez)× ẑ (2.9)

as the first term is clearly in ẑ direction and the second in the transverse direction
we can write

ikBz = (∇⊥ ×E⊥)z (2.10)

ikB⊥ = (ikzE⊥ + ∇⊥Ez)× ẑ (2.11)

for the B field we find similar relations:

∇⊥ ·B⊥ = ikzBz (2.12)

−in2kEz = (∇⊥ ×B⊥)z (2.13)

−in2kE⊥ = (ikzB⊥ + ∇⊥Bz)× ẑ. (2.14)

The reduced Helmholtz equation becomes

(
∇2 + γ2

){E(x, y)
B(x, y)

}
= 0, with γ2 = n(x)2k2 − k2

z (2.15)

We will now show that we can simplify the equations even further by finding rela-
tionships between the different components of the EM fields. We write Eq. (2.11)
and replace B⊥ by Eq. (2.14) to get a relation between E⊥ and Ez, Bz,

−in2kE⊥ = (ikzB⊥ + ∇⊥Bz)× ẑ

=

[
ikz

1

ik
(ikzE⊥ + ∇⊥Ez)× ẑ + ∇⊥Bz

]
× ẑ

=
kz
k

[
(ikzE⊥ + ∇⊥Ez)× ẑ

]
× ẑ + ∇⊥Bz × ẑ

=
kz
k

[
− (ikzE⊥ + ∇⊥Ez)

]
+ ∇⊥Bz × ẑ

−i(n2k2 − k2
z)E⊥ = −kz∇⊥Ez − kẑ ×∇⊥Bz

E⊥ = − i

γ2
(kẑ ×∇⊥Bz + kz∇⊥Ez) (2.16)
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doing the same for B⊥

ikB⊥ = (ikzE⊥ + ∇⊥Ez)× ẑ

=

[
ikz

1

−in2k
(ikzB⊥ + ∇⊥Bz)× ẑ + ∇⊥Ez

]
× ẑ

=
kz
−n2k

[
(ikzB⊥ + ∇⊥Bz)× ẑ

]
× ẑ + ∇⊥Ez × ẑ

=
kz
−n2k

[
− (ikzB⊥ + ∇⊥Bz)

]
+ ∇⊥Ez × ẑ

−in2k2B⊥ + ik2
zB⊥ = −kz∇⊥Bz − n2k∇⊥Ez × ẑ

−i(n2k2 − k2
z)B⊥ = −kz∇⊥Bz + n2kẑ ×∇⊥Ez

B⊥ =
i

γ2
(n2kẑ ×∇⊥Ez − kz∇⊥Bz). (2.17)

Projecting the transverse fields E⊥,B⊥ into its normal and tangential components
on the boundary, we can write these relations in a compact matrix form.

(
Et
En

)
= − i

γ

(
∂t ∂n
∂n −∂t

)(
kz/γ 0

0 k/γ

)(
Ez
Bz

)
(2.18)

and

(
Bt

Bn

)
= − i

γ

(
−∂n ∂t
∂t ∂n

)(
n2k/γ 0

0 kz/γ

)(
Ez
Bz

)
(2.19)

It’s evident from these equations that we can take Ez and Bz as the fundamental
fields which fully determine the other four components. We can now focus on the
2-component wave equation for the Ez and Bz component of the field.

(
∇2 + γ2

){Ez(x, y)
Bz(x, y)

}
= 0, with γ2 = n(x)2k2 − k2

z (2.20)

2.3 Boundary conditions

The actual complication of solving the vector Helmholtz equation stems from the
fact that the boundary conditions are coupled. We should remind ourselves that the
Maxwell boundary conditions, in the absence of surface currents and charges for a
linear, isotropic medium are given by

n̂× (E1 −E2) = 0, n̂ · (n2
1E1 − n2

2E2) = 0 (2.21)

n̂× (B1 −B2) = 0, n̂ · (B1 −B2) = 0. (2.22)

The subscripts denote the media on respective sides of the interface. n̂ is the unit
normal on the interface, pointing away from the cylinder. We will assume n1 = n >
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n2 = 1. Note that these are six conditions altogether. With the transverse field
projected onto normal n̂ and tangential t̂ components

Ez1 = Ez2, Bz1 = Bz2 (2.23)

Et1 = Et2, Bt1 = Bt2 (2.24)

n2
1En1 = n2

2En2, Bn1 = Bn2 (2.25)

To obtain the boundary conditions in terms of Ez and Bz we use Eq. (2.16) and
Eq. (2.17) projected onto the normal and tangent direction with t̂ = ẑ× n̂. We also
define ∂n = n̂ ·∇ and ∂t = t̂ ·∇.

Et = t̂ ·E⊥ = t̂ · − i

γ2
(kẑ ×∇⊥Bz + kz∇⊥Ez) (2.26)

= − i

γ2
(kn̂ ·∇⊥Bz + kz t̂ ·∇⊥Ez) (2.27)

= − i

γ2
(k∂nBz + kz∂tEz) (2.28)

Following the idea through we get

En = n̂ ·E⊥ =
i

γ2
(k∂tBz − kz∂nEz) (2.29)

Bt = t̂ ·B⊥ =
i

γ2
(n2k∂nEz − kz∂tBz) (2.30)

Bn = n̂ ·B⊥ = − i

γ2
(n2k∂tEz + kz∂nBz) (2.31)

and combining these leads to

1

γ2
1

(k∂nBz1 + kz∂tEz1) =
1

γ2
2

(k∂nBz2 + kz∂tEz2) (2.32)

n2
1

γ2
1

(k∂tBz1 − kz∂nEz1) =
n2

2

γ2
2

(k∂tBz2 − kz∂nEz2) (2.33)

1

γ2
1

(n2
1k∂nEz1 − kz∂tBz1) =

1

γ2
2

(n2
2k∂nEz2 − kz∂tBz2) (2.34)

1

γ2
1

(n2
1k∂tEz1 + kz∂nBz1) =

1

γ2
2

(n2
2k∂tEz2 + kz∂nBz2) (2.35)

note that adding Eq. (2.32) ×kz+ Eq. (2.35) × − k as well as Eq. (2.33) ×k+
Eq. (2.34) ×kz, we get the continuity of the tangential derivatives of the Ez and Bz

fields,

∂tEz1 = ∂tEz2 (2.36)

∂tBz1 = ∂tBz2 (2.37)
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using γ2 = n2k2 − k2
z . These two equations are equivalent to Eq. (2.23) which we

can see writing a Taylor expansion for the Ez field on an arbitrary point s on the
boundary

Ez1(s2) = Ez1(s1) + t̂ ·∇Ez1(s1 − s2) (2.38)

Ez2(s2) = Ez2(s1) + t̂ ·∇Ez2(s1 − s2) (2.39)

subtracting both equations and using the continuity of Ez at positions s1, s2 we get

t̂ ·∇Ez1(s1 − s2)− t̂ ·∇Ez2(s1 − s2) = 0 ⇒ ∂tEz1 = ∂tEz2 (2.40)

The same holds for Bz. Thus, there are only four independent boundary conditions.
To clearly see the limiting kz = 0 case we write the BCs Eq. (2.32) and Eq. (2.34) with
the substitution of the continuity of the tangent derivatives of the fields Eqs (2.36)
and (2.37)

Ez1 = Ez2 or ∂tEz1 = ∂tEz2 (2.41)

Bz1 = Bz2 or ∂tBz1 = ∂tBz2 (2.42)

k

γ2
1

∂nBz1 −
k

γ2
2

∂nBz2 = −
(
kz
γ2

1

− kz
γ2

2

)
∂tEz1 (2.43)

n2
1k

γ2
1

∂nEz1 −
n2

2k

γ2
2

∂nEz2 = +

(
kz
γ2

1

− kz
γ2

2

)
∂tBz1 (2.44)

We will now look at some special cases of these conditions.

2.3.1 Transverse Magnetic TM

If we have Bz = 0 and kz = 0 we get from Eq. (2.16) E⊥ = 0 and

B⊥ =
i

γ2
n2k

(
−∂yEz
∂xEz

)
. (2.45)

The equations Eqs (2.41)-(2.44) completely decouple and we only have to solve for
Ez. The electromagnetic field is linearly polarized and the polarization is said to be
transverse magnetic (TM).

2.3.2 Transverse Electric TE

If we have Ez = 0 and kz = 0 we get from Eq. (2.17) B⊥ = 0 and

E⊥ = − i

γ2
k

(
−∂yBz

∂xBz

)
. (2.46)

Again,the equations Eqs (2.41)-(2.44) completely decouple and we only have to solve
for Bz. The electromagnetic field is linearly polarized and called transverse electric
(TE).
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2.3.3 Transverse Electromagnetic TEM

We have one remaining special class of solutions, the so called transverse electromag-
netic TEM case. In this case the field is only propagating in the z direction, with
Bz = Ez = 0 and we get that γ = 0. This case is important in transmission lines
but not relevant to our main focus below and will not be discussed further.

2.3.4 Hybrid Modes

The most general type of solutions have both k 6= kz and kz 6= 0, as well as non-
vanishing Bz and Ez. These modes are called hybrid modes, HE or EH modes. These
field configurations correspond in the semiclassical limit to “skew ray” modes. It is
these modes that we will study and classify further in this thesis. The classical liter-
atrue has in general avoided a general treatment and mainly looked at the “weakly
guiding waveguides” where modes are only guided with very shallow classical angles.
Below, we will analyse this general case via a semiclassical approach.

2.4 Eikonal theory for scattering off a dielectric

rod

In this section we will try to solve the reduced vector Helmholtz Equation (2.20) in
the semiclassical limit. We have seen in Section 2.2 that in the case for kz = 0 the
vector solutions seperate into two cases (Ez(x, y), 0) and (0, Bz(x, y)), the standard
2-d TM and TE solutions. For the general kz 6= 0 case we will have to solve

(
∇2 + γ2

){Ez(x, y)
Bz(x, y)

}
= 0, with γ2 = n(x)2k2 − k2

z . (2.47)

In the limit of γ →∞ (semiclassical limit) we expect the vector wave solution to have
strong fluctuations in the phase and but slow variation in the amplitude, captured
in the ansatz

Ψ(x, y) ∼
{
Eo
z(x, y)

Bo
z(x, y)

}
eiγS(x,y) (2.48)

It was first shown by Sommerfeld [64] following a suggestion from Debye that us-
ing this Ansatz in Eq. (2.20) we can derive the Eikonal equation and the transport
equation of optics. Here we state the results

(∇S)2 = n2(r) Eikonal Eq. (2.49)

2∇ · S∇ · A+ A∇2S = 0 Transport Eq. (2.50)

From the knowledge of the optical properties of the medium through n(r) the
Eikonal2 S(r) can be obtained via the eikonal equation, and subsequently the am-
plitude A(r) via the transport equation. The surfaces

S(r) = constant (2.51)

2The term eikonal from Greek εικω̃ν = image was introduced in 1895 by H. Bruns [65].
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are called the geometrical wave-fronts.3 As we can identify the eikonal equation to
be the time-independent Hamilton-Jacobi equation of mechanics with S(r) defined
as the action, we can map the ray dynamics onto the motion of a point particle of
mass m = 1 and energy E = 0 moving in a potential of the form V (r) = −1/2n(r)2,
where n(r) is the local index of refraction. The Ansatz in Eq. (2.48), when used
to find bound solutions, is known as the EBK method, following work of Einstein,
Brillouin and Keller [67, 68, 69], in which the quantized γ values will be determined
by topologically invariant loop integrals (see Section 6.4.1).

2.4.1 Generalized Snell’s law

The conditions above describe waves in an infinte medium. We will now derive the
necessary modifications for semi-infinte media, specifically scattering of the EM field
at a curved interface separating two semi-infinite media of different index of refraction
(See Fig. 2.2). Using this, we will later derive the EBK quantization conditions for
EM waves in a semi-bounded medium, an infinitely long dielectric rod.

In order to satisfy the boundary conditions we need to have an incoming and an
outgoing field inside. As we deal with emitting cavities, one outgoing field outside is
enough to fullfill the outgoing boundary conditions at infinity. The Ansatz Eq. (2.48)
can be interpreted following the classical ray path of an incoming, reflected and
transmitted ray at the boundary. The schematic is shown in Fig. 2.2, where i denotes

PSfrag replacements

γ1

γ2

Ψi

Ψt

Ψr

Figure 2.2: Schematic for EBK. We will expand the wave solution inside into an
incoming component Ψi and a reflected Ψr. The outside into Ψt.

the incoming ray, r the reflected and t the transmitted. The Ansatz for each of the
fields is given by

Ψm =

(
Ez,m
Bz,m

)
eiγSm , with m ∈ {i, r, t} (2.52)

The gradient of the Eikonal ∇S gives the direction of the the ray and is of constant
length |∇S| = n. Using Fig. 2.3 C) we find

3We can also recognize the eikonal equation as the Hamilton-Jacobi equation of the variational
problem [66] going back to Fermat. (Fermat’s variational problem of the shortest optical path
δ =

∫
ds n(r). For a relevant derivation refer to Ref. [65] Appendix I.)
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Figure 2.3: A), B) Schematic for the relations along the z-axis, inside (outside) of the
cylinder of k, kz, γ1, (γ2) to the angles θ(α). α is given by n sin θ = sinα C) Angles
in the projection of the rays in the xy-plane.

∂nS
i=iγ1 cosχ ∂nS

r=−iγ1 cosχ ∂nS
t=iγ2 cosσ

∂tS
i= iγ1 sinχ ∂tS

r= iγ1 sinχ ∂tS
t=iγ2 sinσ

. (2.53)

The first set of boundary conditions, the continuity of the field across the boundary,
Eqs (2.41) and (2.42) becomes:

(
Ez
Bz

)i
eiγ1S

i

+

(
Ez
Bz

)r
eiγ1S

r

=

(
Ez
Bz

)t
eiγ2S

t

. (2.54)

Since these equations need to hold everywhere on the boundary, the phases need to
be equal, thus yielding

γ1S
i = γ1S

r = γ2S
t. (2.55)

Using the fact that the tangent components are continuous, we obtain

γ1 sinχ = γ1 sinχ = γ2 sinσ ⇒ sinχ =
γ2

γ1

sinσ. (2.56)

This equation can be identified as the generalized Snell’s Law projected into the
transverse plane. Noting that γ2

1 = n2k2− k2
z and γ2

2 = k2− k2
z . For kz = 0, γ1 = nk

and γ2 = k, yielding then the well known Snell’s law for a 2-d planar interface

n sinχ = sinσ. (2.57)

We can write the generalized Snell’s Law in a completely geometric fashion noting
(Fig. 2.3 for the geometry)

γ2

γ1

=
γ2

kz

kz
γ1

=
tan θ

tanα
(2.58)
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and for the 3d farfield angle sinσ

sinσ =
γ1

γ2

sinχ =
sinα cos θ

cosα sin θ
sinχ =

n cos θ sinχ√
1− n2 sin2 θ

. (2.59)

The usual Snell’s law hold also in the new geometry, in appropriate coordinates. In

PSfrag replacements I

σ

x
yz

Figure 2.4: Schematics for semiclassical scattering. We will describe the semiclassical
wave solution, with the coordinates (x, y) and a constant momentum in z. σ denotes
the projected angle of the refracted.

the classical ray picture, the incident light spans together with the normal on the
boundary a plane of incidence I, in which the reflection is governed by Snell’s law

n sin ηin = no sin ηout. (2.60)

n, no are the indices of refraction in each medium. The angle σ that we derived above
is the projected emission angle in the (x, y) plane (see Fig. 2.4). Another geometric
derivation is given in Appendix B. Snell’s law already hints to an interesting feature
of dielectric interfaces. If the angle of incidence sinχ > γ2/γ1 then the outside angle
σ = π

2
+ iη is complex. While the normal component of the ray is purely imaginary,

the tangent component is purely real. Thus, locally the outside solution decays away
from the interface as it should and propagates along the surface. This gives rise to a
generalized critical angle (CA). We now analyse the transport properties across the
interface.

2.4.2 Generalized Fresnel coefficients

All the results in the last section have been derived just from the first set of boundary
conditions, the continuity of the tangential components. Now we will investigate the
boundary conditions Eqs (2.43) and (2.44)

Bi

(
Ez
Bz

)i
eiγ1S

i

+ Br

(
Ez
Bz

)r
eiγ1S

r

= Bt

(
Ez
Bz

)t
eiγ2S

t

(2.61)



CHAPTER 2. THE WAVE-EQUATION FOR 3D DIELECTRIC . . . 26

where the matrices B are given by

B(i,r) =

(
(n− n3) sin θ · ∂t cos2 α · ∂n
n2 cos2 α · ∂t (n3 − n) sin θ · ∂n

)
(2.62)

Bt =

(
0 n2 cos2 θ · ∂n

n2 cos2 θ · ∂n 0

)
(2.63)

With the derivative of the eikonal from Eq. (2.53) we get:

Bi =

(
(n− n3) sin θ sinχ cos2 α cosχ
n2 cos2 α cosχ (n3 − n) sin θ sinχ

)
(2.64)

Br =

(
(n− n3) sin θ sinχ − cos2 α cosχ
−n2 cos2 α cosχ (n3 − n) sin θ sinχ

)
(2.65)

Bt =

(
0 n cos σ cos2 θ

n cos σ cos2 θ 0

)
(2.66)

We can now relate the incoming field to the outgoing and the reflected using the
boundary conditions Eq. (2.54) and Eq. (2.61)

Ψr = RΨi (2.67)

Ψt = TΨi (2.68)

where R and T are the general Fresnel coefficients (matrices) given by

BiΨi + BrΨr = BtΨi + BtΨr

⇒
(
Br −Bt

)
Ψr =

(
Bt −Bi

)
Ψi

⇒ Ψr =
(
Br −Bt

)−1 (
Bt −Bi

)
Ψi

⇒ R =
(
Br −Bt

)−1 (
Bt −Bi

)
(2.69)

and similarly

T =
(
Bt −Br

)−1 (
Bi −Br

)
(2.70)

we can check that these are indeed the well known Fresnel equations by taking

θ = 0 ⇒ α = 0. (2.71)

Resulting in the well-known classical Fresnel coefficients for a 2-d plane interface

R =

(n cosχ−cosσ
n cosχ+cosσ

0

0 cosχ−n cosσ
cosχ+n cosσ

)
=̂ R =

(
rs 0
0 −rp

)
(2.72)

T =

(
2n cosχ

n cosχ+cosσ
0

0 2 cosχ
cosχ+n cosσ

)
=̂ T =

(
ts 0
0 tp

)
. (2.73)
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Returning to the comment made in the last Section, we will now investigate the
region where the angle of incidence is larger than the critical angle. Let us rewrite
the reflection matrix R in Eq. (2.72) using

cos σ = i
√
n2 sinχ2 − 1 ∀

(
sinχ >

1

n

)
(2.74)

we can see that both rs and rp are of the from a+ib
a−ib , with a, b ∈ �

. We know that
the absolute value of such a complex number is 1. We will therefore have perfect
reflection on the boundary. Note however that the polarization will change upon
reflection. For the transmission matrix we can show that the outgoing field decays
exponentially and that the energy transfer vanishes [70]. These observations also
hold true for θ 6= 0.

In the subsequent chapters we will solve for the resonances of the circular di-
electric rod and numerically find solutions for a deformed rod. We will make ample
use of these solutions in Chapter 5 where we will discuss experiments on polymer
microlasers and in Chapter 8 where GaN cavities are covered. The solutions for the
vector wave-equation will enable us to discuss the polarization of hybrid modes in
Chapter 7. In the following Chapter 3 we will go over the underlying ray-dynamics
for generally deformed cavities, to form a basis for discussion of the semiclassical
aproximations and correspondence.



Chapter 3

Ray-dynamics in deformed

Cavities

3.1 Introduction

Ray-dynamics (geometric optics) is a powerful tool used for many applications in
everyday optics. The application we are going to be interested in is the description
of dielectric microcavities. In Chapter 1, we made the connection between wave so-
lutions of dielectric cavities in the short-wave-length limit and ray-dynamics in those
cavities. In many cases the motion of rays corresponds to the classical mechanics of
a point mass, e.g. reflection elastically from a boundary. In the non-linear dynamics
community these systems are termed billiards. The ‘leakyness’ of dielectric billiards
represents an extension to the canonical billiard system. The microcavities that we
will investigate in this thesis will have a general non-integrable shape. Since billiards
represent a class of Hamiltonian systems, it will be useful to discuss Hamiltonian
systems and specifically the transition from integrability to partially chaotic (mixed)
dynamics first. Action-angle variables will help us illustrate the breakdown of per-
turbation theory for non-integrable systems, as described by the KAM theory. A
powerful tool, the surface of section, is introduced to facilitate the discovery of un-
broken tori. The three classes of fixed-points are analyzed in general and for special
maps. Next, we discuss discrete maps and their fixed-point analysis. Bifurcations
will be explained in this context and we will follow the bifurcation diagram of a
stable orbit in a generic shape. We conclude with the effects of an open system with
refractive escape and describe the numerical simulations and its relation to experi-
ments. A good review of the Hamiltonian dynamics can be found in Ref. [71]. Some
parts of the discussion might be a bit dry, but bear with us, as the understanding
of ray-dynamics will help us explain and predict the lasing emission of micro cavity
lasers.

28
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3.2 Hamiltonian Dynamics

We consider here classical systems governed by a Hamiltonian function

H(q,p) = E (3.1)

where q = (q1, . . . , qN) and p = (p1, . . . , pN) are generalized positions and momenta
of a system with N -degrees of freedom and the energy E. Solving Hamilton’s equa-
tion

q̇ = ∇pH (3.2)

ṗ = −∇qH (3.3)

given some initial conditions {q(0),p(0)} we can find the history q(t) of this system.
A Hamiltonian system is called integrable if we can find N independent analytic
single-valued functions that are constant along any trajectory

Fm(q,p) = fm, 1 ≤ m ≤ N. (3.4)

Furthermore the constants of motion Fm must be ‘in involution’, i.e. they need to
fulfill the Poisson bracket [72]

{Fm, Fn} ≡ ∇pFm · ∇qFn −∇pFn · ∇qFm = 0. (3.5)

With this equation we can solve for p in terms of (q,f). A canonical transformation is
a transformation from one set of Hamiltonian variables (p, q) to another set (P ,Q),
which leaves the equations of motion unchanged. We can regard the Fm as new
momenta p̃ = F in a canonical transformation to new variables (q̃, p̃). As p is
constant Eq. (3.3) gives us the independence of the new Hamiltonian to q̃ and thus
it follows from Eq. (3.2)

q̃(t) = ∇fH(f) t+ c, with c and ∇fH(f) = const. (3.6)

The problem is solved once we can express q̃ in terms of q which can be done with
the generating function G(q, p̃)

G(q, p̃) =

∫ q

q0

p(q, p̃) dq =

∫ q

q0

p(q,f) dq = G(q,f) (3.7)

where p(q,f) is obtained from Eq. (3.4), yielding

q̃(t) = ∇fG(q,f). (3.8)

Any classically integrable system can be solved in this fashion. The N constants
of motion restrict each trajectory to lie on a N -dimensional manifold M. In any
conservative system the energy is conserved and we are guaranteed one constant of
motion

F1(q,p) = f1 = E(q,p) = const. (3.9)
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A) B)

Figure 3.1: 2-d Manifolds. The sphere A) is clearly not a ‘parallelizable’ manifold,
the 2-d Torus B) is. We could not comb the sphere without a singularity.

The energy surface upon which motion in a conserved system can take place is thus
2N − 1 dimensional. The topological structure of the manifold M is going to be
important, we will investigate it now. The manifold M is defined by fixing the
fm. The normals of the manifold are given by n̂n = (∇qFn,∇pFn). Consider N
2N -component-vector fields in phase space

Vm ≡
(
∇pFm
−∇qFm

)
, (3.10)

and we can see that the vector field Vm is perpendicular to the normals of the manifold
M

n̂n · Vm = (∇qFn,∇pFn)

(
∇pFm
−∇qFm

)

= {Fm, Fn} = 0. (3.11)

Thus the vector field Vm is parallel to the manifoldM. If we restrict ourselfs to a finite
phase space, i.e. bounded motion, the manifold is thus compact and ‘parallelizable’
with a smooth and independent vector field. A theorem from topology states that
any such object is a N -torus (Fig. 3.1). The systems we will be dealing with are
either 2-d or 3-d. In the 3-d case we will only consider dynamics which we can project
on a 2-d space with a contant motion along the third dimension. The dimensionality
of the phase space is thus 4, the energy surface 3-d and the manifolds M on which
the motion in an integrable system will take place, 2-d. The tori are called invariant
tori as the motion started on one will remain on it forever. Naturally we want to use
as coordinates (q̃, p̃). Every constant of motion, or generalized momentum p̃ = f

defines a torus, on which q̃ are the coordinates. A natural set of variables well-suited
for integrable systems are the action-angle variables. They can be obtained by a
canonical transform and are chosen such that

J =̂ p̃ action of the torus (3.12)

Θ =̂ q̃ angles on the torus. (3.13)

The action variable J defines the torus and the Θ are the coordinates on the torus
which are periodic with period 2π. The equations of motion in terms of action-angle
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variable are
J = const., and ω = ∇JH(J) = const. (3.14)

with the frequency vector on the torus ω(J) = ∇JH(J) we can finally write

Θ = ω(J) t+ c, with c = const. (3.15)

There are two different possibilities for the orbit on the manifoldM. If the frequen-
cies are commensurable,

ω ·m = 0, for some m = (m1, . . . ,mN) ∈ � N (3.16)

the orbit onM is closed, i.e. it will wrap arount the torus on a 1-d region onM. If
the frequencies are not commensurable, the orbit never closes and will trace out a
helix onM till it covers it densely after an infinite time.

3.2.1 Perturbation theory on tori

We will now discuss the effect of a generic non-integrable perturbation εH1(J ,Θ) on
an integrable system. The new Hamiltonian reads

H(J ,Θ) = Ho(J) + εH1(J ,Θ). (3.17)

J and Θ are no longer action-angle variables as Θ appears in H. If the perturbed
system is still integrable there must be a new set of variables (J ′,Θ′) such that

H(J ,Θ) = H ′(J ′). (3.18)

This should be achieved via a generating function G(J ′,Θ) such that

(
J

Θ

)
← J = ∇Θ′G

∇J ′G = Θ
→

(
J ′

Θ′

)
(3.19)

resulting in
H (∇ΘG(J ′,Θ),Θ) = H ′ (J ′) . (3.20)

Expanding G in powers of ε and keeping only the first order terms

G = Θ · J ′ + εG1(J
′,Θ) + . . . (3.21)

we can write for the Hamiltonian

Ho(J
′) + ε∇J ′Ho(J

′) · ∇ΘG1 + εH1(J
′,Θ) = H ′(J ′). (3.22)

Remembering that ∇J ′Ho = ωo(J
′) and that both H1 and G1 are functions of p and

q and which are themselves periodic in Θ, we can fourier expand H1 and G1 in Θ

H1(J ,Θ) =
∑

m

H1m(J)eim·Θ, and G1(J
′,Θ) =

∑

m

G1m(J ′)eim·Θ. (3.23)
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With this, the generator G reads as

G(J ′,Θ) = J ′ ·Θ + iε
∑

m6=0

H1m(J ′)

m · ωo(J ′)
eim·Θ + . . . . (3.24)

Can we now continue with this method and write a perturbation theory for non-
integrable systems? The problem that we will encounter is the quotient m ·ωo. We
have noted above that if the frequencies are commensurable this product vanishes
and thus the sum should diverge. Even if the frequencies are non-commensurable
we can find m such that the product is arbitrary small. This is the problem of
small divisors that has been around for a long time. Thankfully, Kolmogorov [73],
Arnol’d [74] and Moser [75] (KAM) solved this problem and showed that for a given
perturbation the sum can still converge most of the time. For a 4-d phase space and
thus on a 2-d manifold M we will sketch the problem here. KAM have shown that
the series in Eq. (3.24) converges for all tori with sufficiently irrational frequencies
(ω1, ω2) such that ∣∣∣∣

ω1

ω2

− r

s

∣∣∣∣ ≥
K(ε)

s2.5
, ∀{r, s} ∈ � (3.25)

where K is just some function of the perturbation strength independent of r and s.

3.2.2 Digression on Irrationality

Now what do we really mean by sufficiently irrational? Can different irrational
numbers be better approximated with rational numbers than others? The surprising
answer is, yes, indeed. A simple way of finding rational approximations in our decimal
system is to just take the first few digits and divide by the corresponding power of
10, i.e. for σ ∈ � \ �

σ = e = 2.71828182845905 . . . ≈ r

s
=

2

1
,
27

10
,
278

100
,
2782

1000
,
27821

10000
, . . . (3.26)

This error of this approximation is trivially

∣∣∣σ − r

s

∣∣∣ < 1

s
. (3.27)

It can be shown that a much better approximation can be achieved through the
continued fraction given by

σ = e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 + · · ·

. (3.28)
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It can be shown that the ratio produced by this fashion is the best approximation
such that there is no better approximation with smaller denominators. One can show
that for continued fraction ∣∣∣∣σ −

rn
sn

∣∣∣∣ ≤
1

snsn−1

. (3.29)

With this we can construct the ‘worst-to-approximate’ irrational number, namely
√

5 + 1

2
= 1.6180339887 . . . = 1 +

1

1 +
1

1 +
1

1 +
1

1 +
1

1 + · · ·

, (3.30)

the golden mean. The torus with the frequency ratios being the golden mean is thus
the last torus to break under a perturbation! For small perturbations how many tori
will break? We can study this by asking the inverse to Eq. (3.25), namely how many
‘too rational’ numbers exits at which the tori will break. Around each of the ‘too
rational’ ratios r/s between [0, . . . , 1] we exclude a line of length K(ε)/s2.5. These
are the tori which will definitely break under a perturbation ε. The total length of
this line, with an upper limit of s ratios r/s, is at least

L ≤
∑

s=1

K(ε)

s2.5
s = K(ε)

∑

s=1

1

s1.5
= K(ε) · const. (3.31)

For K(ε)→ 0 this line tends to vanish, thus for small perturbations most tori remain
unbroken. Conversely there is a maximal perturbation ε at which all tori are broken.

3.2.3 Poincaré Surface of Section & discrete maps

How can we study the effect of such a perturbation and determine if there are re-
maining local constants of motion in the phase space? It can be very difficult to
determine all constants of motion, for a 2-d system by direct analysis. A particularly
good method to study phase space structures was devised by Poincaré in 1890 [76].
Consider the 4-d phase space with Hamiltonian

H(q1, p1, q2, p2), (3.32)

for our conservative systems, the energy E is a first constant of motion and we can
write one of the momenta as p2 = p2(q1, p1, q2, E). Trajectories will thus lie on a 3-d
volume within the 4-d phase space (note that the structure is in general not that
of the Euclidian

� 3). If we only plot the trajectory for q2 = Q =const., we will
observe the motion on a 2-d section of the volume, the so called surface of section
(SOS). The surface of section can be viewed as a discrete map T which maps the

point (q1, p1)
T→ (q2, p2). As the motion is governed by a conservative Hamiltonian,

this map T is area preserving, i.e. an area mapped by T conserves its area.
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Figure 3.2: Poincaré surface of section. A) no additional constant of motion is present
and the motion will produce a 2-d scatter of points. B) another constant of motion
can be found, the motion is confined to a 1-d area of the surface of section.

The resulting plot can give either 1) a 2-d scatter of points, indicating broken tori
(Fig. 3.2 A), or 2) a 1-d curve indicating the existence of a second (local) constant
of motion. This constant of motion is specified by the curve T (C) = C (Fig. 3.2 B).

3.2.4 Fixed points of general maps

If an orbit closes on the manifold M it will appear in the surface of section as a
set of N points. These fixed-point are defined by TN(x) = x, where N denotes the
period of this orbit. We will later see how important the surface of section will be
in understanding the ray-dynamics in micro-cavities. But first let us analyze the
integrability – non-integrability transition in general area-preserving maps. For this
we will study discrete area preserving maps. KAM does not tell us anything about
what will happen to general fixed-points. For this purpose a simple, non-integrable
Twist Map was devised by Moser that will help us understand what happens

(
pn+1

q1+1

)
= Tε

(
pn
qn

)
, such that

{
pn+1 = pn + εF (pn, qn)

qn+1 = qn + 2πα(pn) + εG(pn, qn)
. (3.33)

We require F and G to be periodic in 2π, that it keeps the map area preserving
and that for p = 0, F = G = 0 such that a fixpoint at 0 exists. As we vary p, for
ε = 0, the points will lie on different concentric circles. When the winding number α
is equal to a rational number α = r/s with r and s coprime, the map will consist of
s discrete points on a circle. We will now show that for a fixed-point of this map of
order N , an even multiple of N fixed-points will remain after a small pertubation.
This is known as the Poincaré-Birkhoff fixed point theorem. To show this we plot the
twist map for three different values of α, see Fig. 3.3. On C the we have α = r/s,
the curve C+ and C− are above and below with an α bigger and smaller than r/s. A
map T s will leave a point on C invariant. The same map T s will move a point on C+

clockwise and on C− counter-clockwise. This behavior will remain even after a small
perturbation ε, thus a point Rε in the vicinity of C will have a point that is unchanged
by T sε . The curve Rε spanned by these points will under iteration of T sε intersect
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Figure 3.3: The action of the twist map (Eq. (3.33)) on the different invariant curves.
The map curve C is invariant under T s. The map T s will move a point on C+ clockwise
and on C− counter-clockwise. A perturbed mapping Tε preserves these relative twists
for small ε. The curve Rε must have at least one point in common with C.

with itself and due to the area preservation be of same size and centered around the
origin, see Fig. 3.4. Therefore an even number of fixed-points are preserved under
the perturbation. As the flow in the vicinity of the fixed-points is conserved we can
already see from Fig. 3.4 that there are two different types of fixed-points. One type,
E where the flow circulates around the fixed-point; the second type, H where the
flow diverges.

3.2.5 Tangent Map

To analyze the behavior around the fixed-points more quantitatively it is useful to
look at the linearized map M , the tangent map of Tε. Let (qo, po) be a fixed-point of
the map M , of order µ i. e. (qo, po) = (qµ, pµ) = T µε (qo, po). The linearized map M is
defined by

M =
∂(qµ, pµ)

∂(qo, po)
=

(
∂qµ
∂qo

∂qµ
∂po

∂pµ

∂qo

∂pµ

∂po

)
. (3.34)

This map is also known as the monodromy matrix or in optics as the ABCD matrix
for reflections from a curved mirror (assuming a billiard geometry). The behavior of
a deviation (δq, δp) around the fixed-point (qo, po) can be determined by finding the
eigenvalues of the linearized map M .

(
δqµ
δpµ

)
=

(
∂qµ
∂qo

∂qµ
∂po

∂pµ

∂qo

∂pµ

∂po

)(
δqo
δpo

)
. (3.35)

The eigenvalues of every 2 × 2 matrix are given by the trace and the determinant,
(since the map is area preserving detM = 1)

λ2 − (TrM)λ+ detM = 0 (3.36)

λ± =
1

2

(
TrM ±

√
Tr2M − 4

)
. (3.37)
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Figure 3.5: Motion in the vicinity of fixed-points. A) When the eigenvalues of the
monodromy matrix are complex conjugates, the fixed-point is stable, motion around
the fixed-point proceeds on ellipses. B) Near a hyperbolic fixed-point the eigenvalues
are real and the motion proceeds on hyperbolas. C) Parabolic fixed-point define
marginally stable motion. The invariant curves are straight lines.

The eigenvalues are thus either real reciprocals λ+λ− = 1 or complex conjugates on
the unit circle, or else degenerate with λ+ = λ− = ±1.

• For λ+ = λ∗− we can write

λ+ = eiφ, and λ− = e−iφ; (3.38)

thus the eigenvectors must be complex conjugates u, u∗. In this case we can
write the map as

M = eiφu + e−iφu∗ (3.39)

which just describes motion on an ellipse. Thus iterations of a small deviation
in the vicinity of such a fixed-point will rotate around an ellipse as shown in
Fig. 3.5 A). Such a fixed-point is of elliptic type. Motion around an elliptic
fixed-point is stable, as any point near them will remain near them for an
arbitrary number of iterations of the map.
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Figure 3.6: Hyperbolic fixed-point in an integrable system. The invariant curves H+

of the fixed-point join smoothly with H−.

• For real eigenvalues
{
λ+ = λ−1

−
}
∈ �

the map can be reduced to

M = λ1/2u with λ1/2 =
{
λ, λ−1

}
. (3.40)

The invariant curves are thus hyperbolae as shown in Fig. 3.5 B) and the
corresponding fixed-point is called a hyperbolic fixed-point. Two different types
of hyperbolic fixed-points exist. For λ > 0 the fixed point is said to be ordinary
hyperbolic as the iterates remain on one branch of the hyperbola. For λ < 0 the
fixed-point is of inversion hyperbolic type, where iterates jump back and forth
between opposite branches. Hyperbolic fixed-points are said to be unstable as
motion in their vicinity is not confined. Motion on one branch approaches the
fixed-point, while the other repells exponentially.

• In the degenerate case where λ+ = λ− = ±1 we have a parabolic fixed-point.
Any deviation will increase linearly. Invariant curves corresponding to this type
of fixed-point are straight lines as shown in Fig. 3.5 C). This type of motion is
often referred to as marginably stable motion.

3.2.6 Manifolds and their crossings

We will now leave the realm of linear motion and enter the non-linear regime, i.e.
the exact map. At any hyperbolic fixed-point H, four branches meet. Two are
incoming (H−) and two are outgoing (H+). A point on an incoming branch will move
exponentially close to the fixed-point, whereas a point on the outgoing branch will
move away exponentially. In the case of an integrable system the outgoing invariant
curve H+ joins the incoming invariant curves H− of a neigbouring hyperbolic point.
Compare to Fig. 3.6 where we have illustrated this behavior. This smooth joining is
only present in integrable systems, as we will see in Section 3.3.3 the elliptic billiard
will feature such a hyperbolic fixed-point. In the generic case where they do not
smoothly connect they have to intersect. Every intersection of a branch with itself
has to be a fixed-point. The invariant curve H+ represents an unstable manifold
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Figure 3.7: Motion close to a Hyperbolic fixed-point in a non-integrable system. The
(blue) invariant curves H+ of the fixed-point intersects the (red) invariant curve H−

at the homoclinic points {X0, X1, X2, X3, . . . , X∞}. The grey shaded area has to
remain constant due to the area preserving character of the map T .

while H− is a stable manifold. What happens if two different branches, H+ and
H− intersect each other? The intersections are called homoclinic if the manifolds
emanate from the same fixed-point H or to different points of the same unstable
closed orbit. Intersection of invariant curves of different hyperbolic fixed-points are
called heteroclinic. As homoclinic points lie on the stable and unstable manifold of the
fixed-point, so must its iterate through the map T , thus one homoclinic point implies
an infinite number. We will later see that unstable manifolds play a significant role in
the emission directionality of micro-cavities (see Section 5.7) and that wavefunctions
in microcavities can localize around homoclinic points (see Fig. 4.10).

3.2.7 Onset of Chaos

In this section we will finally understand from where chaos originates! The area
preservation combined with the existence of one homoclinic point is enough. As we
have seen above, the existence of one homoclinic point implies an infite number, due
to the area preserving property of the map, the area enclosed by the invariant curves
between two such homoclinic points must be preserved. In Fig. 3.7 we show this
behavior. As the homoclinic points will come closer and closer to each, the loop
around the area (shaded in grey) must become longer and longer. It becomes clear
that these invariant curves are area filling, as they need to explore more and more
of the phase space. No torus exists in this region. A proof of this for the simplified
‘horseshoe map’ has been given by Smale [77]. They can nevertheless be bounded
by other stable tori, such that they are limited to a finite area of the phase space.
This is at least true in the 4-d phase space, in higher dimensions we expect Arnol’d
diffusion, where chaotic areas do not need to be separated by invariant curves.
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3.3 Billiards – Discrete Maps

In this section we want to apply the theory reviewed in the previous section to
billiard maps and with that we get closer to the goal of describing the ray-dynamics
in a microcavity. Ray-dynamics in cavities of arbitrary (convex) shape can be looked
upon as the motion of a particle elastically scattered from the boundary if we neglect
refraction. We will first consider motion in a closed resonator, the fully classical
billiard problem. In order to be able to describe the motion in a billiard as a discrete
map we need to introduce Birkhoff coordinates [41]. A self-contained treatment of
classical mechanics in various billiard systems has been given by Berry in Ref. [42].

3.3.1 Birkhoff Coordinates

The motion in a classical billiard consists of straight line segments and specular reflec-
tions from the boundary. Two coordinates describe this system exactly. We record
at each collision with the boundary the arc-length s and the tangential momentum pt
of the incident particle. Each consecutive collision is marked with ascending integers
n. The set of collisions is given by the discrete map T . This map is area preserving
as the Hamililtonian of the system is conservative. It is convenient to use the radial
angle φ instead of s.1 The coordinates are then not anymore canonical conjugates
but the information obtainable from the map is not changed. For the transverse
momentum it is convenient to scale out the energy of the particle and instead use
the variable

sinχ =
pt√
2mE

(3.41)

for the transverse momentum. Here χ is the angle of incidence with respect to the
normal at position φ on the boundary, m the mass and E the energy of the particle.

3.3.2 Circle map

The first map we want to consider is the map of ray motion inside a circle. In Sec-
tion 1.2 we have seen that an important group of resonators are based on microdisks,
which have the cross section of a circle. In the circle the normal at each point on
the boundary goes through the origin. The angle of incidence will thus be conserved
and hence also the angular momentum. For the map we write

sinχn+1 = sinχn (3.42)

φn+1 = π − 2χ

= 2 arccos(sinχ) + φn. (3.43)

The eigenvalues of the monodromy matrix are degenerate for all χ and we have only
parabolic fixed-points. In Fig. 3.8 we show the SOS of the circle and indicate a

1This holds true for star shaped objects, objects where every point on the boundary can be
connected with a straight line to the origin.
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Figure 3.8: A) Surface of Section of the ray-dynamics in the circle. B) real space
pictures of the whispering gallery type orbit, C) the rectangular orbit where the torus
has the exact ratio of r/s = 1/4. D) the triangle with r/s = 1/3. E) a quasi periodic
orbit close to the rectangular orbit with a frequency slightly above the one in C).

number of different fixed-points. On the right hand side of the figure we show four
real space trajectories.

3.3.3 Ellipse map

The ellipse is the only other integrable convex billiard besides the circle [78].2 The
existence of a second conserved quantity besides the energy, namely the product of
the angular momenta around the two foci, guarantees the integrability of the ellipse.
For later reference, we will define here the equation of the ellipse in polar coordinates,
scaled to area π

r(φ) =
1 + ε√

1 + [(1 + ε)4 − 1] sin2 φ
, (3.44)

here ε corresponds to the deformation (major to minor axis ratio) of the ellipse.
Another way of writing the ellipse is by Γ(x, y) = x2/a2 + y2/b2 − 1 = 0. Using this
we can write an algebraic map

(
x1

y1

)
=

(
xo + s · ex
yo + s · ey

)
, with s = −2

xoexb
2 + yoeya

2

e2xb
2 + e2

ya
2

(3.45)

with e = (ex, ey) defined by

e =
1

2
√
x2/a2 + y2/b2

(
−yo/b2 sinχ− xo/a2 cosχ
−yo/b2 cosχ+ xo/a

2 sinχ

)
. (3.46)

The invariant curves of this map in the SOS can be derived from the constant of
motion in the ellipse:

sinχ(φ) =
√

1 + (S2 − 1)κ2/3(φ, ε) (3.47)

2Also know as the Birkhoff-Poritsky conjecture.
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Figure 3.9: Surface of Section A) and realspace images of the ray-dynamics in the
ellipse. B) is of whispering gallery type orbit, C) a bouncing Ball type orbit, the
only family of stable orbits in the ellipse. The ellipse here at an deformation ε = 0.1.

κ denotes the curvature and ε is the deformation of the ellipse. The motion in
the ellipse is more interesting that in the circular case, which only has parabolic
fixed-points. Besides all the parabolic fixed-points, it has exactly one stable and one
unstable fixed-point. The stable one is at (φ = ±π/2, sinχ = 0) and the unstable at
(φ = {0,±π}, sinχ = 0). The shape of the ellipse is given in polar coordinates

r(φ) =
1 + ε√

1 + [(1 + ε)4 − 1] sin2 φ
. (3.48)

Around the origin in Fig. 3.9 we can see the invariant curve corresponding to the
hyperbolic fixed-point that we have already seen in Fig. 3.5 B in a close-up. We
can see here that H+ and H− connect smoothly. This curve is also known as the
separatrix as it separates the two types of orbits that can exist. The whispering
gallery type orbits, where the sign of the angular momentum is constant, and the
‘bouncing ball’ type orbits, where the angular momentum changes the sign at every
reflection, such orbits are called librational3.

3.3.4 Classical Ray-tracing – a non analytic discrete map

For the circle we were able to write down a simple expression for the map. The map
for the ellipse proved to be a bit harder but is still analytic. The map of the motion in
a general convex shape however cannot be expressed analytically. Here we provide a
numerical procedure for the map corresponding to a generic boundary, which involves
a non-linear root search. This routine is the core for all ray calculations done in this
thesis. Let r = r(ϕ) describe the boundary and

r′ =
dr

dϕ
(3.49)

3The PO can be seen as librational as zero has no sign.



CHAPTER 3. RAY-DYNAMICS IN DEFORMED CAVITIES 42

the first derivative with respect to ϕ. The tangent vector is given by

r =

(
rx
ry

)
, r = |r|, rx = r cosϕ, ry = r sinϕ (3.50)

taking ϕ derivative we get the tangent vector

t =

(
tx
ty

)
, tx = −r sinϕ+ r′ cosϕ, ty = r cosϕ+ r′ sinϕ. (3.51)

In general, we want to have our tangent vector t to be normalized, so we calculate

|t| =
√
t2x + t2y =

√
r2 + r′2 = Γ (3.52)

and define

t =
1

Γ
t (3.53)

The same holds for the normal

n =
1

Γ

(
nx
ny

)
, nx = r cosϕ+ r′ sinϕ, ny = r sinϕ− r′ cosϕ. (3.54)

If the angle of incidence is given by χ, then the reflected ray will have the direction
of the tangent t rotated by π/2− χ to the left. The required rotation matrix is:

(
cos θ − sin θ
sin θ cos θ

)
with θ = π/2− χ→

(
sinχ − cosχ
cosχ sinχ

)
= R(χ) (3.55)

R(χ)t = e =

(
ex
ey

)
, ex = tx sinχ− ty cosχ, ey = tx cosχ+ ty sinχ (3.56)

With this we can write the map

(ϕ0, sinχ0)
M−→ (ϕ1, sinχ1) (3.57)

by finding the intersection of e with the boundary R, i.e. solving the non-linear
equation

R− λe = 0 (3.58)

where the length λ and the position of R has to be found.

3.3.5 Fixed-points in billiards – periodic orbits

Now that we have a tool to generate the ray-dynamics in an arbitrary shape we need a
tool to analyse the type of periodic orbits that this map will create. In Section 3.2.5
we learned that the monodromy matrix is the linearized map. The monodromy
matrix can be written as a product of matrices for each separate reflection. In order
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to calculate each matrix we need to know the length of the segment x, the radius
of curvature R and the angle of incidence χ at each reflection point. The radius of
curvature is given by

R = 1/κ =
(r2 + ṙ2)

3/2

r2 + 2ṙ2 − rr̈ (3.59)

For the one segments of length xo, with the radius of curvature at the beginning
(end) of the segment Ro (R1), the matrix is given by

m10 =

(
(xo−yo)R1

y1Ro
−xoR1Ro

yoy1
yo+y1−xo

RoR1

(xo−y1)Ro

yoR1

)
, with yi = Ri cosχi (3.60)

We can now calculate the monodromy matrix for an N-periodic orbit (PO) by simply
multiplying the matrices for each of the segments.

M =
N−1∏

n=1

mn,n−1 (3.61)

The eigenvalues of the resulting monodromy matrix can be analyzed in the fashion
of Section 3.2.5.

3.3.6 Lazutkin’s theorem – why is a billiard not as chaotic

as it should be

This discussion is important to us as we will study micro cavities with a deformation
large enough such that the last torus should have already been broken, see Sec-
tion 3.2.7. This would have occured at the torus with a ratio of the golden mean.
We do however still find whispering gallery type orbits, a clear indication that the
last torus is not broken. The statement from Section 3.2.2 is only true if we have
a uniform perturbation of the map, but for the convex billiard this is not the case.
Motion very close to the boundary has an effective perturbation that is reduced as
sinχ→ 1. We can quantify this following Ref. [79] by writing the map as

sinχn+1 = sinχn + F (φn+1, sinχn) (3.62)

φn+1 = 2πα + φn +G(φn, sinχn). (3.63)

The terms F,G in this map contain the nonlinearity of the map, α = arccos(sinχ).
As the perturbation factors F,G depend on sinχ we see that the perturbation is not
uniform. Close to the boundary we expect the change in the polar angle φ to be small
for sinχ→ 1. Furthermore we show in Fig. 3.10 that the perturbation strength F for
an actual whispering gallery mode in a general convex billiard is indeed dependent
on sinχ. The average perturbation scales as cos3 χ [79]. We can also argue that
as the curvature becomes tangent to the boundary, the expression for the invariant
curves of the ellipse from Section 3.3.3 will hold true. If we see the parameter S in
Eq. (3.47) as the average sinχ and let it approach S → 1 the effect of the curvature κ



CHAPTER 3. RAY-DYNAMICS IN DEFORMED CAVITIES 44

−π −π/2 0 π/2 π
0.96

0.97

0.98

0.99

1

PSfrag replacements

φ

si
n
χ

average perturbation

Figure 3.10: The top region of the SOS for a non-elliptical convex billiard (quadrupole
ε = 0.07). The black curves indicate four different tori. In blue we we indicate the
nonlinear perturbation F (sn+1, sinχn) from Eq. (3.62) shifted up by the average
sinχ of the orbit. In red we compare the adiabatic curve from Eq. (3.47). The blue
arrows on the side indicate the perturbation strength. We can see how it decreases
as sinχ→ 1.

reduces and sinχadiab is almost constant. From this we conclude that even long after
the golden torus is broken (sinχ ≈ 0.36) there still exist whispering gallery orbits,
as the effective perturbation close to the boundary goes to zero. This hold true
for as long as the shape is convex. These statements are all implied by Lazutkin’s
theorem [44], where he however requires the boundary to possess 553 continuous
derivatives (r(φ) ∈ C553). Douady showed in 1982 however that only six derivatives
are enough [80].

3.3.7 Bifurcation of fixed-points

Bifurcations have the most dramatic effect on a billiard. It is through a bifurcation
that we can see the strong power increase in the Bell Labs experiment described
in Section 1.4.4, or the switching of emission directionality in a polymer laser in
Section 5.8. The physics of bifurcations can already be discussed at the level of the
simple Twist map. As we will see, it is through bifurcations that new fixed-points are
generated in the map as a function of a smooth perturbation parameter. A general
type of bifurcation in the twist map is illustrated in Fig. 3.11.

The type of bifurcations that we can encounter can be determined from the
tangent map of Section 3.2.5. To facilitate it Greene [81] introduced the residue of
an orbit defined by

R =
2− TrM

4
(3.64)

As the residue is only dependent on the trace of the monodromy matrix, it is in-
dependent of the point at which we evaluate M . The eigenvalues can be expressed
as

λ± = (1− 2R)± 2
√
R(R− 1). (3.65)
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Figure 3.11: The same phase plot as in Fig. 3.4, but for stronger perturbation (fol-
lowing Ref. [9]). The original fixed-point E has vanished and was replaced by an
inversion hyperbolic fixed-point Hi. Two new elliptic orbits are born E1 and E2.
Both of the elliptic fixed-points contain to the same orbit, of double period, thus a
period doubling bifurcation has occurred.

We can translate the stability criteria in terms of R. If R < 0 we have an ordinary
hyperbolic orbit, for 0 < R < 1 it is elliptic and for R > 1 it is inversion hyperbolic.
Right at R = 0 and R = 1 the fixed-point is parabolic. For an elliptic orbit to
become unstable it has to pass through being a parabolic fixed-point, at which it
bifurcates. “The possibility of bifurcations are limited by the requirement that the
so called Poincaré index be conserved. The index of a fixed point is the sign of its
residue, apart from exceptional cases with residue 0.” [82] Meyer gives in Ref. [83]
a proof that there only exist five ‘typical’ cases of bifurcations of two-dimensional
area-preserving maps. These results where extended by Mao [84] to systems where
the Poincaré map has discrete symmetries, as we will find in the quadrupole. We
still have only five classes of bifurcations and we will discover all of them from the
center orbit in the quadrupole, later in this Chapter, Section 3.4.1.

The location of bifurcations is directly related to the eigenvalues of the mon-
odromy matrix and its complex roots. In order to see this we can write a general
complex root of one as

λ = e±i2πl/m, with {l,m} ∈ �
= cos(2πl/m)± i sin(2πl/m)

= cos(2πl/m)± 2i sin(πl/m) cos(πl/m)

=
(
1− 2 sin2(πl/m)

)
± 2i

√
sin2(πl/m)

(
1− sin2(πl/m)

)
, (3.66)

comparing this to Eq. (3.65) we see that

Rl,m = sin2

(
π
l

m

)
, l,m ∈ � \ {0}. (3.67)

For these values of R the eigenvalue λ is a complex root of one. A m-bifurcation oc-
curs at every l,m ∈ � coprime, where we have a complex root of 1 for the eigenvalue
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λ. Only the first m-bifurcations will be of different types and we give the correspond-
ing residues and TrM in Table 3.1 The five types of bifurcations in a symmetric SOS

Table 3.1: The six bifurcations types.

l/m R TrM
1/1 0 +2
1/2 1 -2
1/3 3/4 -1
1/4 1/2 0

1/5 5−
√

5
8

√
5−1
2

2/5 5+
√

5
8

−
√

5+1
2

are:

• m = 1, Pitchfork bifurcation, R = 0, the orbit goes from stable to unstable and
a pair of stable orbits with the same period appears.

• m = 2, Period doubling, R = 1, the orbit becomes unstable (marginally stable)
and a new stable orbit of 2m appears. Period doubling can also be regarded
as a “pitch-fork” bifrucation of the 2m-map. In special cases where the initial
orbit continues to be stable and ∂R/∂ε = 0, a stable and an unstable 2m-orbit
are created.

• m = 3, Symmetric period tripling (touch and go), R = 3/4, the orbit stays
stable. Four orbits of period-3 are created near the fixed-point, two of them
stable, and the other two unstable. (For a discussion of the definition of near
see Ref. [84].)

• m = 4, Four-island chain bifurcation, R = 1/2, a pair of new period-4m orbits,
one stable and one unstable, are created. They form a chain with the hyperbolic
fixpoints between them

• m ≥ 5 m-island chain bifurcation for even m, same as m = 4, Doubled m-island
chain bifurcation for odd m Analogous to the symmetric period tripling.

A detailed discussion of the 2-bounce periodic orbit in the quadrupole can be found
further below in Section 3.4.1.

3.3.8 Homoclinic Points

In the last section we discussed the bifurcation of an elliptic fixed-point. Let us here
explore the behaviour of hyperbolic fixed-points in more detail. In Section 3.2.5 we
learnt that it is through the complex behaviour of the unstable manifolds that chaotic
motion sets in. The vicinity of one homoclinic point will get mapped into the vicinity
of the next under one iteration of the map. We have illustrated this in Fig. 3.12. The
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unstable (stable) manifolds shown in Fig. 3.12 can easily be calculated by starting
a Gaussian distribution of small radius (r ≈ 0.001) and propagating it for ≈ 10
iterations. This will give us only the unstable manifolds. To find the stable manifolds
we use the trick that unstable manifolds are under time reversal the stable manifolds.
Numbering the homoclinic intersections we can further distinguish between even and
odd Homoclinic points. This classification is invariant under iteration along the
manifold. We will encounter homoclinic points again in Section 4.11, where we will
find that they can have a significant effect time on wavefunction localization!

Figure 3.12: Four Gaussian distribution around the 0th (blue and red) and 1st (or-
ange and green) Homoclinic point are iterated four times. The unstable and stable
manifolds of the unstable two bounce orbit of the Quadrupole with ε = 0.08 are
plotted in black.

3.4 Fixed-points, Periodic Orbits in the Quadrupole

Any convex shape can be written in polar coordinates and expanded by a Fourier
series

r(φ) =
1

2
ao +

∞∑

k=1

ak cos kφ+
∞∑

k=1

bk sin kφ (3.68)

First we want to analyze billiards with reflection symmetry ⇒ bk = 0,∀k ∈ � . The
first nontrivial deformation is going to be that of the quadrupole which is relevant
to the microcavity experiments we have analyzed with the choice ao = 2, a1 = ε and
ak = 0 ∀1 < k ∈ � . We define the quadrupolar shape by

r(φ)/Ro =
1√

1 + 1/2ε2
(1 + cos 2φ) (3.69)

where the prefactor insures that the area of the quadrupole is fixed to a constant
value π and Ro is just an overall scale.

In the following we will analyze the properties of a few relevant periodic orbits
in the quadrupole.
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3.4.1 Bouncing Ball type orbits

The bouncing ball (BB) orbit is the dominant elliptic fixed-point in the quadrupole.
It is the shorter diametral orbit at φ = ±π/2. As the nearby orbits do not have a
definite sign of angular momentum we will treat this as a librational orbit. For this
orbit we want to analyze the bifurcation theory laid out Section 3.3.7. It will be
useful to know the trace of a higher repetition orbit, for the trace of the monodromy
matrix of the the 4-bounce orbit we write Tr(M4) = Tr2(M2) − 2. Clearly the 4-
bounce orbit will stay stable as long as the 2-bounce orbit is stable (|TrM2| ≤ 2),
and similarly any 2n− bounce orbit. All the librational orbits in the quadrupole are
born out of a bifurcation from the center 2-bounce orbit. Every bifurcation creates
an orbit with a period equal to a multiple of the initial orbit, thus there can only be
librational type orbits with an even number of bounces.4

Period-2 Orbits: Bouncing Ball Orbit

Figure 3.13: Both bouncing ball orbits in the quadrupole of ε = 0.08. The solid orbit
is the stable two-bounce, the dashed the unstable orbits.

At ε = 0 we have an infinite number of period-2 orbits. For a small non-integrable
perturbation ε 6= 0 we have seen that the infinite set breaks down and only two re-
main. One stable orbit along the minor axis of the quadrupole and one unstable
along the major axis (Fig. 3.13). In Fig. 3.14 we explore the birth of all orbits with
period m ≤ 8 which are born directly out of the 2-bounce orbit. We call the map for
the 2-bounce orbit M 2, with the residue R2. The center graph shows the residue of
M2,M4,M6 and M8 vs. deformation. Now we consider special values of the residue
R of the bouncing ball orbit. Whenever the residue touches R = 1 (period doubling
bifurcation), an orbit of double its period will be produced, for R = 0 (pitchfork
bifurcation) an orbit of same period will appear. The first bifurcation that we show
is at ε = 0.0353 where R = 1/2 (4-island chain bifurcation), a pair of 4N , period-8
orbits appears. Above the graph we show the stable orbits that are generated, while
below the unstable. If self-retracing orbits are produced we show the symmetric

4This might not be true if we have some external force acting, like gravity or a magnetic field.
In this case there can exist 1 bounce orbits.
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Figure 3.14: (center) The residue of the stable ‘bouncing ball’ orbit in the quadrupole
vs. the deformation. The 2-bounce (black), 4-bounce (red), 6-bounce (blue), 8-
bounce orbit (green). Above are the stable orbits born through the bifurcation,
below the unstable orbits. If self-retracing orbits are produced we show the symmetric
partner with a dashed line. The first bifurcation that we show occurs at ε = 0.0353,
two period-8 orbits are born. At ε = 0.0588 a pair of period-6 orbits are born. At
ε = 1/9 the ‘bowtie’ a period-4 orbit comes into existence, and we generate another
period-6 orbit at ε = 0.1579 and a period-8 orbit at ε = 0.1759. The bouncing ball
orbit becomes unstable at a pitchfork bifurcation at ε = 0.2. The two resulting orbits
of period-2 are shown on the right.

partner with a dashed line. At ε = 0.588 R = 3/4 (Symmetric period tripling bi-
furcation), four period-6 orbits, two stable ‘Fish’ and two unstable Hexagrams (time
reversal gives the other) are born near the fixed-point. See Appendix A.1.1 for more
information on this orbit. At ε = 1/9 we have R = 1, a period doubling bifurca-
tion of the main 2-bounce orbit. This bifurcation is a ‘un-typical’ period doubling
bifurcation as the original orbit does not get unstable. Two period-4 ‘Bowtie’ orbits
and two ‘Bird’ orbit appear, see Appendix A.1.1. The other two bifurcations follow
the same rules. At ε = 0.2 the center 2-bounce orbit bifurcates R = 0 with a pitch-
fork bifurcation and becomes unstable, as two new stable period-2 orbits are born.
This denotes also the point at which the quadrupole stops being convex. We will
investigate these special orbits in Appendix A.
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A) B)

Figure 3.15: Surface of Section for the Quadrupole. A) At ε ∼ 0.0588 the residue of
the BB R = 3/4 a symmetric period tripling bifurcation, the islands are born close to
the center fixed-point. B) At ε ∼ 1/9 the residue of the BB R = 1 a period doubling
bifurcation resulting in the 4-bounce Bow-tie orbit.

3.4.2 Whispering Gallery type orbits

The name whispering gallery terms from Lord Rayleigh [21] who analyzed the cor-
responding acoustic phenomenon in the St. Peters Cathedral in London (Fig. 1.3).
Following Lazutkin in Section 3.3.6, every convex billiard will have whispering gallery
type orbits. The shortest WG orbit that can span a convex shape is a three bounce
orbit. A whispering gallery type orbit will have the sign of the angular momen-
tum conserved. All the fixed-points that are non-librational are initially whispering
gallery orbits or are born through a bifurcation from them.

3.4.3 Unstable Manifolds – a survey

So far we have discussed the elliptic fixed-points and their position and bifurcations
in the SOS. What can we say about unstable fixed-points? We have seen that stable
and unstable manifolds can cross and we have shown the resulting homoclinic points
in Fig. 3.12. The manifolds we showed there is for the unstable 2-bounce orbit in the
quadrupole of ε = 0.08. We have stated that different unstable manifolds can not
cross each other and in Fig. 3.16 we give a survey of manifolds for the short periodic
orbits in the quadrupole with a deformation of ε = 0.18. Clearly the unstable
manifold of the 2-bounce orbit is the dominant boundary in phase space. Later in
Section 5.7 we will see that these unstable manifolds change the emission pattern of
polymer microlaser.

3.4.4 Mixed Phase Space in the Quadrupole

The last sections introduced and covered different stable and unstable periodic orbits.
In this section we will see the interaction of both in the SOS for a generic mixed
phase space. This gallery of SOS is given in Fig. 3.17 and explained in the caption.
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Figure 3.16: Survey of unstable manifolds in the quadrupole with ε = 0.18. The
colors of the orbits on the right refer to the manifolds in the SOS. Note that the
unstable manifolds do not intersect each other.

a) b)

c) d)
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Figure 3.17: The SOS of a quadrupole at fractional deformations ε =
0, 0.05, 0.11, 0.18. The closed curves and the curves crossing the SOS represent two
types of regular motion, motion near a stable periodic orbit and quasi-periodic mo-
tion respectively. The regions of scattered points represent chaotic portions of phase
space. A single trajectory in this “chaotic component” will explore the entire chaotic
region. With increasing deformation the chaotic component of the SOS (scattered
points) grows with respect to regular components and is already dominant at 11% de-
formation. Note in (b) the separatrix region associated with the two-bounce unstable
orbit along the major axis where the transition to chaotic motion sets in first.
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3.5 Ray-dynamics in cylinders

In three dimensions, the dynamics is even more complicated. The generic phase
space for a 3-d system is 6 dimensional and the Poincaré surface of section isn’t
anymore two dimensional. Arnol’d diffusion can take place as unbroken tori do not
bound motion the anymore [43].

All theoretical work based on ray-dynamics for micro cavities has been based
on 2-d dynamics, but all experiments are based on rods of deformed cross sections.
These structures are three dimensional but, an axis exists along which we have
translational symmetry (see Fig. 3.18 and Chapter 1) If we restrict ourself to such
geometries, we can still characterize the dynamics by projecting the 3-d dynamics
onto a 2-d dynamics, (see Fig. 3.19 and Fig. 3.20). Although the dynamics can in fact
be reduced to 2-d, the additional degree of freedom gives rise to polarization mixing
for the case of the vector wave-equation. These effects will be studied in detail in
Chapter 7. We will assume translational symmetry along the z axis, and project the
motion onto the 2-d (x, y) plane. In the (x, y) plane we write the projection vector
as

p =

(
px
py

)
, with |p| = 1 (3.70)

knowing the two vectors p1 and p2 we can calculate the angle they span by means

x

z

y
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θ

Figure 3.18: Schematic for the rays traveling in a 3-d cylinder.
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Figure 3.19: Schematic for the
rays in (x, y) plane.
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Figure 3.20: Schematic for the rays in the
plane perpendicular to (x, y).

of the scalar product

〈−p1|p2〉 = cos 2χ (3.71)

−(p1
xp

2
x + p1

yp
2
y) = cos 2χ. (3.72)

We write the 3-d vector as

P =




px
py

tan θ


 , with |P| =

√
1 + tan2 θ (3.73)

and calculate the scalar product

〈−P1|P2〉 = |P1||P2| cos 2η

−(p1
xp

2
x + p1

yp
2
y)− tan2 θ = |P1||P2| cos 2η

cos 2χ− tan2 θ = (1 + tan2 θ) cos 2η (3.74)

cos 2χ− tan2 θ

1 + tan2 θ
= cos 2η

a number of trigonometric identities later we find a shorter form

cos η = cos θ cosχ. (3.75)

From this equation we can see that when we consider the critical angle in the plane
of incidence η, that the corresponding critical angle χ in the (x, y) plane would not
be critical, were it not for a finite θ. With a θ 6= 0 we can see that the critical angle
will become steeper. The total internally reflected region in the surface of section
thus will become larger (see below).

3.6 Ray-dynamics in the ‘open’ billiard

Here, we finally get to deal with the actual problem of a dielectric resonator. So
far we have analyzed the ray-dynamics in a closed resonator, where we have perfect
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specular reflection and more importantly no escape. As seen in Section 2.4.2 any
dielectric resonator will have some outcoupling loss at each reflection, but when the
angle of incidence sinχ > sinχc = 1/n the light is total internally reflected (TIR)
and the loss is evanescent leakage and we typically neglected it. Below the critical
angle, the fraction of incoming radiation that escapes is given by Fresnel coeficients
(for a general derivation see Section 2.4.2). The emission directionality is given by
Snell’s law derived in Section 2.4.1. We will restate the law for a 2-d interface

n sinχ = no sinα, with no = 1. (3.76)

The critical angle of incidence manifests itself in a very simple and intuitive way in
the SOS as a straight line at sinχc. An orbit started above the critical line will be
total internally reflected as long as the angle of incidence stays above the critical
line; when it drops below, some light will get emitted from the cavity.

For the three dimensional rod we have derived the generalized Snell’s law in two
ways, via the EBK method in Section 2.4.1 and in a geometric fashion in Appendix B.
The far-field angle σ in this case is the projected far-field angle onto the (x, y) plane.

We have used a number of different methods for analyzing the emission properties
of open resonators. The classical ray simulation is done without phase information
and thus neither diffraction nor interference effects can be accounted for.

3.6.1 Ray simulation

The goal for ray simulations in microcavities is to be able to make some predictions
about the resonances of microcavities: 1) the emission directionality, 2) the lifetime or
path-length of a ray before it is emitted, 3) classical position-momenum correlations
in escape. In classical ray-simulation problems the initial conditions for the rays to be
traced are clear, define a light source and trace all the rays starting from this source.
For ray-simulations in microcavities the initial conditions are not that simple. Initial
work on ray-simulations in microcavities with high index of refraction by Nöckel [14]
followed the idea of starting rays on adiabatic curves in the surface of section. The
rays were then propagated and at every reflection of the boundary a random number
generator, biased with the Fresnel coefficiants, decided if the ray would refract or
reflect. All emitted rays were binned in discrete far-field angle segments. Our ray-
simulation avoids the Monte-Carlo aproach by giving every ray an initial amplitude
of one. The ray is then propagated through the algorithm of Section 3.3.4. At each
reflection from the boundary, the intensity is reduced by the Fresnel coefficients,
and the outgoing intensity and far-field direction is recorded and binned. Once the
amplitude drops below a minimum, the propagation is terminated. As discussed
above, critical for ray simulations are their starting conditions. Different methods
have been used throughout our research.

1. Starting a number of rays as Gaussian ensemble in the SOS. For closed res-
onator problems this method is especially useful for plotting the invariant
curves of hyperbolic fixed-points, the unstable manifolds and for analyzing the
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flow in the phase space (see Fig. 5.12). In the open resonator for simulation of
stable periodic orbits, the initial Gaussian is located on an island.

2. Starting a number of rays on a line or set of 1-d curves. For the simulations of
an elliptic cavity we started rays on a set of adiabatic curves following Eq. (3.47)

3. Starting a number of rays randomly in a given region. For the open resonator
of low index of refraction (see Chapter 5) we used this method to simulate
flood-pumping of the resonator. In the case of the closed resonator we used it
to understand the general flow in the phase space.

4. Starting a number of rays randomly in a given region. The emission intensity
at (φ, sinχ) is recored and projected in to the SOS. This can be directly related
to the image data in experiments reported in Chapter 5, (see Fig. 5.13).

5. Starting a number of rays with density depending on a Husimi-Projection of a
mode. This was used as a ray-test for the numerical calculation of the lasing
‘Scar-of-David’ mode, (see Fig. 8.26 B).

3.6.2 Classical lifetime in a cavity

For resonantor and lasers in particular an important value is the Q-value. We can
find the Q-value of an open cavity via the associated lifetime τ

Q = ωoτ = kL (3.77)

where we can deterine the lifetime τ by the pathlength in the cavity till the amplitude
drops from 1 to e−1. Some example simulations are shown in Figs 3.21 and 3.22.
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Figure 3.21: Distribution of path length in quadrupole with the area π and ε =
0.12, 0.18 and n = 1.49 for 6000 random rays started above the critical line. The
average length is 68.437 (17.414), the median 15.234 (7.554).



CHAPTER 3. RAY-DYNAMICS IN DEFORMED CAVITIES 56

0 50 100 150 200 250
0

200

400

600

800

1000

1200

1400

1600

1800

length

nu
m

be
r 

of
 r

ay
s

Figure 3.22: Distribution of path length in quadrupole with ε = 0.18 and n = 1.49
for 6000 random rays started above sinχ = 0.909. The average length is 36.491, the
median 26.089.

3.6.3 Experiment – Theory

Far-field

From ray simulations the simplest information one can extract is the “classical”
prediction for the emitted intensity in the far-field, used extensively in Chapter 5.
Here we just bin the far-field angle and add the intensities obtained from the ray
simulation. This is compared with the experimental setup where we place a CCD
camera into the far-field of the cavity and report the intensity as a function of the
far-field angle. (See Chapter 8)

Image-field

An experimental setup which yields more information is the imaging experiment,
described in Chapter 8. With the help of an imaging lens and a CCD camera in
the far field, the sidewall intensity is recorded and then plotted as boundary angle
vs. far-field angle. This can be back projected onto the SOS and compared with a
“ray-escape” simulation. In such a simulation we record the outgoing intensity at
each point in the SOS and project it as a color scale on top of the SOS. We shall see
in Fig. 5.13 that for the experiments described there, impressive agreement is found
between this ray simulation and the experiment.



Chapter 4

Resonant Solutions of the

Wave-equation

4.1 Introduction

In Chapter 2 we have reduced the Maxwell equations to the vector Helmholtz equa-
tion appropriate for the study of dielectric resonators. We learned that the actual
difficulty in solving this equation arises through the boundary conditions, which in
the general (kz 6= 0) case, couple various field components. In this chapter we will
review the two approaches for finding the resonances of a cavity and devise a new
numerical algorithm for this task. We will study the resonator with Sommerfeld
boundary conditions, where we will learn about quasi-normal modes. Here we will
follow the approach laid out in Ref. [66, 1]. For the symmetric geometry of the
cylinder we will write a resonance condition and find the quasi-normal modes via a
complex root finding method. This method will work for more general geometries for
which we will analyze the eigenphases of the S-matrix and devise a new numerical
algorithm to find a large number of quasi-normal modes with a single calculation.
The connection to experimental observables, the far-field and boundary image field
are then developed via the large argument expansion of the Hankel function and the
Husimi-Poincaré phase-space projection.

4.2 The Resonance problem – two Philosophies,

one Solution

To illustrate the different approaches in solving the resonance problems we will start
with the general vector Helmholtz equation for a dielectric (2.20)

(
∇2 + γ2

){Ez(x, y)
Bz(x, y)

}
= 0, with γ2 = n(x)2k2 − k2

z , (4.1)

57
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Figure 4.1: Schematic for the infinite rod with translational symmetry along the
ẑ-axis and arbitrary convex cross-section, with the boundary R(z, φ).

where we assume the resonator to be bounded by the interface ∂D given by (see
Fig. 4.1)

∂D = R(z, φ) ∀ z ∈ �
, φ ∈ {0..2π}. (4.2)

The boundary conditions have been derived in Section 2.3. As we will deal with
general convex shapes a good way to decompose the internal and external Ez and
Bz fields is by their decomposition into cylindrical harmonics

(
E<
z

B<
z

)
(r, φ) =

∞∑

m=−∞

[(
αm
ξm

)
H+
m(γ1r) +

(
βm
ηm

)
H−
m(γ1r)

]
eimφ (4.3)

(
E>
z

B>
z

)
(r, φ) =

∞∑

m=−∞

[(
υm
ζm

)
H+
m(γ2r) +

(
δm
ϑm

)
H−
m(γ2r)

]
eimφ, (4.4)

where H± are the cylindrical Hankel-functions, H− representing an incoming wave
from infinity and H+ an outgoing wave.

There are two approaches for solving this linear problem with fixed index of
refraction n for the resonances: the first is to calculate the real k unitary S-matrix,
in the usual way, matching an incoming wave from infinity to an outgoing wave at
infinity. The other approach is the Sommerfeld boundary condition where we only
allow for outgoing waves

(
E>
z

B>
z

)
(r) =

∞∑

m=−∞

(
υm
ζm

)
H+
m(γ2r), r →∞. (4.5)

This problem is not current conserving and can only be solved for complex k. There is
a subtle relationship between these two classes of solutions. It can be shown that the
complex k = x+iy, k ∈ � \ �

are the poles of the S-matrix continued to the complex
plane [66, 1]. This relationship is illustrated in Fig. 4.2. These discrete solutions are
known as quasi-normal modes. The real part x of the wave-vector determines the
frequency ω = cx and the imaginary part represents the lifetime τ = 1/cy. An
experimentally relevant factor always reported in experiments involving resonators
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Figure 4.2: A comparison of scattering and emission pictures for quasi-bound modes.
The complex quasi-bound mode frequencies are plotted on the Re [kR] − Im [kR]
plane. On the back panel we plot the real k S-matrix, scattering cross-section at
170◦ with respect to the incoming wave direction. Notice that the most prominent
peaks in scattering intensity are found at the values of k where a quasi-bound mode
frequency is closest to the real-axis. These are the long-lived resonances of the cavity.
Also visible is the contribution of resonances with shorter lifetimes (higher values of
Im [kR]) to broader peaks and the scattering background.

is the so called Q-value of the resonator. It is defined by the number of cycles it
takes for the optical field at frequency ω to decay to its half value: Q = ωτ =
−2Re [γR] /Im [γR].

The physical problem that we are typically interested in however, is that of a
laser cavity, which contains a non-linear gain medium. For a laser above threshold
however, the index becomes a non-linear function of the field strength. Here, we
will confine our discussion to the linear resonances, as is frequently done in laser
theory [85]. In that case, a simple model to take into account gain, albeit at a linear
level, is to look for solutions of the Helmholtz equation with a complex index of
refraction. For certain discrete values of n, it is possible to find stationary solutions
with a real k. Such solutions are continuously related to the quasi-bound modes with
real n. We have studied these solutions but do not present the results here.

4.3 Quasi-bound resonances in the Cylinder

In this section we want to explicitly calculate the quasi-bound modes for the cylinder.
In the following we will simplify the notation:

Jm := Jm(γ1R) and Hm := H+
m(γ2R) (4.6)
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where γi =
√
n2
i k

2 − k2
z , i ∈ {0, 1} and R is taken on the boundary of the domain.

With this convention we can write the ansatz for the cylinder

E<
z (r;m, j) = αmJm(γm,j1 r)eimϕ B<

z (r;m, j) = ξmJm(γm,j1 r)eimϕ r < R (4.7)

E>
z (r;m, j) = υmH

+
m(γm,j2 r)eimϕ B>

z (r;m, j) = ζmH
+
m(γm,j2 r)eimϕ r > R. (4.8)

Using the continuity of the field boundary conditions Eq. (2.41) and Eq. (2.42) we
get the relations

υm =
Jm
Hm

αm ζm =
Jm
Hm

ξm (4.9)

using this Eqs. (2.43), (2.44) can be rewritten in the following way

(
ikzτmJmHm

k
γ2
1
Hm∂ρJm − k

γ2
2
Jm∂ρHm

n2
1k

γ2
1
Hm∂ρJm − n2

2k

γ2
2
Jm∂ρHm −ikzτmJmHm

)(
αm
ξm

)
= 0 (4.10)

where τ = (1/γ2
1 − 1/γ2

2). Some of the pre-factors in Eq. 4.10 should only depend
on geometric quantities, independent of k. This formulation will be useful for semi-
classical considerations, following the idea in Eq. (2.62) we can write
(

im(n− n3) sin θJmHm cos2 αHm∂ρJm − n2 cos2 θJm∂ρHm

n2 cos2 αHm∂ρJm − n2 cos2 θJm∂ρHm im(n3 − n) sin θJmHm

)(
αm
ξm

)
= 0.

(4.11)
Where tan θ = kzγ1, the angle inside of the ray spiraling up with respect to the
(x, y) axis and α the angle outside, see Fig. 2.3. In order for this system to have a
non-trivial solution the determinant needs to vanish, resulting in

k2
zτ

2m2J2
mH

2
m =

[
1

γ2
1

Hm∂ρJm −
1

γ2
2

Jm∂ρHm

] [
n2

1k
2

γ2
1

Hm∂ρJm −
n2

2k
2

γ2
2

Jm∂ρHm

]
,

(4.12)
or in the geometric form:

n2(1− n2)2m2 sin2 θ =
1

JmHm

[
n2 cos2 αHm∂ρJm − n2 cos2 θJm∂ρHm

]

× 1

JmHm

[
cos2 αHm∂ρJm − n2 cos2 θJm∂ρHm

]

≡ GTE ·GTM

(4.13)

Where we have defined:

GTE =
1

JmHm

[
1

γ2
1

Hm∂ρJm −
1

γ2
2

Jm∂ρHm

]

GTM =
1

JmHm

[
n2

1

γ2
1

Hm∂ρJm −
n2

2

γ2
2

Jm∂ρHm

]
. (4.14)

In this form the resonance conditions Eq. (4.12), (4.13) bear a simple relation to the
familiar resonance conditions for the TM and TE modes for kz = 0. For kz = 0,
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Figure 4.3: TE like resonances (red circles) and TM like resonances (blue circles)
for a cylinder with n = 2, θ = 0.2, solid black line corresponds to the critical angle
defined by γ1 = mn and the green line to the Brewster condition γ1 = m

√
n2 + 1.

θ = 0 (τ = 0, γ1 = n1k, γ2 = n2k), the left hand side of Eq. (4.12), (4.13) vanishes,
giving

0 = GTE ·GTM =

[
1

n2
1

Hm∂ρJm −
1

n2
2

Jm∂ρHm

] [
Hm∂ρJm − Jm∂ρHm

]
. (4.15)

The vanishing of the left bracket describes the resonance condition for the TE modes
and the vanishing of the right bracket that for the TM modes [66, 1].

In order to find the resonances in the cylinder, all we need to do is to solve

n2(1− n2)2m2 sin2 θ = GTE ·GTM . (4.16)

The resonances are found numerically by complex root searching on a 2d grid. We
use the SLATEC routine dnsqe [86]. In Fig. 4.3 the real part of the resonances found
in this manner are plotted. The coloring represents the TE or TM “character” of
these hybrid modes, determined by the relative magnitudes of |GTE| and |GTM | (see
below).

4.4 Quasi-bound modes in an arbitrary shape with

kz 6= 0

In this section we will generalize the above treatment and apply it to a dielectric rod
of arbitrary cross-section. We will formulate it in such a way that we can solve it
numerically. From Chapter 2 we know that the complication of the problem arises
through the mixing of the Ez and Bz fields via the boundary conditions Eq. (2.41)-
(2.44). We will now apply the Sommerfeld boundary conditions upon the general
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ansatz Eq. (4.3)

(
E<
z

B<
z

)
(r, φ) =

∞∑

m=−∞

[(
αm
ξm

)
H+
m(γ1r) +

(
βm
ηm

)
H−
m(γ1r)

]
eimφ r < R (4.17)

(
E>
z

B>
z

)
(r, φ) =

∞∑

m=−∞

(
υm
ζm

)
H+
m(γ2r) e

imφ r > R. (4.18)

Due to the completeness of the cylindrical harmonics we know that the expansion
for r < Rmin and r > Rmax, where Rmin = min{R(φ) |φ ∈ (−π, π]} and Rmax =
max{R(φ) |φ ∈ (−π, π]}, is exact as long as the sum runs over an infinite number
of terms. The assumptions that the expansion can analytically be continued to
the region Rmin < r < Rmax is known as the the Rayleigh hypothesis [87]. It
has been shown [88] that for a family of deformations of a circle parameterized by
δ there exists a δc such that the expansion will become non-analytic in the interval
R(δ)min < r < R(δ)max. For us this will have no practical relevance as the breakdown
only occurs at deformations where the domain D would already be concave. We will
however notice a numerical instability in the vicinity of r ≈ Rmin, which is a precursor
of this effect.

To handle the problem efficiently numerically we will discretize the boundary
at this point. We have also analyzed in depth the possibility of matching in the
Fourier space of the angle coordinate. We found that both methods give us the same
resonances numerically; the formergives the benefit of a speed increase.1

We will now impose the boundary conditions Eq. (2.41)-(2.44) at ∂D = R(φ) ∀φ ∈
{0..2π} and write the equations in their discretized version

C




|α〉
|υ〉
|ξ〉
|ζ〉


 = B




|β〉
|υ〉
|η〉
|ζ〉


 , (4.19)

where

CT =




0 kz

γ2
2
TC(l,m) −C(l,m) − kR

γ2
2
NC(l,m)

0 − kz

γ2
1
TA(l,m) A(l,m) kR

γ2
1
NA(l,m)

−C(l,m) −kR
γ2
2
NC(l,m) 0 − kz

γ2
2
TC(l,m)

A(l,m) n2 kR
γ2
1
NA(l,m) 0 kz

γ2
1
TA(l,m)


 (4.20)

and

BT =




0 0 0 0
0 0 0 0
0 kz

γ2
1
TB(l,m) −B(l,m) − kR

γ2
1
NB(l,m)

−B(l,m) −n2 kR
γ2
1
NB(l,m) 0 − kz

γ2
1
TB(l,m)


 (4.21)

1∼ 240% increase for a generally configured system.
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with γ1 =
√
n2kR2(φ)− k2

z and γ2 =
√
kR2(φ)− k2

z and the block matrices are given
by

A(l,m) = H+
m(γ1)e

imφl (4.22)

B(l,m) = H−
m(γ1)e

imφl (4.23)

C(l,m) = H+
m(γ2)e

imφl . (4.24)

The T (N) denotes the tangential (normal) derivative, given in Appendix D with
Γ =

√
r2 + r′2 here the normal derivatives, using the recursion relation for Hankel-

functions from Appendix G,

NA(l,m) =
1

Γ

[
Rγ1H

+
m−1(γ1)−m

R + iR′

R
H+
m(γ1)

]
eimφl (4.25)

NB(l,m) =
1

Γ

[
Rγ1H

−
m−1(γ1)−m

R + iR′

R
H−
m(γ1)

]
eimφl (4.26)

NC(l,m) =
1

Γ

[
Rγ2H

+
m−1(γ2)−m

R + iR′

R
H+
m(γ2)

]
eimφl (4.27)

and the tangential derivatives

TA(l,m) =
1

Γ

[
R′γ1H

+
m−1(γ1)−m

R′ − iR
R

H+
m(γ1)

]
eimφl (4.28)

TB(l,m) =
1

Γ

[
R′γ1H

−
m−1(γ1)−m

R′ − iR
R

H−
m(γ1)

]
eimφl (4.29)

TC(l,m) =
1

Γ

[
R′γ2H

+
m−1(γ2)−m

R′ − iR
R

H+
m(γ2)

]
eimφl (4.30)

where R = R(φl) denotes the boundary. From these relations we can define an
‘internal’ S-matrix

S(k)

(
|α〉
|ξ〉

)
=

(
|β〉
|η〉

)
(4.31)

As the interior field
(
Ez
Bz

)<
needs to be regular at the origin, we need to impose

|α〉 = |β〉 and |ξ〉 = |η〉. The interior field can then be described just by the Bessel
functions of the first kind Jm.

H+
m +H−

m = (Jm + iNm) + (Jm − iNm) = 2Jm (4.32)

We will later return to this point and keep |β〉 and |η〉 to use a numerical trick that
will help us to increase the speed and stability of the numerical routine. But for now
we write the Eq. (4.31) as

S(k)

(
|α〉
|ξ〉

)
=

(
|α〉
|ξ〉

)
(4.33)
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This S-matrix is different from the usual S-matrix in that it non-unitary.2 We need
to note that as we are considering the 3d system, the matrix is of order 2N × 2N .
The standard approach to this problem lies now in solving the eigenvalue problem

S(k)

(
|α〉
|ξ〉

)
= eiθ

(
|α〉
|ξ〉

)
(4.34)

and finding the complex values of k for which θ = 2mπ, (m ∈ �
). As we have noted

above, the resonances associated to the quasi-normal modes only exist in the complex
plane, thus we expect a complex phase θ = ξ + iη with {ξ, η} ∈ �

, if we attempt to
solve Eq. (4.34) for k ∈ �

. The solutions are in general [89] written in terms of the
roots of the secular function ζ(k)

ζ(k) = det(1− S(k)). (4.35)

4.5 Numerical Strategies

The resonances that are of interest to us are in general well into the semiclassical
regime where we know that the angular momentum of ray-trajectories is related to
the wave properties by L = sinχ = m/γ [11, 66]. The dynamics within a ball of
radius Rmin is the well know scattering problem of a circle, with the incoming field
defined by the region between Rmin and Rmax. The number of scattering channels
is thus given by Λsc = [[γ1min]] where [[·]] denotes the integer part of γ1min. Modes
which have angular momentum with m > γ1max correspond to evanescent that are
classically forbidden. Such modes will not factor in significantly into the scattering
problem. To calculate the S-Matrix numerically we need to truncate it, and these
evanescent channels determine an appropriate cutoff. Modes corresponding to angu-
lar momentum of the order sinχ >∼ m/γ1min are only partially evanescent and have
to be included [89]. A good cutoff is thus m = Λ = [[γ1max]] + ∆ where ∆ is of the
order of 5% of Λsc.

Calculating the S-matrix S(γ) can involve the inversion of a number of matrices.
In consideration of speed and numerical stability we want to employ here a different
approach. Taking the regularity of the origin into account (|α〉 = |β〉 and |ξ〉 = |η〉)
we can write Eq. (4.19) as a generalized eigenvalue problem

C




|α〉
|υ〉
|ξ〉
|ζ〉


 = eiθB




|α〉
|υ〉
|ξ〉
|ζ〉


 . (4.36)

Efficient numerical methods have been developed and there exist powerful generalized
eigenvalue solvers such as ZGGEV in the LAPACK library [91].

Solving the equation in this manner has a nice side benefit, both, the inside and
outside vectors of the Ez and Bz fields |α〉, |υ〉, |ξ〉, |ζ〉 are obtained at one shot! For

2We use the symbol S here for historical reasons comparing to the S-matrix from Refs [89, 90].
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Figure 4.4: Magnitude of the elements in the A matrix. Due to the large span of
magnitude encountered in the matrices we devise a scaling scheme by which we scale
every angular momentum component m with the corresponding Hankel function with
argument at the minimum radius. In A) we show the reference frame for the matrix
values for the direct boundary matching, in B) for the integrating method. C) Direct
boundary matching method without scaling, D) with scaling. E) Integrating method
without scaling, F) Integrating method with scaling.

numerical evaluation we should check the magnitude of the elements in both of the
matrices. We will focus in the following on the block matrix A. In Fig. 4.4 C) we
see, that the magnitude can vary significantly (the color scale has a sharp cutoff).
The elements nearly explode in the region of smallest radius (±π/2) with large m.
A reduction scheme was originally introduced by Phillipe Jacquod by simply scaling
every angular momentum component by the corresponding Hankel function at the
smallest radius. The results are shown in Fig. 4.4 D) where the color scale does not
have a cutoff. An interesting fact is that we can see the regions with the contribution
of the evanescent modes nicely. The Fourier space matrix becomes almost diagonal.
We show the magnitudes in the whole C matrix in Fig. 4.5

At this point in principle we need to do a complex search to find the quantized
modes with θ = 2πn. However we have devised a very powerful method to bypass
this search by studying the behavior of the eigenphases with respect to variation of
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Figure 4.5: Magnitudes of the CT matrix from Eq. (4.20), with kR = 30, kz = 5,
n = 1.5 for the quadrupole with ε = 0.1.

the wave-vector. We quote from Refs [66, 1] that the average phase velocity is

dθ

d(γ1R)
= 2 sin β, with β = arccos

m

γ1R
. (4.37)

This behavior is shown in Fig. 4.6 and we state here again, that a change in Re [γ] will
change the angle of the eigenvalue and a change in the imaginary −Im [γ] will move
it radially outwards. With all this at hand we can predict the exact location of zeros
of the secular function Eq. (4.35), at least within a reasonable range of deformation
of the circle and reliably for a fraction of the resonances.

4.6 Adiabaticity of eigenvectors

But our argument goes further. We claim that the eigenvector |α〉 (|ξ〉) associated
to the E<

z (B<
z ) field has for a given γ has an identity when the mode is quantized,

but also off quantization [40]. To quantify this claim we introduce a simple scalar
product between two eigenvectors of the S-matrix

〈α(k)|α(k + ∆k)〉 =
∑

m

αm(k)α∗
m(k + ∆k). (4.38)
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Figure 4.6: Several representative eigenvalues z (corresponding to states associated
with the ray orbits above and below via color code) traced in the complex plane as
one changes the real and imaginary values of k. First Re [k] is varied resulting in
the circular arcs of fixed radius (Im [z]); subsequently Im [k] is varied resulting in a
radial motion and fixed Re [k]. On the right hand side we show the constancy of the
derivative of the phase angle θ with respect to Re [nkR] and of the derivative of the
logarithm of the radius η(k) with respect to Im [nkR], implying constant speed of the
eigenphases as a function of k in the complex plane. The simulations are performed
at ε = 0.12 quadrupolar deformation, n = 2.65.

We have analyzed this in Fig. 4.73 where we used the scalar product to calculate
the overlap of each eigenvector with that of the eigenvector belonging to a ‘fish’ type
eigenmode vs. the phase of the eigenvalue ξ. We choose the effective wave vector
to be kR = 120 for the closed and kR = 80, n = 1.5 for the open calculation. The
orthogonality relation is clearly fulfilled for the closed resonator, as we would expect,
but also to a certain extent in the open resonator. This holds in the open resonator
not only for a mode well localized on a stable periodic orbit, i.e. the ‘fish’ orbit, but
also for a scarred rectangular orbit.

Seeing that states are quasi-orthogonal away from quantization we might ask how
a state that is off quantization looks like in the real-space projection. We know that

3Note: The calculation shown in this Section have been obtained for the 2-d system, improving
speed and efficiency. It has been however confirmed for the 3-d system too.
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Figure 4.7: Orthogonality of eigenvectors |α〉. Overlap defined by the scalar product
in Eq. (4.38) with a stable ‘fish’ type orbit and the unstable rectangular orbit (see
insets) in the quadrupole with ε = 0.10 vs. the phase of the eigenvalue θ. A) ‘fish’,
B) rectangle in the closed cavity (note the log-scale) with kR = 120 and C) the ‘fish’,
D) rectangle in the open cavity with nkR = 120, n = 1.5 (linear scale). Even the
scarred rectangular orbit has a well defined identity.

the quantization condition is not fulfilled and when we write the internal field as

E<
z (r, φ) =

∑

m

αm
(
H+
m(γ1R) + eiθH−

m(γ1R)
)
eimφ (4.39)

the existence of the eiθ would leave us exposed to the r−m singularity of the Neumann
function at the origin. This limitation is an artifact of the particular choice of basis
we might nevertheless be näıve and plot the state ignoring the phase using

E<
z (r, φ) =

∑

m

αm2Jm(γ1R)eimφ. (4.40)

From this we can learn a bit of what happens in-between two quantized states. In
Fig. 4.9 we explore it for the closed resonator, where we plot the internal field even
beyond the boundary. The boundary is indicated by the white line. We can see
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Figure 4.8: Un-quantized State calculated in the closed 2-d cavity at kR = 70,
λ = −(0.9978 + 0.0657i) the quantized values are at kR = 68.2653 and kR =
72.0626. We see that the boundary condition is not fulfilled. At λ ∼ −1 we
are exactly between quantization.

Figure 4.9: On the left the state quantized at kR = 68.2653, on the right at kR =
72.0626.

that at the point of quantization the boundary is on a nodal line, for the state off
quantization the boundary is somewhere in-between. With a simple picture this can
be understood. Every point in the field always depends on the product of the wave-
vector k and the position r. For the circular case this would just be the distance r
from the origin. Increasing k can thus be seen as rescaling the coordinates or moving
the boundary smoothly to the next nodal line.

To understand the ‘identity’ of a state even in the case when it is not simply
related to a stable or unstable periodic orbit, we can use the powerful method of
the Husimi-Poincaré projection technique, (see Section 4.10) where we can associate
each mode with a certain area of the phase-space.

We will renew our claim that an eigenvector has an identity and that the identity
will remain for small changes in k (small with respect to mean level spacing), thus
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Figure 4.10: The overlap calculated for a set of states in the interval nkR = 106 −
107.5, for ε = 0.12 and n = 2.65. The associated classical structures are found
from the Husimi projections of the respective states (see Fig. 4.11). The schematics
identify the ray orbits with which they are associated (see discussion in text). At this
deformation the short two-bounce orbit is stable, the long one unstable; the diamond
orbit is stable and the fish and triangle orbits are unstable.

the behavior of the scalar product 〈α(k)|α(k+ ∆k)〉 is adiabatic. (This in general is
not true for eigenvectors associated to the class of evanescent modes.) In Fig. 4.10
we confirm this claim numerically for a set of five different orbits, where we trace the
overlap of the eigenvectors with the initial eigenvector at kRo = 106 over an interval
of the order of the mean-level spacing. We solve the S-matrix eigenvalue system first
at kRo = 106 where the eigenvectors |α(k)o〉 are obtained. We repeat this with a
step size n∆kR = 0.03.

We can even extend this strategy to higher deformations, where the SOS is mainly
chaotic and the Husimi projection localizes in the chaotic sea. An often encoun-
tered scenario is the avoided crossing of two scattering eigenvectors, as captured in
Fig. 4.11. Two eigenvectors are traced over a a mean-level spacing. Both of the
states are initially well-distinguished, their overlap is near zero. We follow both
states adiabatically, and show the overlap with the initial ‘fish’ state |αo〉. The other
state is concentrated in the seperatix region and associated with the unstable two
bounce diametral orbit; we have plotted the unstable manifold (see Section 3.4.3)
as a reference. If we follow the states long enough, we see that both of the states
change identity. We note however that there is still going to be a state which has
a considerable 80% overlap with the initial |αo〉. In the bottom right graph we see
that states do like to localize in the phase space on homoclinic points, as suggested
in Section 3.2.5

This simple behavior can be understood from the fact that the classical channels,
angular momentum in our case, preserve their identity over a mean level spacing [66,
1]. In conclusion the radial and angular speeds of the eigenvalues are approximately
‘decoupled’. To high accuracy the speed of the eigenphase is constant as is the log
of the magnitude.
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Figure 4.11: Two eigenvectors (quadrupole ε = 0.11) are traced by the criterion that
the overlap is largest in two consecutive iterations. The figure shows the overlap of
the two sets of states resulting with respect to one of the initial states, 〈α0|.

4.7 The Algorithm

With the last remarks in the preceeding section we can now establish an efficient
numerical algorithm. The idea is demonstrated in Fig. 4.6, where first, the initial
eigenvalues are followed while varying the real part of γ; each of the eigenvalues
follow approximately a circular trajectory. Second, a purely imaginary change in γ,
results in a change of the eigenvalues following an almost precisely radial path.

We thus state the algorithm:

1. Diagonalize S(γ) at a given γ, with an eigensystem of size
(4Ntrunc × 4Ntrunc) and get 2Ntrunc eigenphases θl and eigen-

vectors,
∣∣ α
ξ

〉(l)
o

, l = 1, . . . , Ntrunc.

2. Diagonalize S(γ + ∆γ) a second time at γ = γo + ∆γ, where

γ ∈ � and |∆γ| ¿ γ and associate each eigenvector
∣∣ α
ξ

〉(l)
o

(γ+

∆γ) with an initial eigenvector
∣∣ αl

ξ

〉(l)
o

(γ).

3. Approximate radial and angular speed of the eigenphase.

4. Assume constancy of speeds and approximate quantization
wave-vector γ

(l)
q for each initial eigenvector.

5. Construct the quasi-bound using the non-quantized eigenvec-

tor
∣∣ αl

ξ

〉(l)
o

mode via

(
Ez
Bz

)(l)<

q

(r, φ) =
N∑

m=−N

(
αm
ξm

)(l)

Jm
(
γ(l)
q r
)
eimφ. (4.41)

The last statement is valid due to the adiabaticity of the eigenvectors. In the ideal
case we can construct 2Ntrunc quasi-bound modes by only two diagonalization. This
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limit is not always attained. The algorithm can be adapted for the particular interest.
If the quantization of a single state is desired, multiple scans can be performed in a
Newton’s root-search like fashion and the quantization can be achieved to arbitrary
precision. The real power nevertheless lies in the fact that we get a full discrete set of
order [[γ]] discrete eigenmodes, compared to the external scattering approach; second,
the calculated eigenstates have in general a physical identity, conserved over the
mean-spacing. This identity relates them directly to the actual quasi-bound modes.
A physically relevant quantity is the far-field distribution which we will describe
below. A second one is the Husimi projection; we find that the off-quantized Husimi
projection of the eigenvector is very close to that of the quantized one.

4.8 An experimental observable – The Far-field

The most common micro-laser measurement carried out in experiments is the so
called far-field measurement. For this we position a CCD camera in the far-field of
the cavity and record the emission intensity measured as a function dependent on the
far-field angle Θ. We will explain this experimental method in detail in Chapter 8.
The far-field information was the only information at hand for the famous ‘Bow-tie’
experiment in Ref. [8] Our algorithm is very efficient in calculating all possible far-
fields achievable with a given resonator shape and index of refraction. We solve the
S-matrix problem at a given γ close to the lasing frequency ω = cγ. The far-field
intensity of the Ez (Bz) component can be extracted from the outside field via the
large argument expansion Eq. (G.12) and written as

I(φ) = |E>
z |2 ∝

∣∣∣∣∣
∑

m

ζme
im(φ−π

2 )

∣∣∣∣∣

2

, (4.42)

where we have extracted all quantities independent of φ. The results are shown in
Fig. 4.12 where we computed the far-field for the ‘fish’ mode at different quantization
points over two level-spacings. We see that the far-field intensity distribution is very
well-behaved and insensitive to small variations in γ used, as the strongly varying
Hankel functions dropped out of the quantity. We have already seen above that the
eigenstates |α〉 (|ξ〉) have adiabatic behavior for small variations of γ and as |α〉 (|ξ〉)
is directly related to |υ〉 (|ζ〉) via Eq. (4.9) this comes as no surprise. Nevertheless
it is very powerful as it allows us to obtain all possible emission patterns for a wide
range of dielectric resonators very rapidly.

4.9 Polarization in the far-field

So far we have only considered the magnitude of each of the components of the
solutions to vector wave-equation in the far-field. Polarization in general cannot be
defined close to the cavity. In the far-field on the other hand, where the radiation
is well approximated by a plane-wave-type field, we should be able to analyze the
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Figure 4.12: Far-field emission intensity pattern for a ‘fish’ mode in the quadrupo-
lar rod with ε = 0.1, θ = 0.2 = arctan kz/γ1, at four different values of γ =
40.0, 40.5, 41.0, 41.5. Clearly the essential features of the emission patterns are cal-
culable with non-quantized modes. In the inset we show the eigenvalues z in the unit
circle.

polarization of the radiation in the far-field in conventional terms. For this, we need
to expand each component of the three dimensional E-field using the large argument
Hankel-expansion. First we need to project the normal field component E⊥ into a
suitable geometry, for which we will choose polar coordinates (ρ, ϕ) due the symmetry
of our problem. Then, the gradient takes the form

∇⊥ =

(
∂ρ
1
ρ
∂ϕ

)
. (4.43)
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The first task is to write the Eq. (2.16) and Eq. (2.17) in polar coordinates.

Eρ =
ik

γ2

1

ρ
∂ϕBz −

ikz
γ2
∂ρEz (4.44)

Eϕ = − ik
γ2
∂ρBz −

ikz
γ2

1

ρ
∂ϕEz (4.45)

Bρ = − in
2k

γ2

1

ρ
∂ϕEz −

ikz
γ2
∂ρBz (4.46)

Bϕ =
in2k

γ2
∂ρEz −

ikz
γ2

1

ρ
∂ϕBz (4.47)

As we are interested in the far-field, we only investigate the field outside and write
the the outgoing component of Ez and Bz as

E>
z (ρ, ϕ) =

∑
υmH

+
m(γ2kρ)e

imϕ (4.48)

B>
z (ρ, ϕ) =

∑
ζmH

+
m(γ2kρ)e

imϕ (4.49)

(4.50)

Using the recursion relations of the Bessel-functions we can write the derivatives as

∂ρH(γ2kρ) = γ2

(
H+
m−1 −

m

γ2ρ
H+
m

)
(4.51)

using the large argument expansion we get

H+
m →

√
2

πγ2ρ
exp i(γ2ρ− π/4) · e−imπ/2 (4.52)

∂ρH
+
m →

√
2

πγ2ρ
exp i(γ2ρ− π/4) · e−imπ/2

{
e−iπ/2 − m

γ2ρ

}
(4.53)

Extracting the angular part of the field at a constant ρ→∞

|E|2 =

∣∣∣∣∣



Eρ
Eϕ
Ez



∣∣∣∣∣

2

∼
∣∣∣∣∣

( kz/γ2

∑
υme

im(ϕ−π/2)

k/γ2

∑
ζme

im(ϕ−π/2)
∑
υme

im(ϕ−π/2)

)∣∣∣∣∣

2

=

∣∣∣∣∣

( kz/γ2Ez
k/γ2Bz

Ez

)∣∣∣∣∣

2

(4.54)

The coefficient in front of the field are all related to each other, following Fig. 2.3
B) we can substitute kz/γ2 = tanα and γ2/k = cosα. In the far-field the E and B

fields must be fully transverse to the propagation direction, which will have both a
(2d) radial component and a z-component. Thus the transverse direction is tilted
by the angle α to our original coordinate system and we need to rotate the ρ and ϕ
component of the E-field by




cosα 0 − sinα
0 1 0

sinα 0 cosα






tanαEz
secαBz

Ez


 =




0
secαBz

secαEz


 (4.55)
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This yields a two-component transverse vector and the polarization phase in the
far-field is found to be equal to the phase difference ∆ of Bz and Ez. We have linear
polarization for ∆ = 0, circular polarization for ∆ = π/2 and equal magnitude of the
fields |Bz|2 = |Ez|2. The most general case is elliptic polarization.

Another possible setup used recently in a number of experiments [92, 3, 2, 17]
and Chapter 8 is the imaging technique. A CCD camera in the far-field records
the intensity profile of a sidewall viewed at an angle Θ. This information can be
mapped to a two dimensional boundary image-field plot, from which we can extract
the radiation coming from a position φ at the boundary going into a direction Θ in
the far-field. Knowing the point on the boundary from where light originates and
the far-field angle into which the light propagates, one can easily convert this into
the inside angle of incidence sinχ, thus retrieving a phase space projection of the
emitted field — the Husimi Projection, described in the next section.

4.10 Husimi Projection4

In this section, we will briefly review the Husimi Projection technique [58], which
allows us to relate a given mode to the phase space structures in the SOS. Just as
for quantum wavefunctions, for these two-dimensional electromagnetic fields we can
represent the solutions in real space (the solutions we have been calculating) or, by
Fourier transforming them, in momentum space. However we are interested in rep-
resenting the solutions in the phase-space of the problem so that we can understand
their ray-dynamical meaning, and ultimately in projecting such phase space densities
onto the SOS which is our standard interpretive tool. Just as in quantum mechanics,
we cannot have full information about real-space and momentum space at the same
time due to the analog of the uncertainty principle, which here is reflected by the
property of Fourier transforms:

∆x ·∆p ≥ 1

2k
(4.56)

where ∆x and ∆p are the widths of ψ(x) and ψ̃(p) in real and momentum space.
Thus our goal is to take the solution ψ(x) and associate with it a momentum con-
tent in some region around each point x, recognizing that our resolution in real
space is limited by the uncertainty relation. To interpret the quantized wavefunction
classically we define the Husimi distribution

ρψ(x̄, p̄) = |〈z|ψ〉|2 =

∣∣∣∣
∫
d2xZ∗

x̄p̄(x)ψ(x)

∣∣∣∣
2

, (4.57)

where the real-space representation of a coherent state is given by

Zx̄p̄(x) =

(
1

πη2

)1/4

exp(ikp̄ · x) exp

(
− 1

2η2
|x− x̄|2

)
. (4.58)

4This Section is taken in part from Ref. [1]
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This defines a function in the 3d phase space if we fix |ρ|. By projecting the Husimi
distribution onto a circle of a constant radius and integrating over the momentum,
we obtain a 2-d density distribution that we can project onto the SOS

Hψ(φ̄, sin χ̄) =

∣∣∣∣∣

∞∑

−∞
αmH

+
m(nkRc)e

−inkRc(sinχ−sin χ̄)φ̄e−
σ2

2
(sinχ−sin χ̄)2

∣∣∣∣∣

2

. (4.59)

For optimal resolution in both SOS coordinates, we choose σ ∼ 1/
√
nkRc (Rc can be

chosen at any convenient value). Finally, in order to calculate the distribution on a
section on the boundary r = R(φ) instead of the circle, we choose Rc slightly outside
the boundary, and extrapolate the Husimi distribution Eq. (4.59) to the boundary
using the classical equations of motion; i.e. every pair (sin χ̄, φ̄) on the circle maps
uniquely to a different pair (sinχ, φ) on the boundary. We can regard this mapping
as simply a change of variables so that the Husimi-SOS distribution on the boundary,
Hψ(φ, sinχ), satisfies:

Hψ

(
φ(φ̄, sin χ̄), sinχ(φ̄, sin χ̄)

)
= Hψ

(
φ̄, sin χ̄

)
. (4.60)

4.11 Quasi-bound modes and classical phase space

structures

In this section we will present a few representative quasi-normal modes generated by
our numerical algorithm (Section 4.7) in their real space and phase space represen-
tation. We will put special emphasis on the connection with classical phase-space
structures. All the wavefunction plots and Husimi distributions are generated with
the non-quantized scattering eigenvectors, as described above.

The first test will be the unperturbed circle. In the circle only whispering gallery-
type orbits exist. In Fig. 4.13 A) we show such a whispering gallery mode, its Husimi
distribution is shown in Fig. 4.13 B). We see, as the angle of incidence in the circle
is conserved, so is the Husimi distribution – spread out along a straight line. As
the Husimi distribution is localized well above the critical line the light undergoes
classic total internal reflection. The effect of a small change of ∆ε = 0.03 is shown in
Fig. 4.13 C), D) where a quasi-bound mode corresponding to a deformed whispering
gallery mode is portrayed. From close inspection of the Husimi projection we note
that this mode follows an invariant adiabatic curve given by Eq. (5.1). This line is not
anymore straight and we observe its touching the critical line at the points of highest
curvature. It had been predicted [12, 13, 14] that such modes might show directional
emission radiating from the points of highest curvature in tangent direction. For a
in-depth discussion and expansion of this theory see Chapter 5.

Already at 3% deformation we see another structure in the SOS. Large stable
islands are formed, right above the Husimi projection band in Fig. 4.13 D) we see
the four islands of the ‘diamond’ orbit and centered around ±π/2 the stable two
bounce ‘bouncing ball’ orbit Fig. 4.13 E). Such large islands can support multiple
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A)

C)

B)

E)

F)

Figure 4.13: Real-space false color plot of a solution at of the circle A) ε = 0 and
its Husimi projection. C), E) solutions of a quadrupole with ε = 0.03. D) Husimi
projections of states C) (higher) and E) (lower). The solutions are obtained at
nkR = 82 and n = 2. The solid line green at sinχ = sinχc = 1/n = 0.5 indicates
the critical line, above which light is classically total internally reflected.

modes. An intensive study and theory describing these modes has been given by us
elsewhere [93].

Periodic orbits are not just of importance when they are stable fixed-points. It
has been shown a while ago that even unstable periodic orbits can support a wave-
function [94, 95] in a closed cavity. Such scarred modes are shown in Fig. 4.14. Here
we show the unstable bouncing ball orbit. In panels (a) and (b) the ‘fundamental’
mode is shown, which has its highest intensity located on the unstable fix-point. The
consecutive modes are higher excited unstable bouncing ball orbits. In order to be
able to associate them to the unstable bouncing ball orbit, we plot the unstable/stable
manifolds onto the SOS. (For a detailed description of unstable/ stable manifolds see
Section 3.4.3.) As we have motivated there, the intersection points of the manifolds,
so called homoclinic points (Section 3.3.8) pose as attractors and localize the mode
on them. This is clearly seen in Fig. 4.14 (d) and (f). It is interesting to note
here that the corresponding real-space plots Fig. 4.14 (c) and (e) do not reveal any
distinct structure contrary to the Husimi projection. For the closed system such a
localization on homoclinic points has been earlier reported in Ref. [40].

At large deformations the spectrum contains chaotic modes which cannot easily
be associated with any particular classical phase space structure. One of such modes
is plotted in Fig. 4.15. Here the support of the mode in the phase space lies completely
in the chaotic regime and a close observation of the nodal structures in the real space
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(a)

(c)

(e)

(b)

(d)

(e)

Figure 4.14: Real-space plots and Husimi distributions of scattering eigenvectors
scarred by the unstable bouncing ball orbit. Superimposed on the SOS are the
stable and unstable manifolds. (a),(b) fundamental mode; (c),(d) eigenvector scarred
by (c),(d) the primary intersection and (e),(f) the secondary intersection. These
solutions are found at nkR = 106, ε = 0.12 and n = 2.65.

Figure 4.15: Real-space false-color plot and Husimi distribution of a chaotic mode at
a quadrupolar deformation of ε = 0.18 and n = 2.65, quantized at kR = 32.6638 −
0.06964i.

plot reveals that there is no regularity above the scale of the wavelength.
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4.12 Symmetry reduction

PSfrag replacements
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(−,+) (−,−)

Figure 4.16: Nodal appearance in the wavefunction for the four different symmetries.

We can considerably reduce the calculation speed by taking symmetries into
account. Often the symmetry group of the system we consider (e.g. the quadrupole)
have two reflection symmetries and can be written as {1, σx, σy, σxy}. We apply this
group to the Helmholtz equation to construct the symmetrized wave functions. Here
we will encounter four different types, classified as (+,+), (+,−), (−,+), (−,−). The
symmetry operators will reduce the number of components for each wave-function
from 2N to 1

2
N . We have not only noticed a huge speed increase for the calculation,

but also an increase in numerical stability. The effect of the symmetry can easily be
seen in a wavefunction plot, when we compare the nodal structure. In Fig. 4.16 we
have related the nodal structure of the real space wave function to our definition of
the symmetries for the convenience of the reader.

A comparison of different methods for the example of the non-symmetrized inte-
grating method with the symmetrized is shown in Fig. 4.17. The values are compared
in the Table below Fig. 4.17. We note that the resonance agree to 10−5kR.

4.13 Quality of numerically generated resonances

In this section we want to compare the two methods of calculating the resonances
of the cylinder presented in this Chapter. The first method uses separability to
arrive at Eqs (4.12), (4.13) and then perform a complex γ root search. The second
method is based on Eqs (4.17), (4.18), is of general applicability, and uses the root
extrapolation algorithm given in Section 4.7. In Fig. 4.18 we compare the quality
of the resonances found by the S-matrix method of Section 4.7 and the solutions
to Eq. (4.13). It can be seen that the S-matrix program can find the resonances
extremely well in the region close to where the search is started, here at kRo = 20.
Even one spectral length away the error is still less than 2%. For the imaginary part
of the resonance we need to note that the values span a wide region and a relative
error of order unity is still acceptable.
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A) B)
method kR

A) no-sym int 49.4304084 -0.0717921i
B) sym no-int 49.4304122 -0.0717936i

Figure 4.17: Comparison of the wavefunction plots for the ‘fish’ mode in the 2-d
quadrupole. A) solution to the over the boundary integrated non-symmetry-reduced
system at kR = 49.4304084−0.0717921i; B) solution to the (−+) symmetry reduced
direct boundary matching problem at kR = 49.4304122− 0.0717936i.
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Figure 4.18: Comparison of the S-matrix method (n = 2, kz = 5, kRo = 20, mmax =
40) with the solutions to the quasi-bound resonances Eq. (4.16) for a circular rod
with n = 2, kz = 5 A) relative error in the real part of the resonance Re [kR] and
B) relative error in the imaginary part of the resonance Im [kR]. Here we note that
Im [kR] spans a wide region from 10−1 ∼ 10−10, thus even finding the width with a
relative error of a factor of two represents a useful result.

4.14 Conclusion and Outlook

In this chapter we have presented numerical methods for calculating resonances in
dielectric resonators. We rephrased the S-matrix diagonalization problem as a gen-
eral eigenvalue problem for the benefit of avoiding the inversion of matrices. For
this system we observed that the eigenvalues have decoupled speeds in the the radial
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(angular) directions for a imaginary (real) shift in γ. This and the adiabatic behavior
of the eigenvectors was used to devise an algorithm to find O[γ] resonances with only
two diagonalizations. The method is highly efficient for the problems we focus on,
however it will become unreliable for large deformations from the circle and large
values of γ. This limitation is related to the basis used for our ansatz, the Hankel
functions. Although they have a nice semiclassical interpretation, the expansion in
Hankel functions is ill conditioned. We can observe the breakdown already in the
real-space plots at the points that are just outside the boundary with smallest ra-
dius r = Rmin. Here the evanescent components (m > kRmin) take on very large
values and thus the solutions become very sensitive to the numerical errors of the
coefficients |γ〉. This can not just be avoided by including fewer evanescent channels,
as these areas are exactly in the highest overlap regime. An often used strategy is
to include more evanescent channels in the diagonalization problem, but use less for
the plotting of the wave functions.5

5One thought would be to use a different basis to expand in, maybe the Mathieu functions[96]
which seem a good choice as they are eccentricity adapted. Unfortunately these functions are much
less converging than the Bessel functions and in order to calculate them more efficiently are mostly
expanded in Bessel functions. Thus any hope of using them must be in vain.



Chapter 5

Dramatic Shape Sensitivity1

5.1 Introduction

In this chapter we examine in detail the question of shape sensitivity of the emission
patterns from ARC lasers operating on 2-d modes (Kz = 0). The ray-dynamical
approach suggests such sensitivity as first shown by Nöckel, Stone and Chang [12,
13, 14]. In 2002 a series of experiments were done at Yale to test these ideas and led
to a significant revision of the qualitative interpretation of the ray-simulations.

φ

χ

b)
Quadrupole

a)
Hexadecapole

c)
Ellipse

Figure 5.1: Cross-sectional shapes of micro-pillar resonators studied: (a) The
quadrupole, defined in polar coordinates by R = R0(1+ε cos 2φ), (b) The ellipse, de-
fined by R = R0(1+((1+ε)4−1) sin2 φ)−1/2 and (c) The Quadrupole-Hexadecapole,
defined by R = R0(1+ε(cos2 φ+ 3

2
cos4 φ)) all at a deformation of ε = 0.12. Note that

all shapes have horizontal and vertical reflection symmetry and have been defined so
that the same value of ε corresponds to approximately the same major to minor axis
ratio. In (b) χ is the angle of incidence of a ray with respect to the local normal. In
(a) and (c) we show short periodic orbits (“diamond, rectangle, triangle”) relevant
to the discussion below.

One might naively assume that such chaotic ray dynamics would generate a fluc-
tuating and pseudo-random emission pattern, but in fact the ray motion follows a
dominant flow pattern in the phase space favoring escape at certain points on the
boundary and in certain directions in the far-field. For the quadrupole and related

1This chapter is based on work published in Ref. [2]

82
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ARCs Nöckel and Stone originally argued that the flow pattern was approximately
describable as rapid motion along adiabatic invariant curves (which could be calcu-
lated from knowledge of the boundary shape) and slow diffusion in the transverse
direction. Major deviations from the flow pattern would occur in the vicinity of
stable periodic ray orbits for reasons to be discussed in detail below. As the shape
of the adiabatic curves and the location of stable and unstable periodic orbits is
quite sensitive to boundary shapes, this theory did predict a rather dramatic sensi-
tivity of the emission patterns from ARC micro-lasers to the shape of the boundary.
The Yale experiments represented the first series of experiments with well-controlled
boundary shapes in the low-index regime, to test these theoretical ideas. The shapes
considered were the quadrupole, elliptical and hexadecapole ARCs (see definitions,
caption of Fig. 5.1). It was found that; 1) There is a remarkable and reproducible
difference in the lasing emission patterns from ARC lasers with very similar bound-
ary shapes. 2) The basic difference between chaotic (quadrupole) and non-chaotic
(elliptical) ARC emission patterns is in agreement with the predictions of Nöckel
and Stone based on the adiabatic model. 3) Nonetheless the persistence of highly
directional emission patterns for highly deformed quadrupolar ARCs is inconsistent
with the adiabatic model and is a quite surprising experimental discovery. We pro-
pose a new theoretical model which attributes the high emission directions observed
for the chaotic shapes to the flow pattern produced by the unstable manifolds of
short periodic orbits; this flow pattern differs significantly from the adiabatic model.
This model is shown to explain both the persistence of narrow emission peaks in
the quadrupole at high deformation and the major shift in emission directionality
at large deformation for ARCs with hexadecapole deformation. It also predicts that
completely chaotic boundary shapes, such as the stadium, can nonetheless exhibit
highly directional emission.

5.2 Dynamical Eclipsing

In Chapter 3 we discussed the ray dynamics of ARCs using the surface of section
to illustrate the generic properties of mixed phase space and contrast them with
integrable dynamics. The idea of dielectric cavities as “leaky” billiards with refractive
escape was introduced as well as the technique of ray escape simulations.

In a series of papers beginning in 1994, Nöckel, Stone and Chang [12, 97, 13, 14]
proposed the first version of that ray escape model.

A challenging point for the general definition of such a model is that in the case
of chaotic dynamics there is no simple correspondence between a set of rays and a set
of modes of the wave equation (as there is in the integrable case – see Section 3.6.1).
Nöckel and Stone proposed [97, 14] that an appropriate set of initial conditions for
ARCs would be to start a uniform distribution of rays on an adiabatic curve of the
boundary [44, 45], which can be thought of as the curve in the SOS that a ray would
follow in the absence of chaos (this approximation describes the exact flow in the
ellipse, see Fig. 3.9 for an example). Using this model they were able to predict a
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striking difference in the emission patterns from quadrupole resonators with index
n = 1.5 as opposed to index n = 2.0. Due to the difference of the flow in the ellipse
and the quadrupole they where also able to predict that quadrupole resonators with
deformations in the range of 10-12% and index of refraction n = 1.5 would emit
very differently than elliptical resonators with the same major to minor axis ratio.
Specifically the elliptical resonators would emit from the points of highest curvature
on the boundary roughly in the tangent direction (90◦) while the quadrupoles of
the same index would emit at roughly a 35◦ − 45◦ angle to the major axes. It was
argued that the origin of this effect is the presence in the quadrupole of a stable
four-bounce periodic ray orbit which prevents emission from the highest curvature
points in the tangent direction, an effect they termed “dynamical eclipsing” [13, 14].
This finding was supported by numerical solutions of the linear wave equation for the
quasi-bound states and their far-field emission patterns. A subsequent experiment
on lasing droplets by Chang et al. [47] was successfully interpreted as strong evidence
for such dynamically eclipsed lasing modes. However this experiment was less direct
than desirable for two reasons. First, the droplet was a deformed sphere with many
possible lasing modes, most of which were not of the two-dimensional type consid-
ered in references [13, 14]; it was argued, but not experimentally shown, that the 2-d
“chaotic” modes dominated the lasing emission. Second, the droplet shape defor-
mation was not controlled and could not be manipulated to turn the effect on and
off. Recently, Lacey et al. [98] reported an experiment on nearly spherical resonators
where they addressed the former but not latter problem. The experiments general-
ized here remedy both of these shortcomings. First the lasers are deformed cylinders
and the lasing modes are truly two-dimensional. Second the boundary shapes were
fabricated using a mask to conform to the desired cross-sectional profile. Hence we
can directly compare e.g. quadrupolar and elliptical ARC lasers and observe the
presence or absence of the dynamical eclipsing effect over a range of deformations.

5.3 The imaging technique for the study of micro-

cavity resonators

The detection part of the experiment was designed in accordance with the infor-
mation contained in the SOS diagram. The detector must be able to extract two
pieces of information: 1) where along the sidewalls the light is emerging from the
microcavity, that is, the angle φ, and 2) what the angle of the emitted ray is which
is related to the internal incident angle χ by Snell’s law of refraction. A detector
that can only measure the far-field radiation pattern is insufficient because it misses
where the light emerges along the sidewall. The far-field pattern alone is not unique
in that the same pattern can occur for different sidewall distributions of emission.
Any detection system ought to be able to distinguish between the two different emis-
sion types shown in Fig. 5.2, where the far-field patterns are similar, but the image
patterns along the sidewalls are different.

Figure 5.3 shows the detection system that was settled upon as the best com-
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Figure 5.2: Two possible emission patterns with different emitting points on the
boundary, which yet can result in identical far-field distributions.

promise between obtaining the far-field pattern while maintaining spatial resolution
along the sidewalls. In this setup, microlaser devices are optically pumped normal
to the plane of the pillar and light emitted from the side-walls is collected through
an aperture in the far-field, passed through a lens and collected on a CCD camera.
The key element in this detection system is the aperture placed before the collection
lens. The aperture accomplishes two purposes: 1) it limits the solid angle of the col-
lected light; and 2) it extends the depth of field that the light is collected from. The
aperture sets a solid-angle limitation and restricts the far-field profile to an angular
resolution of 5 degrees. The small aperture extends the depth of field to be larger
than the longest diameter of the microstructure. The depth of field associated with
the numerical aperture (NA = 0.047) is 200 µm. The largest microcavity being im-
aged has the longest dimension of 120 µm. Thus the entire microcavity is in focus at
the same time, regardless of the rotational alignment of the microcavity with respect
to the camera.

The relative angle between the CCD camera and the major axis of the quadrupo-
lar shaped microcavity is designated as θ. At any given camera angle, the horizontal
axis corresponds to different locations along the sidewalls. That horizontal strip gives
false color coded intensity information as a function of pixels on the CCD camera,
which can be converted to a position φ on the resonator boundary. The next angle
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Figure 5.3: Experimental setup for measuring simultaneously far-field intensity pat-
terns and images of the sidewall emission.
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forms another strip which is placed directly under the former strip. Measurement of
the intensity is made every 5 degrees from 0 to 360. This yields a two-dimensional
plot, called the imagefield, where a given data point I(φ, θ) denotes the intensity
emitted from sidewall position φ towards the far-field angle θ. The latter can easily
be converted to an incidence angle sinχ, using Snell’s law and basic trigonometry.
Hence, what is recorded is actually a phase space plot of the emitted radiation. This
correspondence is put into a rigorous basis in Ref. [1]. Such 2D imagefield plots will
be presented throughout the text for many of the experiments.

The far-field intensity at any angle is obtained by summing up all the pixels
within the horizontal strip. This sum at a given angle is called the far-field intensity
at that camera angle; we show many such plots below. This way of obtaining the
far-field intensity is subtly different from placing a photomultiplier (with a pin hole)
to define the angular resolution. Similarly, the boundary image field is obtained by
integrating over all far-field angles for a fixed point φ on the boundary. This allows
us to identify the brightest emission points on the sidewall (we rarely show these
plots below, but they are used in the interpretation of the data).

5.4 Experimental Data

The experiments we studied were performed on differently shaped dye (DCM)-doped
polymer (PMMA) samples that are fabricated on top of a spin-on-glass buffer layer
coated over a silicon substrate via a sequence of microlithography and O2 reactive
ionic etching steps. The effective index of refraction of these microcavities is 1.49,
much lower than for experiments performed using a similar set-up on GaN, to be
discussed in Chapter 8, where the index of refraction is n = 2.65 [99, 3]. They are
optically pumped by a Q-switched Nd:YAG laser at λ = 532 nm incident normal
to the plane of the micropillar. Light emitted from the laser is imaged through
an aperture subtending a 5◦ angle and lens onto a ICCD camera which is rotated
by an angle θ in the far-field from the major axis. A bandpass filter restricts the
imaged light to the stimulated emission region of the spectrum. The ICCD camera
records an image of the intensity profile on the sidewall of the pillar as viewed from
the angle φ which is converted from pixels to angular position φ. In this chapter
we studied micro-cavities with elliptic, quadrupolar and quadrupolar-hexadecapolar
shape of an average radius Ro = 100µm (see formulas in Fig. 5.1 caption). The
observed modes have a linewidth that is below the resolution of the spectrometer,
this indicates that the Q-factors must be larger than Qsp = λ/∆λ ≈ 3 × 104. Each
shape was analyzed at eccentricities of ε = 0.12, 0.14, 0.16, 0.18 and 0.20. The lasing
is most likely multi-mode although there was no direct evidence for this.

In Fig. 5.4 we show the experimental results in a color scaled ICCD image. The
two angles are the sidewall angle φ (for the horizontal coordinate) and the camera
angle θ (for the vertical coordinate). We omit the data for ε = 0.14 deformation as
it does not exhibit any effect not captured by the data at the other deformations.
To obtain the far-field pattern with respect to θ, we integrate the image over all
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Figure 5.4: Two-dimensional display of the experimental data showing in false color
scale the emission intensity as a function of sidewall angle φ (converted from ICCD
images) and of the far-field angle θ (camera angle). Columns from left to right repre-
sent the quadrupole, ellipse and quadrupole-hexadecapole respectively. Insets show
the cross-sectional shapes of the pillars in each case (for definitions see Fig. 5.1). The
graphs at the bottom show the far-field patterns obtained by integration over φ for
each θ, normalized to unity in the direction of maximal intensity. The deformations
are ε = 0.12, 0.16, 0.18, 0.20 (red, blue, black and green respectively)
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sidewall angles φ. The boundary image field is calculated by integrating over θ for
each φ. As insets we show the exact shape of each of the microcavities. Although the
shapes appear very similar to the eye, we find dramatic differences in the far-field
emission patterns, which in the case of the ellipse vs. the quadrupole, persist over
a wide range of deformations. Specifically, the far-field emission intensity for the
quadrupole exhibits a strong peak at θ = 34◦ − 40◦ which remains rather narrow
over the observed range of deformations. Over the same range of deformation the
boundary image field for the quadrupole changes substantially and does not exhibit
one localized point of emission. In contrast, the ellipse emits into the θ ∼ 90◦

direction in the far-field, but with a much broader angular intensity distribution,
while the boundary image field remains well-localized around φ ∼ 0◦ (the point of
highest curvature in the imaged field). For the quadrupole-hexadecapole we see a
far-field directionality peak which shifts from θ ∼ 90◦ to θ ∼ 30◦ and an almost
constant boundary image field. Thus we see three qualitatively different behaviors
for the three shapes studied over the same range of variation of the major to minor
axis ratios.

Several different samples with the same boundary shape were measured in each
case and confirmed that the basic features of this data set just described are repro-
duced within each class (with small fluctuations) [59]. This shows that the effects
measured are a property of the boundary shape and not of uncontrollable aspects of
the fabrication process. Moreover the theoretical calculations, which we will present
next, are based on uniform dielectric rods with the ideal cross-sectional shape speci-
fied by the mask; therefore the agreement of these calculations with the measurements
also confirms that the differences are due to controllable shape differences.

5.5 Theoretical Calculations

In Figs. 5.5–5.7 we compare the experimental results for the far-field emission pat-
terns for the three shapes measured at ε = 0.12, 0.18 to both ray simulations following
Chapter 3 and wave resonances obtained by the method of Chapter 4. The agreement
in both cases is quite good. We briefly summarize here the two models used.

In the current case we can model the passive cavity as a 2-d resonator because
the penetration depth of the pump laser is of the order of µm and amplification
due to reflection from the sidewall occurs primarily within the horizontal plane of
the resonator. As noted above the numerical solutions of the wave equation with
Sommerfeld boundary conditions yields a large set of resonances over the entire range
of Q-values; the real part of the wavevector giving the resonance frequency and the
imaginary part giving its width. Experiments have indicated that mode selection is
complicated in these dielectric resonators and that there is no simple rule relating
the observed lasing mode to the Q-value of the mode in the passive cavity. Due to
the low output coupling, high Q-modes are not necessarily the observed lasing modes
in the far-field. Thus from the set of calculated resonances we choose the resonance
which coincides well with the observed far-field pattern and has a relatively high
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Figure 5.5: Far-field intensity for the quadrupole with ε = 0.12 (a) and 0.18 (b). The
green curve is the experimental result, blue the ray simulation and red a numerical
solution of the wave equation. The ray simulation was performed starting with 6000
random initial conditions above the critical line and then propagated into the far-
field in the manner described in the text. The numerical solutions selected have
kR0 = 49.0847 − 0.0379i with a Q = 2593.05 and kR0 = 49.5927 − 0.0679i with
Q = 1460.72 for ε = 0.12 and 0.18 respectively.
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Figure 5.6: Far-field intensity for the ellipse with ε = 0.12 (a) and 0.18 (b). Green,
blue and red curves are experiment, ray simulation and wave solution. The ray
simulation was performed starting with 6000 initial conditions spread over seven
KAM curves separated by ∆ sinχ = 0.02 below the critical KAM curve (that just
touches the critical line). The numerical wave solutions shown correspond to kR0 =
49.1787−0.0028i with Q = 17481.38 and kR0 = 49.2491−0.0110i with Q = 4488.20
for ε = 0.12 and 0.18 respectively.

Q = −2Re [k] /Im [k]. We also confirmed that theoretical boundary image data [3]
coincides well with the experimental results. Moreover in all cases discussed here,
there were many resonances which gave good agreement with the data, indicating
the existence of a robust class of modes any of which could be the lasing mode. In
Fig. 5.5–5.7 we show as solid line the numerical far-field by calculating the asymptotic
expansion of our wavefunction in the far-field. Numerical limitations prevent us from
performing the calculations at the experimental values of kR0 ∼ 1000 but the major
features of the emission pattern are not sensitive to kR0 over the range we can study
numerically. The finding (discussed next) that we can reproduce these patterns from
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Figure 5.7: Far-field intensity for the quadrupole-hexadecapole with ε = 0.12 (a)
and 0.18 (b). Green, blue and red curves are experiment, ray simulation and wave
solution as described in the caption to Fig. 5.5. The numerical wave solutions shown
correspond to kR0 = 50.5761 − 0.0024i with Q = 42573.77 and kR0 = 49.5642 −
0.0092i with Q = 10741.93 for ε = 0.12 and 0.18 respectively.

ray escape simulations also suggests that the wavelength is not a relevant parameter
for the features we are studying. With a dash-dotted line we show the experimental
results. We see that the numerical calculations agree with the measured far-field
very well.

In the ray simulations an initial distribution of rays is assumed and each ray
is given unit initial amplitude. At each reflection on the boundary the amplitude
is reduced according to Fresnel formulas. The outgoing amplitude is recorded in
the direction determined by Snell’s law and the reflected ray is followed until its
amplitude falls below 10−4. To compare to the experimental data we collected the
transmitted rays in 5◦ bins. A subtle issue in the calculations is the choice of the
initial ray distribution. In Figs. 5.5 and 5.7 we show the far-field distribution for a
randomly chosen set of initial conditions above the critical angle; in the case of the
ellipse (Fig. 5.6) we chose initial uniform conditions on an invariant curve in the SOS,
appropriate to its integrable dynamics (see the discussion below). The ray model is
also found to reproduce the main features of the data quite well. In Section 5.7 we
show that the far-field emission pattern for chaotic shapes is insensitive to the initial
ray distribution over a wide range. Specifically, in Fig. 5.11 below we compare the far-
field patterns for different possible initial distributions, confirming the approximate
independence of the patterns to this choice.

5.6 Novel features of the Data

In the previous section we showed that we can reproduce the experimental data with
both ray and wave calculations. This gives us confidence that the major differences in
the experimental emission patterns are due to the different shapes of the laser cavities.
The strong sensitivity of the emission patterns to small differences in boundary shape
is quite striking and is a major result of this study. This sensitivity was predicted by
Nóckel and Stone in the earlier work of references [13, 14, 47] and was not unexpected.
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Figure 5.8: The Poincaré surface of section for the quadrupole (A) and the ellipse
(B) with ε = 0.072. The schematics (A)(a-c) on right show three classes of orbits
for the quadrupole, (A)(a) a quasi-periodic orbit on a KAM curve, (A)(b) a stable
period-four orbit, (the ‘diamond’), and (A)(c) a chaotic orbit. Schematic (B)(a, b)
show the two types of orbits which exist in the ellipse, the whispering gallery type,
with an elliptical (B)(a) and (B)(b), the bouncing ball type, with a hyperbolic.

However there are major aspects of the experimental data which are quite surprising
even in the light of the earlier work on ARCs. In particular, the persistence of highly
directional emission in the quadrupolar shapes at quite high deformations was not
predicted theoretically and was unexpected for reasons we will now discuss.

In Fig. 5.8 we compare the SOS for the ellipse and the quadrupole at the same
minor to major axis ratio. In Chapter 3 we showed that the ellipse is an integrable
shape, whereas the quadrupole has a mixed phase space. This difference shows in
Figure 5.8 A), the SOS of the quadrupole. Regions with a 2-d scatter of points are
chaotic, islands indicate regions of regular motion; here especially to note the stable
‘diamond’ orbit. Due to its integrability, phase space flow in the ellipse is particularly
simple: every initial condition lies on one of the invariant curves given by Eq. (5.1)
below, and the trajectory retraces this curve indefinitely (see Fig. 5.8(B)). Curves
which extend along the entire horizontal interval of the SOS correspond to real-
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space motion tangent to a confocal elliptical caustic Fig. 5.8(B)(a); curves which are
bounded in a smaller interval of φ represent motion tangent to a hyperbolic caustic
in real space Fig. 5.8(B)(b). These two types of curves are separated by a critical
curve called a separatrix.

A key property of mixed dynamical systems is that the different dynamical struc-
tures in phase space are disjoint; this implies that in two dimensions KAM curves
and islands divide phase space into regions which cannot be connected by the chaotic
orbits. This puts constraints on phase space flow despite the existence of chaos in
a significant fraction of the phase space. For small deformations (∼ 5%) most of
phase space is covered by KAM curves, the form of which can be determined using
an adiabatic approximation [14] (see Section 3.3.3). This approximation gives the
exact result for all deformations in the case of the ellipse (compare Eq. (3.47)); it
can be written in the following form:

sinχ(φ) =
√

1 + (S2 − 1)κ2/3(φ, ε) (5.1)

where κ is the radius of curvature along the boundary and S is a constant. Plotting
this equation for different values of S, ε gives an SOS of the type shown in Fig. 5.8(B).
For the mixed case, exemplified by the quadrupole billiard in Fig. 5.8(A), Eq. (5.1)
describes quite accurately the behavior for values of sinχ near unity, but doesn’t
work well at lower sinχ where chaos is more prevalent.

In Refs. [11, 14] a model was proposed based on an adiabatic theory to describe
the ray-wave correspondence in the generic case of mixed dynamics. Initial condi-
tions on the adiabatic invariant curves, e.g. of the quadrupole were chosen. Due to
the presence of chaos in the true dynamics, rays initially on such a curve diffuse in
phase space until they escape by refraction. The resulting emission pattern can be
calculated by ray simulations of the type we have presented above. Moreover this
model led to qualitative predictions about the emission patterns without doing any
simulations. The adiabatic invariant curves for the quadrupole have their minimum
values of sinχ at the points of highest curvature on the boundary φ = 0,±π, just
as they do in the ellipse. If the diffusion in phase space is sufficiently slow, emission
would be near these points of highest curvature and at the critical angle, i.e. in the
tangent direction, as in the ellipse. This reasoning held as long as the escape points
sinχ = 1/n, φ = 0,±π occurred in the chaotic region and were reachable from the
totally-internally-reflected region of sinχ > 1/n. However for n = 1.5 and defor-
mations around 10%, these points are enclosed by the stable island corresponding
to the four-bounce “diamond” orbit and due to the disjoint nature of the dynamics,
“chaotic” rays cannot escape there. Instead they will escape at higher or lower values
of φ leading to a large change in the emission pattern from that of the ellipse with
similar minor-major axis ratio. This is the phenomenon termed “dynamical eclips-
ing”, and it was predicted to occur for the n = 1.5 quadrupole at ε ∼ 0.12 some
time ago [14, 13]. The experimental data confirms this prediction for the ε = 0.12
case. Figure 5.9 contrasts the phase space for the ellipse and the quadrupole for this
deformation. The island associated with the stable diamond orbit is smaller than
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Figure 5.9: Comparison of the Poincaré surface of section for (a) the quadrupole and
(b) the ellipse with ε = 0.12 showing mostly chaotic behavior in the former case and
completely regular motion in the latter. The dash-dotted line denotes sinχc = 1/n,
the critical value for total internal reflection; rays above that line are trapped and
those below escape rapidly by refraction. The quadrupole still exhibits stable islands
at φ = 0, π and sinχ = sinχc which prevent escape at the points of highest curvature
in the tangent direction. In (a) we show an adiabatic curve (solid black line) that
has the minimum on the critical line.

at ε = 0.072, but still present for the quadrupole; there is no such island at any
deformation for the ellipse. Note that in the experimental data for the quadrupole
at ε = 0.12 we do not see a bright spot at the boundary at φ = 0, consistent with
the dynamical eclipsing model in which the island structure forces the chaotic WG
modes to emit away from the point of highest curvature. In contrast the bright spot
in the ellipse which emits to θ = 90◦ clearly is at φ = 0 for ε = 0.12. Thus the
adiabatic model of Refs. [14, 13] does seem to provide a reasonable description of
the data for ε = 0.12 and the observed dramatic difference between the ellipse and
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quadrupole shapes is as predicted.
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Figure 5.10: Poincaré surface of section for the quadrupole with ε = 0.18. The grey
line indicates the critical angle of incidence. The diamonds indicate the location of
the fixed points of the (now) unstable “diamond” orbit and the squares the fixed
points of the unstable rectangular orbit. In the inset we show the trace of the mon-
odromy (stability) matrix (see Section 5.7) for the diamond orbit versus deformation.
When |Tr[M ]| > 2 its eigenvalues become real, the periodic motion becomes unsta-
ble and the associated islands vanish. For the diamond this happens at ε = 0.1369
(see dashed vertical line in the inset) and the simple dynamical eclipsing picture of
Fig. 5.9 does not apply at larger deformations.

The earlier work on ARCs did not look extensively at deformations above ε = 0.12
for the case of low index materials such as polymers. The belief was that the adiabatic
model would become questionable at higher deformations as the phase space became
more chaotic and the ray motion departed from the adiabatic curves very rapidly.
A natural expectation was that due to increased chaos the emission patterns in the
far-field would become less directional and more pseudo-random. More specifically,
for the n = 1.5 quadrupole one finds that the “diamond” orbit becomes unstable
at ε ≈ 0.1369 (the associated islands shrink to zero) and one would not expect
highly directional emission at higher deformations (see inset in Fig. 5.10). Thus a
plausible extrapolation of the adiabatic model suggests a steady broadening of the
quadrupole emission with deformation with at least some significant emission in the
tangent (90◦) direction. The experimental data strongly contradicts this expectation,
as the observed emission patterns remain peaked around 35◦ and do not broaden
at all up to ε = 0.20. A similar analysis would show that the adiabatic theory
provides no qualitative explanation for the switch in the far-field directionality for
the quadrupole-hexadecapole at high deformations. Thus we were motivated to look
for a model of the phase space flow which can explain the persistence in highly
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directional emission at high deformations where almost all of the phase space is
chaotic. This model will be presented in the next section.

5.7 Short-time dynamics and Unstable Manifolds

An indication that the emission patterns we observe are not closely linked to adiabatic
curves is obtained by looking at the dependence of the ray emission directionality on
initial conditions. The original work of Nöckel and Stone began the ray simulations
with an ensemble of rays uniformly distributed on the adiabatic curves. This is
obviously correct for the ellipse as one can use the eikonal method to calculate
modes corresponding to the different invariant curves. However, as already noted,
the ellipse is special since chaotic diffusion is absent. In Fig. 5.11 we compare ray
emission patterns arising from three different choices of initial conditions in the
quadrupole: uniform on the adiabatic curve (green), initial conditions localized on
the unstable fixed points associated with the rectangular periodic orbit shown in
Fig. 5.1 (blue), and finally, initial conditions chosen randomly above the critical
angle for escape (red). These three quite different choices all lead to similar far-field
intensity patterns, in good agreement with the experimental measurements (dash-
dotted). More generally, we found that the ray simulations are quite insensitive to
the choice of initial conditions, as long as a significant fraction of the rays are started
within the chaotic sea. (Ray bundles only started in an island would obviously lead
to different results.) We now explain the qualitative origin of this insensitivity.

In a mixed system such as the quadrupole and hexadecapole billiards we have
been discussing a single trajectory beginning in a chaotic component of the phase
space will cover that component uniformly for long times. However for short times
the motion is not simply uniform diffusion but instead can be analyzed conveniently
by looking at the unstable fixed points (periodic orbits) of the billiard or SOS map
and constructing the linearized map, M near these points. (See Section 3.2.5 for a
deeper treatment of this material.)

One can argue qualitatively that the unstable manifolds of the short periodic
orbits ought to control the ray escape dynamics at large deformations. The mani-
folds of short periodic orbits are the least convoluted as they are typically the least
unstable; hence the unstable direction is fairly linear over a large region in the SOS.
A typical ray will only make small excursions in phase space until it approaches one
of these manifolds and then it will rather rapidly flow along it. If the direction leads
across the critical line for escape, that crossing point and the portion just below will
be highly favored as escape points in phase space. We can check this qualitative
argument with a few simple numerical experiments.

In Fig. 5.12(a) we show the results of a short time iteration of a uniform random
set of initial conditions above the critical line in comparison to the unstable mani-
folds of the various relevant short periodic orbits. Note that the different unstable
manifolds must fit together in a consistent manner and cannot cross one another;
if they did, such a crossing point would define a ray which asymptotically in the
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Figure 5.11: left: Surface of section of the quadrupole ARC with ε = 0.12 and
index of refraction n = 1.5. The portion of the SOS below sinχc = 1/n is shaded
to indicate that in this region rays escape rapidly by refraction. In color we have
indicated two possible types of initial conditions used in the ray escape model; the
blue curve represents one of the possible adiabatic curves which were used as initial
conditions in the Nöckel-Stone model and the red circles initial conditions localized
on the unstable 4-bounce orbit. A third initial condition used extensively below is
simply to start randomly on all possible points in the SOS originating in the trapped
region above the critical line. Right: far-field emission plots calculated using the ray
escape model for this system with the three possible choices of initial conditions just
described. The qualitative and semi-quantitative features of the emission patterns
are seen to be independent of the choice of initial conditions for this system. right:
Ray simulations of the far-field emission patterns for the quadrupole with ε = 0.12
(a), ε = 0.18 (b) with different types of initial conditions. The red curve is the result
of choosing random initial conditions about the critical line sinχ = 1/n, the green
curve is for initial conditions on the adiabatic curve with minimum value at the
critical line. The blue curve is for initial conditions localized around the unstable
fixed point of the rectangle periodic orbit. In each of the ray simulations 6000
rays were started with unit amplitude and the amplitude was reduced according to
Fresnel’s law upon each reflection, with the refracted amplitude “collected” in the
far-field. The emission pattern found by the ray model agrees well with microlaser
experiments.

past approaches two different sets of fixed points, which is not possible. Because
of this non-crossing property the unstable manifolds define just a few major flow
directions in the SOS. We see clearly in the simulation that the actual short-time
flow of random points in the chaotic sea is controlled and approximately bounded
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Figure 5.12: (a) Ray simulations of short-term dynamics for random initial conditions
above the critical line, propagated for 10 iterations, plotted on the surface of section
for the quadrupole with ε = 0.18. The areas of the SOS covered are delineated
very accurately by the unstable manifolds of the short periodic orbits which are
indicated in the schematics at right. These manifolds are overlaid in the figure with
appropriate color coding. (b) Flow of phase space volume in the surface of section of
the quadrupole with ε = 0.18. A localized but arbitrary cloud of initial conditions
(red) is iterated six times to illustrate the flow. The initial volume is the circle at
the far left, successive iterations are increasingly stretched by the chaotic map. The
stretching clearly follows closely the unstable manifold of the rectangle orbit which
we have plotted in blue.

by these unstable manifolds. To further support our statement that the general mo-
tion in phase space is governed by the unstable manifolds of these short orbits, in
Fig. 5.12(b) we propagated an arbitrary but localized set of initial conditions and
confirmed that they are stretched along and parallel to nearby unstable manifolds.
Thus it appears that for the highly deformed case the phase space flow of a generic
ray is much better predicted by simply plotting these manifolds.

As a confirmation that these manifolds do control escape, we perform a further
ray simulation for the “open” billiard. We propagate, as before, an ensemble of rays
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Figure 5.13: (a) Ray simulation of emission: emitted ray amplitude (color scale)
overlaid on the surface of section for the quadrupole with ε = 0.18. (b) Far-field
intensity from experimental image data Fig. 5.4 projected in false color scale onto
the surface of section for the quadrupole with ε = 0.18. The blue line is the unstable
manifold of the periodic rectangle orbit. In green we have the line of constant 34◦ far-
field (see the discussion in Section 5.8). Absence of projected intensity near φ = ±π
in (b) is due to collection of experimental data only in the first quadrant.

with a uniform random distribution above the critical angle. As we have done in cal-
culating the ray emission pattern, we associate to every starting ray in the surface of
section an amplitude which decreases as the ray propagates forward in time accord-
ing to Fresnel’s law (if the point falls below the critical line). Instead of following the
refracted amplitude into the far-field, in this case we plot the emitted amplitude onto
the surface of section, as shown in Fig. 5.13(a). The emission amplitude is almost
completely confined within the two downwards “fingers” created by the unstable
manifold of the four-bounce rectangular orbit. As noted earlier, the availability of
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the two-dimensional data obtained from the imaging technique (see Fig. 5.4), gives
us a unique ability to reconstruct the emitting part of the lasing mode both in real
space and momentum space directly from experimental data. It is therefore possible
to check directly this ray simulation in phase space against experimental data. The
intensity data is sorted into intensity pixels according to both its sidewall location
(the angle φ from which emitted intensity originated) and its far-field angle, which
by geometric considerations and Snell’s law can be converted to the internal angle of
incidence sinχ. Therefore we can project this data “back” onto the SOS for emission.
In Fig. 5.13(b) we show this projection for the same deformation as in Fig. 5.13(a);
we find remarkable agreement between the projected data and the ray simulation.
We note that this is a much more demanding test of agreement between theory and
experiment than simply reproducing the experimental far-field patterns.

5.8 Ray Dynamical Explanation of the Experimen-

tal Data

In the last section we established that typical rays above the critical angle escape
by following closely the unstable manifolds of the short periodic orbits. This leads
to a ray escape probability which is relatively localized in the surface of section
(Fig. 5.13(a)). However despite the non-random character of this escape, there is
still a significant spread of angles of incidence for escape. In fact the spread of escape
angle we see in Fig. 5.13 would lead to an angular spread of nearly 80◦ in the far-field
if all the escape occurred from the same point on the boundary. However as we see
from Fig. 5.13, the point of escape and the angle of incidence are correlated and vary
together according to the shape of the unstable manifold. Because the boundary is
curved, different angles of incidence can lead to the same angular direction in the
far-field. It is straightforward to calculate the curves of constant far-field for a given
shape; for the quadruple at ε = 0.18 and for the peak observed emission angle of
34◦ this curve is plotted in green in Fig. 5.13. The curve tends to lie remarkably
close to the unstable manifold. Therefore we find that the curvature of the boundary
tends to compensate almost completely for the dispersion in the angle of incidence
at escape.

As a further test of the explanatory power of plotting the unstable manifolds,
we can use this method to explain the large shift in the far-field directionality in
the quadrupole-hexadecapole (QHD) with deformation shown in Fig. 5.4. The QHD
shape is an interesting contrast to the quadrupole as the diamond and rectangle peri-
odic orbits interchange their roles. For the QHD at small deformations the diamond
orbit is unstable and gives no islands whereas the rectangle is stable and gives rather
large islands at ε = 0.12 (see Fig. 5.14(a)). Since there is no island at the point of
highest curvature for this deformation the original adiabatic theory would predict
emission from the point of highest curvature approximately in the tangent (90◦) di-
rection. We see in Fig. 5.7 that we indeed have such behavior experimentally. The
same prediction would come from looking at the unstable manifolds; in Fig. 5.14(a)



CHAPTER 5. DRAMATIC SHAPE SENSITIVITY 100

Figure 5.14: Ray emission amplitude (color scale) overlaid on the surface of section
for the quadrupole-hexadecapole with ε = 0.12 (a) and ε = 0.20 (b). Solid blue
and magenta curves are the unstable manifold of the diamond orbit (a) and of the
unstable rectangular orbit (b). In green and turquoise we plot the line of constant
emission in the 75◦ and 30◦ directions in the far-field.

we find the maximum ray escape amplitude comes from near φ = 0 and is bounded
by the unstable manifold of the diamond orbit. The relevant unstable manifolds rear-
range as the deformation is increased to ε = 0.20. The stable rectangle bifurcates at
ε ∼ 0.1115 into two stable, period four, “parallelogram” orbits. As the deformation
increases the islands associated with these orbits move closer to φ = 0, and although
the islands themselves are quite small, they cause the unstable manifolds of the dia-
mond to become steeper (as the fixed point of the diamond orbit sits right between
the two period four islands). Due to the non-crossing property the rest of the un-
stable manifolds in this region of the phase space also become steeper. At ε = 0.20,
Figure 5.14(b) shows that the unstable manifold of the rectangular orbit dictates
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the flow of the escaping rays, which now are emitted into the θ = 30◦ direction in
the far-field for essentially the same reason as in the quadrupole. Thus the QHD is
a shape which behaves like the ellipse at low deformations and as the quadrupole
at high deformations; this can be attributed to the evolution in the geometry of its
unstable manifolds.

5.9 Directional Emission from Completely Chaotic

Resonators

The existence of highly directional emission for the highly deformed quadrupole
(ε = 0.20) suggests that the slow diffusion in phase space, characteristic of mixed
systems, is not essential to get this effect. Therefore we decided to study theoret-
ically resonators for which the corresponding billiard is completely chaotic and for
which there exist no stable periodic orbits at all. The Bunimovich Stadium (see
inset in Fig. 5.15), mentioned above, was a natural choice due to its similarity to
the quadrupole. As before we did both ray escape simulations and numerical solu-
tions of the wave equation. In Fig. 5.15 we show our predictions. We find again
highly directional emission with a peak direction (∼ 55◦) slightly shifted from the
quadrupole; the narrowness of the far-field peak in the stadium is comparable to
that of the far-field peak in the quadrupole. We can associate this peak with the
slope and position of the manifold of the unstable rectangular orbit in the stadium,
Fig. 5.16(a). The noticeable shift between the ε = 0.12 and ε = 0.18 deformation (see
inset in Fig. 5.15) originates from the change in the slope of the unstable manifold
of the rectangular orbit, Fig. 5.16(b). The discontinuities of slope in the unstable
manifolds of the periodic orbits in the stadium result from its non-smooth boundary.
These results indicate clearly that a fully chaotic dielectric resonator can nonetheless
sustain highly directional lasing modes. It would be interesting to test this in future
experiments.
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Figure 5.15: Far-field emission patterns
for the stadium with ε = 0.12, 0.18. The
blue curve is the ray simulation and the
red a numerical solution of the wave equa-
tion; no experimental data was taken for
this shape. The ray simulation was per-
formed with random initial conditions ex-
actly as in Fig. 5.5. The numerical so-
lutions were for resonances with kR =
50.5401 − 0.0431i with Q = 2342.71 and
kR = 48.7988− 0.1192i with Q = 818.83
for ε = 0.12 and 0.18 respectively. The
inset shows the shape of the stadium; it
is defined by two half circles with radius
one and a straight line segment of length
2ε.

Figure 5.16: Ray emission amplitude
(color scale) overlaid on the surface of sec-
tion for the stadium with ε = 0.12 (a)
and ε = 0.18 (b). Solid blue curve is the
unstable manifold of the periodic rectan-
gle orbit. The green curve is the line of
constant 55◦(a) and 48◦ (b) emission di-
rection into the far-field. The thick black
lines mark the end of the circle segments
of the boundary and coincide with discon-
tinuities in the manifolds.



Chapter 6

Hybrid Resonances of the

dielectric Rod

As noted Chapter 2, the vector resonances of dielectric rods of arbitrary cross-section
correspond to definite TM and TE polarization states for the solutions with kz = 0;
however for kz 6= 0 the solutions are modes of hybrid polarization, whether or not
the rod is circular (the cylinder) or deformed. In the next two chapters we explore
in more detail these hybrid resonances, focusing on two analytically tractable cases,
the cylinder and the stable orbit modes of deformed cylinders. In this chapter we
analyze the resonance quantization conditions and their dependence on tilt angle θ,
(tan θ = kz/

√
n2k2 − k2

z) for these two cases. As shown earlier, when kz = 0 the
resonance solutions are the usual TE and TM modes. Therefore when the modes
are totally-internally-reflected they will suffer a real wavevector shift corresponding
to the well-known phase shifts for TIR in the TE and TM modes; there is also a
small Im [k] in the TIR case due to the curvature of the surface which represents
evanescent leakage and is evaluated below. When the modes are below TIR their
lifetimes correspond to the usual Fresnel escape probability for the TE and TM
cases, with small curvature corrections (also evaluated below). This picture needs
to be generalized to the kz 6= 0 case for which TE and TM are not good polariza-
tion states. Below we will derive the shift of the real part of the resonance for this
case and the shift in its imaginary part which together define a generalized Fresnel
Law. This is done initially by expansions relating to the exact resonance condition
for the separable case of the cylinder. Closely related results for the cylinder are
obtained by the generalized Einstein–Brillouin–Keller (EBK) method which will also
give both the resonance wavevectors (in an equivalent approximation) and the polar-
ization states of the hybrid modes of the cylinder, discussed in the following chapter.
Finally we discuss the resonances corresponding to 2d stable periodic orbits using a
generalization of the Gaussian optical method; this method gives both the resonance
wavevectors and the polarization states of a subset of the modes for the deformed
case.

103
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6.1 Asymptotic expansion for resonances in the

above barrier regime

As we showed in Chapter 4, the vector wave equation can be separated in (z, ρ, φ)
coordinates for the cylinder and a resonance condition can be derived of the form,
Eq. 4.16:

n2(1− n2)2m2 sin2 θ = GTE ·GTM , (6.1)

where we found (using the recursion relations for the derivative of the Bessel-functions
in Section G.3.1)

GTE =

[
1

γ1

Jm−1

Jm
− m

γ2
1

− 1

γ2

Hm−1

Hm

+
m

γ2
2

]

GTM =

[
n2

1

γ1

Jm−1

Jm
− n2

1m

γ2
1

− n2
2

γ2

Hm−1

Hm

+
n2

2m

γ2
2

]
. (6.2)

By employing asymptotic expansions of the Bessel functions we can then obtain
analytic results for the resonance spectrum of the hybrid modes. For the case of the
circle (or equivalently, for kz = 0) this has been done previously [11, 100] and we
briefly review the results, leaving details in Appendix E.1.

6.1.1 Cylinder resonances in two dimensions

For kz = 0 the left-hand-side of Eq. (6.1) equals zero and the two brackets simplify
using γ1 = nkR and γ2 = kR. Therefore the two resonance conditions can be written

0 = GTE ⇒
[
Jm−1

Jm
=

m

kR

(
n− 1

n

)
− nHm−1

Hm

]

0 = GTM ⇒
[
n
Jm−1

Jm
=
Hm−1

Hm

]
. (6.3)

With the large argument expansion of the Bessel-functions (Appendix G)

Jm ≈
√

2

πnkR
cos
(
nkR−mπ

2
− π

4

)
(6.4)

Hm ≈
√

2

πkR
exp i

(
kR−mπ

2
− π

4

)
(6.5)

these reduce to the resonance conditions

nkR = π

(
j +

m

2
+

1

4

)
− i

2
ln
n+ 1

n− 1
(6.6)

nkR = π

(
j +

m+ 1

2
+

1

4

)
− i

2
ln
n+ 1

n− 1
(6.7)
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It is interesting to note that both resonance conditions are the same up to a π/2
phase shift, leading to the same values. We can check the correctness of the equations
with the numerical solutions from Chapter 4, see Fig. 6.1. This result can be easily
understood; in the limit of m¿ kR we are considering Fabry-Perot type resonances
for which the resonance condition is not affected by the polarization state. We can
also recognize that the value of the

Im [nkR] = ln

(
n+ 1

n− 1

)
(6.8)

to be the appropriate lifetime arising from the Fresnel coefficients, Eq. 2.72, for the
case of normal incidence χ = 0, (see discussion below)

0 5 10 15 20
0

0.05

0.1

0.15

PSfrag replacements

E
z
(m

=
2
,j

)−
B

z
(m

=
1
,j

)

j

Figure 6.1: Difference between the exact numerical resonances of Chapter 4 for the
TM Ez(m = 2, j) and TE Bz(m = 1, j) field.

6.1.2 Cylinder resonances in three dimensions

First we again take the limit nkRÀ m. We note that γ2 = n2k2−k2
z and thus in the

same limit m/γ → 0 for kz < kR. In this limit the right hand side of Eq. 6.1 gives
us a factor of order O(γ2) and thus the left hand side vanishes with m/γ → 0, so
that we have again 0 = GTE ·GTM . For the above barrier limit we found asymptotic
formulas for the zeros of both resonant conditions. Following the train of thought
above we get very similar relations, namely

γTM1 = π

(
m

2
+

1

4
+ j

)
− i

2
ln
γ1 + γ2

γ1 − γ2

(6.9)

γTE1 = π

(
m+ 1

2
+

1

4
+ j

)
− i

2
ln
γ1 + γ2

γ1 − γ2

. (6.10)

In order to understand the behavior of the real part up to ±π (the resonance con-
dition) for small kz we now expand both of the formulas around kz, remembering
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γ =
√
n2k2 − k2

z

nkRTM =

√(
π

[
m

2
+

1

4
+ j

]
− i

2
ln
n+ 1

n− 1

)2

+ k2
z (6.11)

nkRTE =

√(
π

[
m+ 1

2
+

1

4
+ j

]
− i

2
ln
n+ 1

n− 1

)2

+ k2
z . (6.12)

Again, for fixed kz, the values for the TM-like and TE-like resonances coincide due
to the normal incidence property (now projected into the transverse plan).
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Figure 6.2: Error of the approximation Eq. (6.15) vs. the radial quantum number
j in a system with m = 10, kz = 5 and n = 1.5. The black curve indicates the
difference between the resonances ko calculated for the circle, the red curve using the
approximation for the TE and TM resonances Eq. (E.20) and Eq. (E.23).

6.2 Blueshift for Hybrid modes

From the separability of the wave equation due to translational symmetry Eq. 2.15,
we got the relation

γ =
√
n2k2 − k2

z . (6.13)

This can be interpreted as a blue shift with respect to the 2d resonances. For a
solution γo of the Helmholtz equation we can write a continuum of solutions due to
the translational symmetry in the z direction

nkR =
√
γ2
o + k2

z . (6.14)

Because kRo is a solution for the 2-d problem it is also a solution of the three
dimensional problem, we can fix γo = kRo getting

nkR =
√
k2
o + k2

z . (6.15)
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This result can be compared to experiments done by Andrew Poon [10] where he
illuminated a tilted optical glass fiber with a unfocused Gaussian beam, see Fig. 6.3.
A simple argument for this blue shift is given via a wavefront matching argument,

A) B)

Figure 6.3: Elastic-scattering spectra detected at 90◦ scattering angle from a tilted
fiber that is illuminated by an unfocused beam. The tilt angle is θ. A) Both the
incident and scattered light were horizontally polarized (TE-TE). B) Blue-shift of
the a, b and c resonances with θ2 dependence. Note that the angle θ in this graph
corresponds to the outside angle α in our notation. Figures from Poon [10].

following Fig. 6.4. The result in Eq. (6.15) is equivalent to the quadratic blue-shift
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Figure 6.4: A) Schematic of wave-front-matching argument. Internal spiral wave of
a tilted optical fiber with respect to. B) The effective length of for the tilted wave is
2πa cos θ, where a is the radius of the fiber. Figures from Poon [10].

in the limit of small tilt angle θ ≈ sin θ = kz/nkR.

γ = nko

√
1 +

k2
z

n2k2
o

= nko
√

1 + θ2 ≈ nko

(
1 +

1

2
θ2

)
≈ nko +

nko
2
θ2 (6.16)

We confirm the adequacy of the approximation Eq. (6.15) in Fig. 6.2.
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6.3 Resonance width and modified Fresnel Laws

The imaginary part of a resonance wave-vector is related to the lifetime of the mode.
This can be related to the classical emission probability which is just the Fresnel
transmission probability. Similar considerations were established done by Nöckel in
his thesis [11] and by Hentschel [100] where a relation to the Goos-Hänchen Shift was
reported. Here we will review this connection. In the short wavelength limit a ray
travels between two reflections for a length L = 2R cosχn. If we assume µ bounces
the corresponding time is t = 2R cosχnµ/c and thus the probability of remaining in
the cavity is

P (t) = pµo = exp(µ ln po) (6.17)

= exp

{
tc

ln po
2nR cosχ

}
= e−2t/τ , with µ =

tc

2nR cosχ
(6.18)

We can thus write the reflection probability at each reflection in terms of the decay
rate τ

po = exp

{
−4nR cosχ

cτ

}
(6.19)

But the decay rate is related to the imaginary part of kR by |y| = R/cτ , thus

po = exp{−4n|y| cosχ}. (6.20)

By inserting the exact numerics from Section 4.3 we obtain the exact Fresnel re-
flection probability. In the Fig. 6.5 we compare the modified Fresnel results (from
Ref. [11]) with the classical Fresnel relation. The reflection probability in the mod-
ified Fresnel equation does not go to one directly at the critical angle, but has an
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Figure 6.5: Reflection probability po at each collision with a circular interface versus
the sine of the angle of incidence, assuming n = 1.5. A) for the TM polarization
and B) for the TE polarization. In A) we additionally plot in blue the perturbative
solution for narrow resonances Ref. [11] with kR = 31 In the inset of B) shows the
magnification of the Brewster angle, where the resonance width diverges. Note, one
does not get an exact Brewster zero for the cuved case. For comparison the Fresnel
formulae for a plane interface are plotted as solid lines.



CHAPTER 6. HYBRID RESONANCES OF THE DIELECTRIC ROD 109

A) 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

sinχ

p o

B) 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

sinχ

p o

C) 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

sinχ

p o

Figure 6.6: A) θ = 0.1, B) θ = 0.2, C) θ = 0.3, Escape probability in the cylinder with
n = 2 vs. sinχ. (red dots) exact numerical solutions with γ1 ∈ [98, 112], following
Eq. (6.21), (black dashed) classical Fresnel coefficient rs, (black dash dot) classical
Fresnel coefficient rp, (vertical red dashed) effective Brewster angle, (vertical black
dashed) effective critical angle.

exponential tail. This change reflects the evanescent emission from circular micro-
cavities, although the rays are total internally reflected.

6.3.1 Resonance width in 3d

We need to slightly modify the reflection probability from Section 6.3, due to the
change in effective path length, when we include nonzero kz. The resulting reflection
probability is

po = exp {4 cosχIm [γ1]} (6.21)

In Fig. 6.6 we plot the modified Fresnel formula for θ 6= 0. We can see that for small
θ the exact numerical solutions follow the classical Fresnel coefficients rs and rp, and
can clearly be associated with a TE and TM like mode. The first new feature to
observe is the shift in the critical angle. This shift just stems from the increased θ
and is given by Eq. (3.75). From the plotted rp reflection coefficient we can clearly
see the Brewster angle, also noted with the vertical red line. We can see that between
the Brewster angle and the CA both polarization types mix.
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6.4 Resonance conditions in the semiclassical limit

Up to now we have considered the above barrier regime and the long lived resonance
modes. In this section we will derive the resonance conditions with semiclassical
methods. First we will return to the Eikonal approach discussed already in Chap-
ter 2 where we derived in Section 2.4 Snell’s and Fresnel’s law by applying the
boundary conditions to the general Eikonal ansatz. In this section we will derive the
quantization condition, the so called EBK quantization for the cylinder.

6.4.1 The EBK quantization conditions

In Section 2.4 we have studied the Eikonal theory for vector EM waves scattering off a
dielectric interface and derived the generalized Snell’s and Fresnel’s law. Here we will
learn what conditions need to be fulfilled to have a resonance in a dielectric cavity.
Einstein in 1917 was the first to tackle the problem of semiclassical quantization for
general 2d and 3d geometries within the context of the old quantum theory [67]. This
work was forgotten, and then reinvented and improved by Keller in 1958 [69], who
applied the general theory to the circle and other shapes in 1960 with Rubinow [101].
We will follow here the description of Türeci [66] who expanded the quantization
treatment to the 2-d circular domain with dielectric boundary conditions.

The generalized EBK ansatz for the quasi-bound solutions of the vector Helmholtz
Eq. 2.15 can be written as

(
Ez
Bz

)
= Ψ(r) = A1e

iγS1(r) + A2e
iγS2(r) (6.22)

where A1,2 are two component vectors and S is the Eikonal, described in Section 2.4.
Following Refs [101, 66] we can write the general quantization condition

∮

Γi

dq · ∇S = 2πli, i = 1, 2 (6.23)

This equation is quite remarkable, as it gives the quantization condition just by inte-
gration over any two topologically inequivalent closed loops. It has been shown [101,
66] that for the integrable circle the topology of the problem is that of a torus and
that there are only two topologically different loops. The integral gives this phase
advance along the curve Γi, which we require to be quantized. The first loop Γ1 (see
Fig. 6.7 A)) gives the angular momentum quantization

sinχ =
m

γ
(6.24)

This result is frequently used throughout this thesis. The second loop Γ2 gives the
quantization condition for the reduced wavevector and in terms of the path length
L of the loop.

L = 2 cosχ− 2
(π

2
− χ

)
sinχ. (6.25)
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Figure 6.7: A) Path of the first curve Γ1. B) Second path Γ2, of length L.

We note that this effective length is the same for the cylinder and the circle. The
whole information of the three dimensional problem is hidden in the reduced wavenum-
ber γ =

√
n2k2 − k2

z . We still need to consider the phase shift induced by a reflection
on the boundary. In Section 2.4.2 we derived the matrix R that connects the incom-
ing spinor wavefronts with the outgoing ones given in Eq. 2.67, which reads as

Ψr = RΨi. (6.26)

We require that each reflection from the boundary leaves the polarization invari-
ant. (Free propagation leaves polarization invariant.) This reduces to the eigenvalue
problem

Λa = Ra, (6.27)

with the eigenvectors a and the eigenvalues Λ. Noting that for the case for resonances
with kz = 0 the R-matrix reduces to the Fresnel reflection coefficients rs and rp on
the diagonal.

The behaviour of the eigenvalues Λ = reζ of the matrix R for kz 6= 0 is shown
as a function of the angle sinχ = m/γ is shown in Fig. 6.8. We note here that the
magnitude of the eigenvalues are different up to a point between the Brewster angle
(vertical dashed), and the CA (vertical dashed). At this point the the eigenvalues
become complex conjugates of each other. We will call this point, the polarization
critical angle (PCA). Not until the CA do the Λ1,2 lie on the complex unit circle
given TIR. Thus we have a new phenomenon, a phase shift without total internal
reflection. The eigen-polarizations resulting from Eq. 6.27 will be discussed in the
next Chapter. A further phase shift of π/2 has to be taken into account as the ray
touches a caustic, for a detailed description see Ref. [66]. We can thus write the
quantization condition for the cylinder as

γL = 2πj +
π

2
+ ζ + i ln |r|, with L = 2

[
cosχ−

(π
2
− χ

)
sinχ

]
, (6.28)

using the quantization of the angular momentum sinχ = m/γ we write the tran-
scendental equation

2γ

√
1− m2

γ2
+m arcsin

(
m

γ

)
= 2πj +mπ + ζ + i ln |Λ|, with j,m ∈ � . (6.29)
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Figure 6.8: Absolute value of the eigenvalues of the R matrix (solid red and blue
lines) with n = 2 and tan θ = 0.2 vs. sinχ. The imaginary part of the eigenvalues
is also plotted in dashed. The dotted horizontal line is the Brewster angle and the
dashed the critical angle. Red indicates TM like component and black the TM.

This is the full semiclassical quantization condition for the dielectric cylinder! We
can compare this result to the above barrier regime by taking the limit cosχ → 1,
χ sinχ ∼ 0 and using the angular momentum quantization condition, to get

γ

(
2− π

2

m

γ

)
= 2πj +

1

2
+ f(χ) (6.30)

⇒ γ = π

[
j +

m

2
+

1

4

]
+ f(χ) (6.31)

This equation corresponds to Eq. 6.11, 6.12. Where the contributions of the phase
shift and the loss at the boundary have been combined in f(χ). We will later (Chap-
ter 7) return to this function when we have derived a simpler R matrix based on ray
considerations. This will help us to develop a physical understanding for the phase
shift.

In Tab. 6.1 we compare the resonances found by three methods, the exact cylinder
resonances from the Bessel functions, the S-Matrix method and the EBK quantiza-
tion.

6.5 Gaussian Optics in 3d

For a deformed cylinder, there is no general analytic method to find all the modes of
a cavity. There are however powerful asympthotic methods for the calculation of the
fraction of modes localized on regular regions in a general, mixed phase space. We
have shown in Chapter 3 that a general phase space will have three different type of
trajectories. Oscillatory motion in the vicinity of a stable fixed-point, chaotic motion
in the region around unstable fixed-points and marginally stable motion on families
of quasi-periodic orbits. The Bell-Labs experiment [8] showed that a resonance on
a stable periodic orbit can be relevant for deformed microlasers. An asymptotic
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Table 6.1: Resonances in the cylinder with n = 2, θ = 0.1. We compare the reso-
nances calculated by zero finding of the Bessel functions, the S-Matrix method and
the EBK method. The agreement is reasonably well. For the S-matrix calculation it
is to be noted that we calculated and interpolated around kR = 100, thus the values
further away from 100 are less exact. We have to note that as the EBK quantization
is a transcendental equation, which we did not attempt to solve. We used the results
from the wave numerics to calculate the sinχ using this we checked the equation.

θ = 0.1 exact S-Matrix EBK
m TE/TM kR kR j kR

18 100.52083-0.27170i 100.52082-0.27168i 55 100.520468-0.271695i
20 100.42571-0.27098i 100.42570-0.27098i 54 100.425346-0.270979i
44 100.06672-0.25117i 100.06680-0.25523i 43 100.066168-0.255107i
74 100.30341-0.20475i 100.30321-0.20462i 31 100.301095-0.204629i
98 101.41861-0.09114i 101.40758-0.07870i 23 101.382400-0.075236i

θ = 0.2

5 TM 99.62235-0.59423i 99.62239-0.59427i 29 99.61990-0.59421i
17 TE 99.86057-0.55418i 99.85991-0.55355i 23 99.86699-0.55433i
20 TM 99.29851-0.56992i 99.29954-0.57074i 22 99.29473-0.56984i
34 TE 100.17837-0.84848i 100.16835-0.83978i 16 100.20152-0.85155i
39 TE 99.78148-1.35232i 99.65145-1.26193i 14 99.74088-1.36053i
57 TE 99.76787-0.00005i 99.76803-0.00005i 8 96.79993+0.00009i
62 TM 100.78974-0.00000i 100.79161-0.00000i 7 100.86339+0.00000i
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approach for the calculation of wavefunctions related to periodic orbits (PO) in a
2-d dielectric cavity, was constructed in Ref. [93]. We will here expand this formalism
to orbits in three dimensional translationally symmetric cavities whose 2d projection
is a stable periodic orbit.

We use the vector Helmholtz equation (2.20)

(∇2 + γ2)Ψ = 0, with Ψ =

{
Ez(x, y)
Bz(x, y)

}
. (6.32)

Its solutions Ψ can be expanded along a set of arms of a ray trajectory shown in
Fig. 6.9

Ψ(x, y) =
N∑

m

Ψm(xm, ym) (6.33)

Following the parabolic equation approximation [102], we assume that the main
PSfrag replacements
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Figure 6.9: Local and global coordinate system for Gaussian optics. Here a cut on
the plane of incidence. xm and ym are the local coordinates attached to each segment.
At every point of the boundary we define a global set of coordinates in the normal
n̂ and the tangent t̂ direction.

variation of the phase in the y-direction is linear and factor it out

Ψm(xm, ym) = um(xm, ym)eiγym . (6.34)

Using this ansatz in the Helmholtz equation

(∇2
m + γ2)Ψm = 0 (6.35)

we obtain the following partial differential equation

∂2u

∂x2
+
∂2u

∂y2
+ 2iγ

∂u

∂y
= 0. (6.36)

Following the reasoning in Ref. [66] we use a standard tool from the boundary layer
theory [103, 104] to stretch the ‘fast’ variable x with the appropriate scale

x̃ = x/
√
γ. (6.37)
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This results into
∂2u

∂x̃2
+

1

γ

∂2u

∂y2
+ 2i

∂u

∂y
= 0, (6.38)

which we now only keep to lowest order in γ.

∂2u

∂x̃2
+ 2i

∂u

∂y
= 0. (6.39)

We now make the following Ansatz

uom(x̃m, ym) = cA(ym) exp

[
1

2
iΩ(ym)x̃2

m

]
(6.40)

where c is a vector representing amplitudes of the Ez and Bz components. The
exponential and the amplitude A(y) are taken to be the same for both fields. This
Ansatz yields two differential equations

Ω2 + Ω′ = 0 (6.41)

AΩ + 2A′ = 0 (6.42)

with Ω′ = ∂Ω
∂y

and A′ = ∂A
∂y

. Substituting Ω = Q′/Q we obtain

Q′′ = 0 (6.43)

Q′

Q
+ 2

A′

A
= 0 (6.44)

latter equation has the solution A = 1/
√
Q and former Eq. (6.43) is the Euler

equation for ray propagation in a homogeneous medium with the general solution
Q = αy + β. This is the connection to the underlying classical ray picture.

The boundary conditions that we have to fulfill in a three dimensional cylindrical
structure are given in Eq. (2.41)–(2.44). We write them here as

Ψi(x̃m, ym) + Ψr(x̃m, ym) = Ψt(x̃m, ym) (6.45)

BiΨi(x̃m, ym) + BrΨr(x̃m, ym) = BtΨt(x̃m, ym) (6.46)

where B are given by Eqs (2.64)–(2.66). The continuity condition on the boundary
gives us with together with the Ansatz Eq. (6.40) a condition for the amplitudes and
for the phases

ci√
Qi(ym)

+
cr√
Qr(yr)

=
ct√
Qt(yt)

(6.47)

[
γ1yi +

1

2

Q′
i

Qi

x̃2
i

]
+

[
γ1yr +

1

2

Q′
r

Qr

x̃2
r

]
=

[
γ2yt +

1

2

Q′
t

Qt

x̃2
t

]
. (6.48)
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We now need to write the local coordinates in global coordinates which we scaled
according to Eq. 6.37 such that x̃ =

√
γx, ñ =

√
γn, t̃ =

√
γt

yi = lm + 1/
√
γ1 cosχñ+ 1/

√
γ1 sinχt̃ xi = sinχñ− cosχt̃ (6.49)

yr = lm − 1/
√
γ1 cosχñ+ 1/

√
γ1 sinχt̃ xr = sinχñ+ cosχt̃ (6.50)

yt = lm + 1/
√
γ2 cos σñ+ 1/

√
γ2 sinσt̃ xi = sin σñ+ cos σt̃ (6.51)

We now assume that the boundary is in the vicinity of the bounce point parabolic
and follows the relation ñ = −t̃2/γρ where ρ is the local radius of curvature. Using
the coordinate transforms Eq. (6.49)–(6.51) on the phase relation Eq. (6.48) we get
to order O(1/

√
γ) considering first the coefficients of t for the incoming and outgoing

component we get
ν sinχ = sinσ (6.52)

where ν = γ1/γ2 = tanα/ tan θ. This is the Snell’s law derived in Section 2.4.1 via
the EBK method. Collecting the t2 components we get

(
Qt

Q′
t

)
=

(
1/µ 0

1/ν−µ√
γ1ρ cosχ

µ

)(
Qi

Q′
i

)
(6.53)

where µ = cosχ/ cos σ and we have fixed Qi = µQt. This matrix equation can be
recognized as the ABCD matrix for transmission through a curved interface [85].
Observing now the incoming and reflected phase components we do not get new
information from the t components but from the t2 components we get

(
Qr

Q′
r

)
=

( −1 0
2√

γ1ρ cosχ
−1

)(
Qi

Q′
i

)
(6.54)

where we have taken the convention thatQr = −Qi. This equation can be interpreted
as the ABDC matrix or reflection matrix at a curved boundary [85].

So far we have only considered the phase relations. Now we write the amplitude
conditions for the continuity at the boundary condition

ci√
Qi

+
cr√
Qr

=
ct√
Qt

(6.55)

using Qi = µQt and Qr = −Qi we arrive at

ci − icr =
√
µct (6.56)

Next we need to impose the mixing boundary conditions Eq. (2.61) on the fields.
The phase relation is going to be unaffected, but the amplitude condition rewrites
as

Bici − iBrcr =
√
µBtct, (6.57)

where Bi, Br, Bt are given by Eqs (2.64)–(2.66). Combining Eq. (6.56) and
Eq. (6.57) we can derive a relation between the incoming and reflected field as

cr = −i
(
Br −Bt

)−1 (
Bi −Bt

)
ci. (6.58)
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We can recognize this equation from Section 2.4, where we have defined it to be R.
Now we can write the quantization condition for a stable orbit. Having deter-

mined how an initial solution (Q,Q′) is propagated an arbitrary distance, we now
require that the solution be single valued after propagation around a loop of a peri-
odic orbit (PO), with length L

Ψ(x, y + L) = Ψ(x, y). (6.59)

We need now to determine the phase advance.
Contributing to the phase is the Floquet Phase ϕ relating to the fact that the

eigenvectors of the monodromy matrix of for the PO are complex when the orbit is
stable (see Section 3.2.5), another shift in the phase occurs at every reflection of the
boundary by π/2 and by the eigenvalues Λ = reiζ of the reflection matrix R = ΠRi,
when we require that after a round trip the eigenpolarizations c need to be invariant
in order to satisfy the translational symmetry in the z direction. We can thus write
the final quantization condition for a N periodic stable periodic orbit

γ1L =
1

2
ϕ+ 2πm+

1

2
πN + πNµ + ζ + i ln r. (6.60)

Here, π/2 is the phase shift at each reflection, Λ = reiζ is the eigenvalue of the
reflection matrix ΠN

i=1Ri and N the number of bounces. The integer Nµ, the Maslov
index [66, 105] which is sensitive to the number of times the phase wraps around the
origin. If it is odd we can observe a π phase-shift in the resonance condition. We
want to remark on this result that it is valid for all PO as long as they are stable in
any geometry! In the next Section we want to apply the above found results for a
periodic orbit in a deformed cavity.

6.5.1 Gaussian Quantization of the Bouncing Ball orbit

In the last section we derived a quantization rule for any stable periodic orbit. Here
we want to apply the theory to the period-2 orbit, the bouncing ball (BB) orbit of
the hexadecapole (see Chapter 5 for the definition of the shape). We can now state
the quantization rule:

γL =
1

2
ϕ− π

2
+N

π

2
+ ζ + 2jπ + i ln r (6.61)

where ϕ is the Floquet phase of the orbit, N the number of bounces, j some integer
and the eigenvalue of the total R matrix is reiζ . A comparison to calculations via
the S-matrix formalism from Section 4.7 is shown in Table 6.2. We can see a good
agreement between the resonance conditions and the resonance width.

6.6 Conclusion

In this chapter we have derived analytic results for the resonances. First in the
cylinder using the above barrier limit and the limit of long lifetime (WG). We under-
stood and described the experimentally observed ‘blue’-shift and then derived a full
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Table 6.2: Quantization for the bouncing ball orbit in the hexadecapole with ε = 0.07
and θ = 0.2. L = 3.71680, ϕ1 = −1.53399, ϕ2 = +1.53399

θ = 0.2 n = 2 S-Matrix Gauss
TE/TM sym kR j kR

TE ++ 96.98726-0.54882i 57 96.98652-0.54640i
TM +− 96.99360-0.63930i 57 96.98652-0.64110i
TE +− 98.67793-0.54882i 58 98.67701-0.54640i
TM ++ 98.68409-0.63930i 58 98.67701-0.64110i
TE ++ 100.36859-0.54882i 59 100.36749-0.54640i
TM +− 100.37458-0.63930i 59 100.36749-0.64110i
TE +− 102.05926-0.54882i 60 102.05797-0.54640i
TM ++ 102.06507-0.63930i 60 102.05797-0.64110i

semiclassical quantization condition for the cylinder. These results where all com-
pared to numerical data. In the last Section we derived a quantization method for
a stable periodic orbit in an arbitrary geometry with translational symmetry along
one direction. In the next Section we will use these results to understand the polar-
ization of hybrid resonances. The important eigenvalues of the R matrix will find a
more physical interpretation through a ray-dynamical interpretation using the Jones
Algebra.



Chapter 7

Polarization States of Hybrid

Modes

7.1 Introduction

In Chapter 6 we analyzed the resonance condition for the analytically solvable cases
of the dielectric cylinder with kz 6= 0 and for the stable orbit modes of arbitrarily
deformed cylinders with kz 6= 0, finding the quantized resonance wavevectors of
these modes. In this chapter we analyze in more detail the spatial character of the
resulting E and B fields and the polarization properties of the light emitted from
these modes. The resonance wavevectors derived by the EBK method in Eq. (6.27)
involved a contribution from the boundary reflection which we parameterized as
Λ = reiζ and derived as eigenvalues of the EBK R-matrix. We now return to this
question and for the case of the cylinder derive the relevant quantity by a different
method which makes its interpretation much clearer. Similar arguments will allow us
to analyze the polarization states of the stable orbit modes of the deformed cylinder.
We briefly review the kz = 0 case and set notation for the discussion of polarization
in the general 3D case.

7.2 Polarization of a plane wave

When we talk about polarization it is important to realize that polarization only has
meaning for plane waves, or fields that are perpendicular to the propagation direction
k. Choosing the propagation direction to be along ẑ we can write the electric field
as

E = Eoe
i(kz−ωt), with Eo = Eoxx̂ + Eoyŷ (7.1)

The relationship between Eox and Eoy describes the polarization of the light. An
arbitrary phase shift between the two fields is call elliptically polarized. There are a
number of special cases that we want to remark on. If the phase difference between
the two components is ±π,±2mπ, ∀ m ∈ �

, we call it linearly polarized. If the
magnitude of both components is equal and the phase shift is ±π/2 i.e. Eox = iEoy

119
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Figure 7.1: Schematic for reflection and transmission at a plane interface.

the field never goes to zero simultaneously in both dimensions and we call the light
circularly polarized. In Section 2.4 we have studied the effect of a discontinuity in the
dielectric constant for a field with 1-d translational symmetry. We will now use the
results derived there for the kz = 0 case to understand the phase shift encountered by
reflection/ refraction at an dielectric interface. It is common to describe the electric
field in coordinates with respect to the plane spanned by the incoming field and the
normal at the boundary, the plane of incidence p0∧p1 (see Fig. 7.1). We will choose
a projection of the electric field into components parallel to the plane of incidence E0

p ,
and perpendicular E0

s .
1 Linearly polarized light with only Es components is called

TM-polarized, with only Ep components TE-polarized. From Eq. (2.18) and (2.19) it
follows that in the 2-d case (kz = 0) the Fresnel coefficients derived in Section 2.4.2
will hold for Es and Ep; Snell’s law Eq. (2.57) is polarization invariant. For the
completeness of this chapter we will restate Snell’s law:

n sinχ = no sinα (7.2)

and the Fresnel coefficients:

rs ≡
E1
s

E0
s

=
sin(χ− α)

sin(χ+ α)
=
n cosχ− no cosα

n cosχ+ no cosα
(7.3)

rp ≡
E1
p

E0
p

= −tan(χ− α)

tan(χ+ α)
=
n cosα− no cosχ

n cosα + no cosχ
(7.4)

ts ≡
Et
s

E0
s

=
2 sinα cosχ

sin(χ+ α)
=

2n cosχ

n cosχ+ no cosα
(7.5)

tp ≡
Et
p

E0
p

=
2 sinα cosχ

sin(χ+ α) cos(χ− α)
=

2n cosχ

n cosα + no cosχ
(7.6)

1It is customary in the literature to use the subscript s to note the perpendicular field, from the
German word for perpendicular senkrecht. This is not just the case because I am German.
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Figure 7.2: Fresnel coefficients for total internal reflection at interface with no = 1
and n = 2.65. In red we have rp, in blue rs. (real part dashed, imaginary solid). The
curve in black is the phase shift between the two components. The vertical dashed
black line indicates the Brewster angle at which rp = 0 and the vertical green line is
the critical angle (CA).

From Snell’s law Eq. (7.2) we see that there exist a critical angle

χcrit ≡ arcsin
no
n

(7.7)

at which we have no transmitted ray; for a curved surface there are correction [11]
to this result, already discussed in Section 6.3 below. The outgoing angle α does still
exist, but is now a complex number, leading to a polarization dependent phase shift.
We write

sinα =
n

no
sinχ (7.8)

cosα = i

√
n2

n2
o

sin2 χ− 1 (χ > χcrit). (7.9)

Thus we can write the Fresnel reflection coefficients as

rs =

n
no

cosχ− i
√

n2

n2
o
sin2 χ− 1

n
no

cosχ+ i
√

n2

n2
o
sin2 χ− 1

(7.10)

rp = −
no

n
cosχ− i

√
n2

n2
o
sin2 χ− 1

no

n
cosχ+ i

√
n2

n2
o
sin2 χ− 1

. (7.11)

These are complex numbers of modulus unity, leading to the well-known TE, TM
phase shifts on TIR shown in Fig. 7.2.

Now we recall that for the kz = 0 resonances of the dielectric cylinder we have
either Bz = 0 (TM mode) or Ez = 0 (TE mode) and we are interested in the
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semiclassical limit, m, kRÀ 1 where the reflection at the boundary is locally like that
of the plane wave. Hence the resonances in this case are shifted by the appropriate
TE and TM Fresnel phase shifts for the TIR resonances; this phase shift contributes
directly to the wavevector of the resonance (see Eq. (6.28)). For the above barrier
resonances there is (in this limit) no phase shift, only a loss upon reflection which is
determined by the Fresnel leakage in the TE and TM cases and gives Im [γ] for these
resonances. When curvature corrections are taken into account, there is some small
Im [γ] in the TIR case and some small energy shift for the above-barrier resonances.
Thus the TE and TM Fresnel laws enter the quantization conditions directly.

However our review of polarization of plane waves indicates a complication that
will arise for kz 6= 0. Imagine we are in the semiclassical limit so we can think
of a ray as a plane wave spiraling up or down the dielectric cylinder; it is easy
to see and we will show below, that the plane of incidence will change with each
reflection from the boundary for all cases except for sinχ = 0 (diametral motion
in the transverse plane). Therefore a polarization which is purely Ep or Es on the
first bounce will appear as some linear combination of the two on the next bounce,
and in fact the polarization would have to change with z, violating the translational
symmetry required of resonances. Therefore we shall see that the polarization must
be an eigenvector of particular reflection times rotation matrix in order to restore
translational symmetry and in fact this condition determines the vector solutions
of the problem with kz 6= 0 and the polarization properties in the far-field of the
emitted light. The eigenvalues of this problem are precisely the quantities Λ = reiζ

that we inserted without detailed analysis into the resonance condition, Eq. (6.28)

7.3 Jones Algebra

To keep track of the polarization of polarized light, R. Clark Jones introduced in
1941 [106] the 2-d matrix algebra, where the polarization state is given with a Jones
vector, and the optical element is described by a Jones matrix. The Jones vector is
written as

E =

(
Ep
Es

)
=

(
E0pe

iφp

E0se
iφs

)
(7.12)

with E0s and E0p being the magnitude of the electric field and the phases φs and φp.
Any optical element can now be written as a 2-d matrix. In our case we are interested
in the Jones matrix for the reflection and transmission at a dielectric interface, which
writes as

Jr =

(
−rp 0
0 rs

)
(for reflection), Jt =

(
tp 0
0 ts

)
(for transmission) (7.13)

This mechanism only works when all reflections lie in the same plane. If we deviate
from the plane we need to rotate the coordinate system such that it lies in the new
plane of incidence. If the angle between the two planes is given by ξ we can do this
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by multiplying the Jones vector by the rotation matrix

R(ξ) =

(
cos ξ sin ξ
− sin ξ cos ξ

)
(rotation of coordinates through

an angle ξ in negative direction)
(7.14)

In the next Section we will determine this angle ξ for a general cylindrical symmetry.
The Jones version of the R-matrix will then be the product of Jr and the rotation
matrix.

Rotation matrix for the Polarization

In order to be able to consider polarization we orient our electric field E in the
s, p−direction of our ray. Es is the perpendicular senkrecht direction and Ep in
the parallel direction of the plane N spanned by the incoming and outgoing ray
N0 = P0 ∧ P1. Es points in the direction N0. After the reflection we need to
transform the electric field into the local coordinates for the reflection P1 → P2,
where the normal is given by N1 = P1 ∧P2. This can be achieved by a rotation of
both components by ξ, where ξ =<)(N0,N1). This angle can be calculated using

|P0 ×P1||P1 ×P2| cos ξ = 〈P0 ×P1|P1 ×P2〉
= 〈P0|P1〉〈P1|P2〉 − 〈P1|P1〉〈P0|P2〉
=
[
(1 + tan2 θ) cos 2η0

] [
(1 + tan2 θ) cos 2η1

]

− (1 + tan2 θ)(p0
xp

2
x + p0

yp
2
y + tan2 θ)

= (cos 2χ0 − tan2 θ)(cos 2χ1 − tan2 θ)

+ (1 + tan2 θ)(−(p0
xp

2
x + p0

yp
2
y)− tan2 θ)

= (cos 2χ0 − tan2 θ)(cos 2χ1 − tan2 θ)

+ (1 + tan2 θ)(cos(π − 2χ0 − 2χ1)− tan2 θ)

(7.15)

where we used Eq. (3.74) and the fact that −(p0
xp

2
x + p0

yp
2
y) represents the angel

between the rays <)(p0,p2). We further note that

|P0 ×P1| = |P0||P1| sin<)(P0,P1)

= (1 + tan2 θ) sin 2η0

= (1 + tan2 θ)
√

1− cos2 2η0

= (1 + tan2 θ)

√
(1 + tan2 θ)2 − (cos 2χ0 − tan2 θ)2

(1 + tan2 θ)2
(7.16)

=
√

(1 + tan2 θ)2 − (cos 2χ0 − tan2 θ)2

. . . some identities later:

= 2 cosχ0

√
sin2 χ0 + tan2 θ

we can thus write the angle ξ = ξ(χ0, χ1, θ). All the information is thus given in
terms of the 2-d picture plus the conserved inclination angle θ.
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Figure 7.3: Schematic for the rays traveling in a 3-d cylinder.

7.4 Polarization resonance condition for the cylin-

der

We have seen in the previous section that the polarization vector gets in general
mixed at every reflection from the boundary. Thus, the polarization would have
to change along z. As this would be a violation of the translational symmetry we
have to require that the polarization vector remains unchanged after a rotation and
reflection, up to a constant

ν1,2

(
Ep
Es

)

1,2

= R(ξ)Jr

(
Ep
Es

)

1,2

≡ J

(
Ep
Es

)

1,2

(7.17)

where Ep, Es are the given in the local plane of incidence spanned by (P1,P2) with
the normal N. This condition reduces now to the the eigenvalue problem of the 2×2
matrix J = R(ξ)Jr with the two eigenvalues ν1,2. Each of two different eigenpolar-
izations

(
Ep

Es

)
1,2

represent either the TE or TM like resonances (in the limit where

they are distinguishable).
In Fig. 7.4 we plot both the eigenvalues of the J and R matrix vs. sinχ. We

can clearly see that they are equivalent. In the next section we will show that both
matrices are similar.
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Figure 7.4: Absolute value of the two eigenvalues ν1,2 of the rotated Jones matrix
(solid red and blue). Imaginary part of the eigenvalues is plotted in dashes. The
Eigenvalues become complex at the point where the two curves meet and join. This
point lies between the Brewster angle (dashed vertical black) and the effective critical
angle (solid vertical green). In dots we plot the eigenvalues of the Λ for the R-matrix
given in Chapter 6. Calculated for tan θ = 0.2, n = 2.

7.5 Similarity of J and R

We have shown in Fig. 7.4 that the eigenvalues of the Jones-Rotation matrix J =
R(ξ)Jr are indeed the same as that of the R-matrix. In order to show that both
matrices are similar, i.e. R = J−1RJ. We need to show that there exist an invertible
Θ such that a = Θb, where a are the eigenvectors of J and b the eigenvectors of R.
Here we will now derive this Θ.

In Section 2.2 we have derived the properties of the wave equation in terms Ez

and Bz. First we will adopt a local coordinate system shown in Figure 2.3 and use
the normal and tangential derivatives in Eqs 2.53 in Eqs 2.18 and 2.19. This leads
to:

(
Ex
Ey

)i
=

(
Et
En

)i
=

(
sinχ cosχ
cosχ − sinχ

)(
tan θ 0

0 1
n cos θ

)(
Ez
Bz

)i
, and (7.18)

(
Bx

By

)i
=

(
Bt

Bn

)
=

(
− cosχ sinχ
sinχ cosχ

)(
n

cos θ
0

0 tan θ

)(
Ez
Bz

)i
. (7.19)

We can invert these equations and get for the electric field component

(
Ez
Bz

)i
=

(
cot θ 0

0 n cos θ

)(
sinχ cosχ
cosχ − sinχ

)(
Ex
Ey

)i
(7.20)

(
Ez
Bz

)r
=

(
cot θ 0

0 n cos θ

)(
sinχ − cosχ
− cosχ − sinχ

)(
Ex
Ey

)r
(7.21)

(
Ez
Bz

)t
=

(
cotα 0

0 n cosα

)(
sinσ cos σ
cosσ − sin σ

)(
Ex
Ey

)t
. (7.22)
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All we need to do is to write Ep and Es in terms of Ex and Ey. For this we note that
Es is parallel to the normal of the plane spanned by P0,P1:

k̂ = P0 =




sinχ
cosχ
tan θ


, and |k| =

√
1 + tan2 θ (7.23)

ŝ = P0 ×P1 =




tan θ
0

− sinχ


, and |s| =

√
tan2 θ + sin2 χ (7.24)

The Ep component lies in the plane thus we can write it as a sum of the two vectors
P0,P1:

p̂ = −
(
P0 cos 2η + P1

)
=



− sinχ cos2 η
cosχ sin2 η
− tan θ cos2 η


 (7.25)

|p| =
√

sin2 χ cos4 η + cos2 χ sin4 η + tan2 θ cos4 η (7.26)

We can now write


Ex
Ey
−Ez


 =




sx px kx
sy py ky
sz pz kz






1/|s| 0 0
0 1/|p| 0
0 0 1/|k|





Es
Ep
0


 (7.27)

thus
(
Ez
Bz

)i
=

(
cot θ 0

0 n cos θ

)(
sinχ cosχ
cosχ − sinχ

)(
sx px
sy py

)(
1/|s| 0

0 1/|p|

)(
Es
Ep

)i

(7.28)
A good test of the equation is to check the value of

Ez = −Es|s| sz −
Ep
|p|pz (7.29)

= cot θ

(
Es
|s| (sx sinχ+ sy cosχ) +

Ep
|p| (px sinχ+ py cosχ)

)
(7.30)

We have now connected both eigenvectors, via a matrix Θ. Thus the Jones matrix
approach is equivalent to the R matrix approach. With this we are able to write
the quantization condition in a completely analytical form! Right at the PCA the
eigenvalues are complex conjugates and thus the resonances will get both a shift in
the energy and width. From the CA on we just have a shift in energy.

7.6 Polarization critical angle

We have seen in the last section that the connection matrix between R and J, Θ is
real. We can infer from this that if the eigenvalues are real so are the eigenvectors.
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Figure 7.5: A) Absolute value of the two eigenvalues ν1,2 of the rotated Jones matrix
(solid red and blue). Imaginary part of the eigenvalues is plotted in dashes. The
Eigenvalues become complex at the point where the two curves meet and join. This
point lies between the Brewster angle (dashed vertical black) and the effective critical
angle (solid vertical green). In dots we plot the eigenvalues of the Λ for the R-matrix
given in Chapter 6. Calculated for tan θ = 0.2, n = 2. B) (blue) The sine of the
polarization critical angle PCA at which the eigenvalue of R gets complex. (red) sin
of the Brewster Angle, (black) sin of the critical Angle, were total internal reflection
occurs.

If the eigenvalues have a relative phase, so will Ez and Bz. We will show later that
then also the far-field Ez and Bz components have a phase shift, thus show general
polarization.

For the J we can analyze the eigenvalues by writing the matrix explicitly in
terms of the rotation angle ξ and the Fresnel reflection coefficiants rs and rp. The
eigenvalues then read as

ν1,2 =
1

2
cos ξ (rs − rp)±

1

2

√
cos2 ξ (rs − rp)2 + 4rprs. (7.31)

In the preceeding section we noticed that if the eigenvalues are complex, the polarza-
tion will be in general elliptical. In Fig. 7.5 A) zoom into the plot of the eigenvalues
vs. sinχ for the region where the eigenvalues become complex. From Fig. 7.2 we
know that rs > 0 ∀ sinχ and only rp changes its sign (right at the Brewster angle).
We can thus see that the discriminant in Eq. 7.31 will be always positive below the
Brewster angle. At the critical angle (CA) both rs and rp get complex and we get
eigenvalues with unit magnitude. The interesting part is the region between the
Brewster angle and the critical angle. At some value of sinχ in this interval, the
discriminant gets negative (but both rs and rp are real) and thus leading to complex
conjugate eigenvalues. This elliptical polarization will occurring before the critical
angle. We name this angle the polarization critical angle PCA. In Fig. 7.5 B) we
analyse the functional relation of the PCA with respect to θ and compare it to the
Brewster angle and the CA. We see that for small θ the onset of the elliptical phase
is at the CA. As θ varies new PCA moves close to the Brewster angle and then for θ
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close to the CA, where for any sinχ we will have TIR, the PCA returns to the CA.
We can make here an interesting observation, that the eigenvalues of the rotated

Jones matrix are related exactly to the resonant lifetimes of the resonant problem in
Section 6.3.1 by the relation Eq. (6.20).

In the next section we will now investigate the properties of the eigenvectors for
both the Jones and R matrix approach.

7.7 Spinor ratios

In the last sections we only considered the eigenvalues of the Jones and R matrix.
Here we will compare the eigenpolarizations. As we will later see we are going to be
able to relate them to the polarization of the refracted light, effectively the far-field
polarization derived in Section 4.9. The spinor has the two components Ez and Bz

and it will be useful to look at the ratio nBz/Ez and the phase difference between
the two components. In the next section we will link these values to the ellipticity of
the polarization. As we have derived the real transformation matrix Θ know that if
the spinor

(
Ez
Bz

)
has a phase shift so will the polarization vector

(
Es
Ep

)
, thus we already

can infer that if the spinor is real the polarization is going to be linear along some
axis.

In Fig. 7.6 the ratio of the eigenvalues and their phase difference is plotted for
the Jones (circle) and EBK (solid lines) matrices is plotted. We observe that they
are identical. In Fig. 7.6 A) we show the phase difference vs. sinχ and in B) the
ratio of the z components of the EM field. We can see for the phase that for a
small angle of incidence in the projected plane sinχ the phase is ±π, thus the field
is linearly polarized. This result should come as no surprise as for χ = 0 we have
a ray ‘zig-zagging’ in the transverse plane, effectively reducing the reflection to the
two dimensional system. In the other extreme the phase is ±π/2. This is the limit of
the WG resonances, that are TIR reflected. The ratios of the components is shown
in Fig. 7.6 B). We can see that in for small χ the fields have either Bz = 0 or
Ez = 0. Somewhere between the Brewster angle and the CA the magnitudes become
identical. This is right at the point, where they aquire a non-trivial phase. After the
CA the amplitudes become distinguishable with a phase shift of π/2.

limiting cases

Here we check the limiting cases of θ, where θ is close to the CA and where it is
almost vanishing. We can see in Fig. 7.7 that above the critical angle for θ the phase
difference between the two polarizations is constant at ±π/2. The two polarizations
are linear at sinχ = 0, as we can see that the ratios diverge. For finite sinχ > 0 and
θ close to the critical angle the ratio gets constant at Bz/Ez = 1, for large θ À χc the
ratio diverges further. For θ slightly above the critical angle and finite sinχ, we can
see that the TM like resonances (red) are circularly polarized as the ratio between
Bz/Ez = 1 and the phase difference is π/2. For the TE like resonances (black) the
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Figure 7.6: A) , B) (blue and red solid) Ratio of the z component of the two eigen-
vectors of the electric and magnetic field from the R matrix. The black circles are
the Jones eigenvectors after the transformation Θ. For n = 2, tan θ = 0.2. The solid
vertical black line is the effective critical angle, the dashed line the effective Brewster
angel.

ratio is Bz/Ez > 1, thus we get elliptic polarization.

7.8 Far-field polarization

We have noted before that one of the most standard experimental observable for for
dielectric microcavities is the far-field radiation. In Section 4.9 we showed that for a
dielectric rod with arbitrary cross-section we can always define a polarization in the
far-field. We were able to relate this to the Ez and Bz components of the field, and
showed that if the detector is positioned perpendicular to the propagation direction
of the field that the polarization is just given by the Spinor

(
Bz
Ez

)
in the far-field.

In the preceeding section we only have looked at the internal polarization, here
we now want to link it to the outside field components.

7.8.1 Polarization of exact resonance solutions of the cylin-

der

First we derive the magnitude of the Bz and Ez field for the cylinder to compare later
with results from EBK and ray-models. Using our abbreviation from Eqs. (4.14) we
can rewrite the matrix equation 4.10 for each of the components as

ξm = −ikz
τm

kGTE
αm (7.32)

αm = ikz
τm

kGTM
ξm (7.33)

In the limit close to a TM resonance |GTE| > 0 and we can see if we fix αm that the
Bz component of the field vanishes for kz → 0. The same holds for the Ez component
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slightly above and slightly below the critical angle. The solid vertical black line is
the critical angle for tan θ = 0.5700.

in the vicinity of a TE resonance. There are also the other two choices of equations,
but we note that since |GTE| ≈ 0 close to a TM resonance the equation will become
highly unstable as we have a quotient of small kz and |GTE|.

The ratio of nBz/Ez is easily written down in the exact form as

P =
nB>

z

E>
z

=
ξm
αm

= −ikz
τm

kGTE
. (7.34)

Note that for interior fields the same relation P = B<
z /E

<
z hold, as ξm and αm are

related to the outside fields through Eq. (4.9) by the same pre-factor. We will now
make this connection in the EBK approach

7.8.2 Far-field in the EBK approach

In Section 2.4 we studied the semiclassical limit of and the reflection, transmission
at a dielectric boundary. There we derived a relation for the incoming and outgoing
field

Ψt = TΨi (7.35)

where Ψ =
(
Bz
Ez

)
is the spinor. We show in Fig. 7.8 that the phase and the spinor

ratio is not changed by the transmission matrix T . This should come as no surprise
as we have shown in the preceeding section that this effect should follow directly out
of the continuity boundary condition for the wave equation.

7.8.3 Ray-dynamical far-field polarization

Now we will derive the far-field for in terms of the Jones formalism. For this we first
apply the Jones matrix Jt, and then need to describe the polarization with respect
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Figure 7.8: A) Phase difference and B) Ratio (black and red solid) of the z component
of the two eigenvectors of the electric and magnetic field from the R matrix. The
circles indicate the outside compoenent of the vector, given by Eq. (7.35). For n = 2,
tan θ = 0.3. The solid vertical black line is the effective critical angle, the dashed
line the effective Brewster angel.

to the (x, y) ∼ Eφ plane and z′ ∼ E ′
z (see Section 4.9). This can be realized by a

simple rotation of the angle

sin ζ = cos
π

2
+ ζ =

〈N|Ê ′
p〉

|N||Ê ′
p|

(7.36)

=
tan θ cosχ√(

tan2 θ + sin2 χ
)(

cos2(1− λ)2 + sin2(1 + λ)2
) (7.37)

where Ê ′
p is the vector perpendicular to the direction R, Eq. (B.6) and parallel to

the (x, y) plane, given by

Ê ′
p =



−(p1

y + λp2
y)

p1
x + λp2

x

0


 , N = P1 ×P2 =




tan θ(p1
y − p2

y)
tan θ(p2

x − p1
x)

p1
xp

2
y − p1

yp
2
x


 (7.38)

We have also chosen a local coordinate system at the point of incidence resulting in:

p1
x = sinχ, p2

x = sinχ (7.39)

p1
y = cosχ, p2

y = − cosχ (7.40)

The final polarization vector thus will be

R(−ζ)Jt|a〉 (7.41)

and similarly for |b〉.
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Figure 7.9: A) Phase difference , B) Ratio (green and red solid) of the z component
of the two eigenvectors of the electric and magnetic field from the R matrix. The
black circles are the exact numerical solutions following Eq. (4.16) (m ∈ [0, 50] and
γ1 < 50). For n = 2, tan θ = 0.2. The solid vertical black line is the effective critical
angle, the dashed line the effective Brewster angel.

7.8.4 Comparison in the far-field

In the last section we derived the far-fields for the exact numerics, the EBK ansatz
and the Jones formalism. Here we will compare them. We have already seen in
Fig. 7.6 that the Jones and EBK approach yield the same results for the eigenpolar-
ization, thus here we will just focus on the comparison between wave and EBK. We
can see in Fig. 7.9 A) that the in the limit for sinχ = 0 and sinχ = 1 both formalisms
agree. Most notable is the difference in the region around the critical angle (CA).
Here we see that the numerical solutions do not show the abrupt behavior of the
EBK method. For the spinor relations in Fig. 7.9 B) we see the same behavior that
the numerical solutions smoothen the behavior seen in the EBK method. We can
conclude from this that both the EBK as well as the Jones formalism are appropriate
tools to study the polarization of radiation from a cylinder.

7.8.5 Gaussian optical approach

In Section 6.5 we found that the arguments for the eigenvalues of the polarization
matrix R went over to stable orbit modes via the Gaussian optics method, with the
small modifications of a transverse energy shift (Floquet phase) and the necessity
of including the full round trip R matrix to get the appropriate values. Essentially
identical considerations apply to extending the above results to describe far-field
polarization of hybrid modes based on stable 2d periodic orbits.

Preliminary studies confirm these predictions but will not be presented here at
this time.
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7.9 Conclusion

In this Chapter we derived a ray-dynamical understanding for the resonance shifts
encountered at the EBK quantization condition in Chapter 6. We used the Jones
algebra to construct an eigenpolarization problem and where able to write the eigen-
values in a physically appealing way. Comparing the analytic results of this and the
last Chapter with numerical solutions from Chapter 4 we showed that the Jones and
EBK approach is a valid description to characterize the far-field polarization from a
cylinder. We gave an outlook of what to expect from a Gaussian optics construction
of the far-field for stable orbits.



Chapter 8

GaN Experiment

8.1 Introduction

In the preceding chapters we learned how to describe dielectric micro-cavities theo-
retically. In Chapter 5 we described experiments done on dye-doped polymer micro-
cavities with a low index of refraction (n = 1.49). In this chapter we will cover
the experimental setup and the investigation of asymmetric Gallium Nitride (GaN)
and Indium Gallium Nitrite (InGaN) micro-cavities, where the index of refraction
is significantly higher (n = 2.65). For the first time we will provide experimental
data from ARC micro-cavities with only one symmetry axis. GaN has many unique
properties and possible applications are numerous, due to its being a wide-bandgap
semiconductor with a bandgap of about 3.45eV (360nm). The InGaN studied here
has a bandgap of 3.07eV and emits at 404nm. This wide-bandgap makes GaN an

Figure 8.1: Traffic lights in New Haven, CT. The green LED uses InGaN. The red
and yellow LED use aluminum gallium arsenide AlGaAs. More recently, aluminum
indium gallium phosphide has emerged as a promising material for red, amber, and
yellow LEDs.

134
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Figure 8.2: The structure of the Photolithographic Mask.

ideal semiconductor for development of green to ultra-violet (UV) opto-electronic
devices, such as light-emitting diodes (LED) or laser diodes (LD). The applications
range from green traffic light LED’s (Fig. 8.1) to higher storage DVD’s, finer printing
techniques and huge TV LCD screens. It has been shown by Rex in his thesis [59] that
GaN based micro-cavities can function as highly directional micro-lasers. At the end
of this chapter we give an overview of experiments done on elliptic, quadrupolar and
quadrupole-hexadecapole deformations, and the respective theory of resonant modes.
Current developments following those ideas have lead to the first uni-directional GaN
micro-cavity laser, based on a spiral shape, which has been reported by Chern et
al. [17].

8.1.1 The Photolithography Masks

We use a photolithography mask with special shapes present on the mask B2449 are
squares, hexagons, triangles and four specially designed shapes.

D1 : r = d(1.0− 0.013 cos 2φ+ 0.0888 cos 3φ) (8.1)

D2 : r = d(1.0− 0.02 cos 2φ+ 0.072 cos 3φ) (8.2)

P1 : r = d(1.0 + 0.04 cosφ− 0.047 cos 3φ) (8.3)

P1 : r = d(1.0 + 0.07 cosφ− 0.019 cos 3φ) (8.4)

For each shape we have four samples at three different diameters (d = 100µm,
d = 300µm and d = 500µm) each column. For the squares and hexagons we have
three columns, two for the triangle and one column each for the special shapes. The
mask was designed in AutoCAD by Grace Chern and send to the Palo Alto Research
Center (PARC) to produce the photolithography mask. The special shapes were
suggested by us for reasons discussed in the next section.
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8.1.2 Discussion of Special Shapes

We selected the four special shapes for a number of reasons and possible applications
in integrated optical components. In the following we will analyze the ray-dynamics
and show the dominant stable periodic orbits and the surface of section for each of
the shapes. We will also indicate why we chose the sample. The index of refraction
for InGaN is n = 2.65, the critical angle is sinχcrit = 1/n = 0.377.

D1 Shape — smooth uni-directional laser?

A)

B)

Figure 8.3: The surface of section for shape D1 and its main periodic orbit. The
fix-points of the periodic orbit are (φo, sinχo) = (±1.38, 0.41), (±π, 0.66). The line of
critical angle of incidence at sinχc = 1/n = 0.377 is indicated by the red horizontal
line.

All previous experiments on ARC s focused on shapes with double reflection
symmetry for which stable orbit modes give multiple output beams. Here we design
a shape with onlt one symmetry axis (a “space-capsule”) and the possibility of stable
orbit modes with two output points and only one beam direction. Note that for shape
D1, only one dominant stable orbit is present in the SOS. With flood pumping of the
cavity we would expect the orbit to be chosen that is close to the critical line. Two
islands for this orbit are close to the critical line. We thus would expect both islands
as output portals and emitting in the same direction. Siumulations show that they
emit mainly into the 0◦ direction in the far-field.

D2 Shape — smooth uni-directional laser?

Shape D2 is similar to D1, but with an bigger island. Only one dominant stable orbit
is present in the SOS. We again expect the orbit to be chosen and emission mainly
into the 0◦ far-field.
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A)

B)

Figure 8.4: The surface of section for shape D2 and its main periodic orbit. The fix-
points of the periodic orbit are (φo, sinχo) = (±1.28, 0.43), (±π, 0.7998). The line of
critical angle of incidence at sinχc = 1/n = 0.377 is indicated by the red horizontal
line.

P1 Shape — A one portal amplifier?

For shape P1 only one dominant stable orbit is present in the SOS. With flood-
pumping the cavity we would expect the orbit to be chosen that is close to the
critical line. The dominant orbit in this case has one island close to the critical line.
We expect emission out of this portal in two directions. This cavity might be used
as an amplifier.

A)

B)

C)

Figure 8.5: A) The surface of section for shape P1. B) Two BB orbits. C) The main
periodic orbit with the fixed-points (φo, sinχo) = (±2.33, 0.552), (0.0, 0.3854). The
line of critical angle of incidence at sinχc = 1/n = 0.377 is indicated by the red
horizontal line.
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P2 Shape — Switching light?

A)

B) C)

D)

E)

Figure 8.6: center C) The surface of section for shape P2. A) ‘Kite’-orbit
with fix-points (φo, sinχo) = (±π, 0.584), (0.0, 0.73). B) ‘Fish’-orbit with fix-
points (φo, sinχo) = (±2.37, 0.0), (1.136, 0.3049). D) Triangular orbit with fix-
points (φo, sinχo) = (±2.34, 0.558), (0.0, 0.376). E) Center BB orbit (φo, sinχo) =
(±π/2, 0.0). The line of critical angle of incidence at sinχc = 1/n = 0.377 is indicated
by the red horizontal line.

The dynamics in this shapes has a number of stable orbits. Some like the hexagon
and other clearly WG type orbits are high above the critical line and we thus do not
expect them to play a major role in this semiconductor resonator. The four bounce
‘Kite’ orbit has three refection points clearly above the critical line and one closer
to it. Its spatial overlap is considerable with the the triangular orbit that has one
dominant island just at the critical line. The other two orbits are probably not of
too much importance as they both are self-retracing orbits, and thus have reflection
points with normal incidence and are expected to be very lossy. This cavity might
be useful for optical switching of modes. As the different modes have considerable
overlap we might be able to excite the triangular or ‘kite’ orbit via flood pumping
and by shining light from the sidewall into the direction of the ‘fish’ we might be
able to deplete the resonance mode and thus change the lasing output. As both the
triangle and the ‘kite’ have the same sidewall angle φ = 0.0 with an island we might
be able to get different output from the same point on the sidewall.

8.2 GaN growth, etching & quality

As we are interested in the difference of the radiation patterns for the only slightly
differing samples, the sidewall quality of the sample is going to be an important
factor. We expect the quality of the sidewall to be good up to the order of the
wavelength. There are a number of different ways to etch InGaN. The wet etching
techniques (mainly using chemicals) are not useful for our applications as they etch
along crystallographic planes and as we are interested in exact defined shapes this
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would be not feasible. Dry techniques employ physical methods. Both of the meth-
ods alone will not produce smooth enough sidewalls (For a detailed discussion see
Ref. [59]). It has been shown that chemically assisted ion beam etching (CAIBE)
produces the smoothest sidewalls in InGaN [107]. CAIBE is a well-known technique
to etch III-V semiconductor materials such as GaAs, InP, and related alloys. The
material removal comes as a result of collisions of argon ions accelerated by a voltage
applied in a vacuum chamber. This process is aided by the introduction of chlorine
which, reacts with the semiconductor substrate making it softer and, thus, increasing
the etching rate. Xerox PARC etched the InGaN using CAIBE. In Fig. 8.7 we show
the sidewall quality of the cavity and the shape preservation.

A) B)

Figure 8.7: A) Sidewall Photo of a GaN cavity etched with CAIBE. B) Optical
microscope picture of the D2 cavity with d = 500µm. In black we overlaid the exact
shape of D2 scaled a bit smaller to see the faint boundary of the cavity.

8.3 Optical Excitation of InGaN

InGaN has a bandgap energy of 3.07eV, corresponding to emission at 404nm, we
thus are required to excite in the near UV. For this we used a laser diode pumped
Spectra-Physics X-30 Q-switched, Nd:YAG laser. It has a fundamental 1.046µm
infrared beam and its second harmonic at 532nm (green), both of the beams are
emitted simultaneously. To excite the InGaN close to its bandgap we will use an
external 3rd harmonic generator which combines both wavelengths to create a 355nm
beam. The pulse duration of the X-30 is approximately 30ns with a maximum energy
up to 80µJ per pulse.

8.4 Experimental Setup

The laser is positioned horizontally in the plane of the operating table. It passes
through the 3rd harmonic generator. We use two narrow band filters to filter the
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Figure 8.8: Setup for the Spectral Analysis

fundamental frequencies out of the beam, thus allowing only the 532nm beam to
propagate. A quartz lens narrows the beam an we clean it by passing it through an
aperture. By adding normal density ND filters the intensity can be reduced and it
passes through a lens onto a 45◦ tilted dielectric mirror, which is coated to reflect
532nm. Two vertical stages and a rotational stage are positioned right below the
mirror allowing the sample to be freely positioned. The rotational stage is tilted
by an angle of about 3◦ away from the ICCD camera (spectroscope) to allow the
radiation of the single cavity to pass by the other obstructing cavities on the chip.
The rotational stage is used to investigate the micro-cavity as an function of the
angle. Behind the sample we can position either an aperture and the spectroscope
or an imaging lens and the ICCD camera. This setup is favored to rotating the
CCD camera as we need to have large magnification for high resolution imaging.
For the imaging experiment we will increase the path-length by placing a 45◦ mirror
behind the imaging lens. Above the sample and the dielectric mirror we position
an optical microscope with a cross-hair, this allows us to fine adjust (and find) the
micro-cavity on the chip. We can also use it to fine adjust the excited micro-cavity
as the spontaneous emission of the InGaN illuminates the cavity in a light blue.

8.4.1 Spectral Setup

To obtain spectral information of the micro-cavity we focus the emitted radiation of
the cavity through a f = 9.5cm lens onto the spectrometer. We use an electronically
controlled Acton Research Corporation 0.5m focal-length spectrometer with three
gratings 150, 300 and 1500 lines/ mm. A Princeton Instruments intensified CCD
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Figure 8.9: Setup for the Imaging

camera with a resolution of 256x1024 pixel is used behind the spectrometer to collect
the spectrum. The camera needs to be synchronized to the pulsed laser and gets
calibrated with the known spectrum of a Hg lamp (For a picture of the setup see
Fig. 8.8).

8.4.2 Imaging Setup

For the imaging setup we use a short focal length camera lens (f = 1.4cm) with
an adjustable aperture. This aperture is set to accept a light cone of approximately
2µ = 5◦, resulting in a numerical aperture NA

NA = nair sinµ = 0.047 (8.5)

and a depth of field d

d = λ

√
n2
air − NA2

NA2 ≈ 200µm. (8.6)

This depth of field assures that the cavity in its entirety is always in focus as we
rotate it. The light reflects through a 45◦ tilted mirror into the ICCD camera. The
intensity can be reduced by inserting ND filters (not saturate the ICCD camera).
We use the same Princeton Instruments ICCD camera used in the spectral setup.
In front of the ICCD camera we mount a band pass filter restrict the light to the
stimulated emission region of the micro-cavity. The aperture in the imaging lens
has an important role of defining a window in the direction space (∆ sinχ), so that
a given pixel on the camera can be identified up to a diffraction limited resolution
with a pair (φ, sinχ). Mathematically, the effect of the lens-aperture combination is
equivalent to a windowed Fourier transform of the incident field on the lens [108].
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Figure 8.10: An axicon lens generating a ring-shaped beam. The use of a converging
lens of focal length f allows for the control of the thickness t of the ring. The diameter
d depends on the distance D. In the actual setup we will add another converging
lens to shorten the distance D.

Note that the infinite aperture limit is simply a Fourier transform of the incident
field and we lose all the information about direction sinχ. It has to be emphasized
that we are only probing the far-field, and hence the image data does not contain the
“near-field” details we would see in a typical numerical solution, nor does it contain
information about the internally reflected components of the internal cavity field
(see Ref. [66] for further details). On the other hand, it provides us with valuable
information about the sinχ – φ correlations of the emitted field, allowing us to put
forward a ray interpretation of the emission and hence the internal resonance.

8.4.3 A Ring of lasing light: Axicon lens

In 1950 J. H. McLeod introduced a conically shaped optical element, termed axi-
con [109, 110]. In conjunction with a spherical lens, a Gaussian laser beam can be
focused to a hollow ring, of variable radius and ring thickness. Based on this a patent
was filed for precision laser machining [111, 112]. The schematic used in our setup
is shown in Fig. 8.10. As our experiment is in the UV we use an axicon made from
fused silica. The angle of the axicon is θ = 5mrad. For the actual setup we add
after the 3rd harmonic generator a set of telescoping lenses to expand the beam, then
clean it through an aperture and send it through the axicon and focus the ring with
an additional converging lens onto the sample.

8.5 Stimulated emission

One of our main interests in the micro-cavities is to use them as lasers or ampli-
fiers. For both we need to study the stimulated emission in the cavity. In order to
determine the threshold for lasing in the InGaN cavity we use the setup described
in Section 8.4.1. The laser is adjusted to give 62µJ power and we cut the power by
inserting ND filters. We flood pump the cavity, meaning that we un-focus the beam
to a size just bigger than the cavity. In Fig. 8.11 A) we investigate the 500µm D1
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Figure 8.11: Spectral profile for the D1 shape (A) and a hexagon (B), pumped at
different pump intensities.

shape. On the left side of the graph at 354nm we can see the small peak of scattered
light from the pump beam. A better understanding of the lasing threshold is gained
by a log–log plot of the integrated intensity vs. pump power shown in Fig. 8.12 A).
We can see that our pump intensity was not sufficient to fully start lasing emission,
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Figure 8.12: A) Log–log plot of the Integrated Spectra of the hexagon and D1 shape,
pumped at different pump intensities. The slight difference in the intensity lies most
likely in the fact that the area of the hexagon: (A = 0.398mm2) is slightly larger
than that of D1: (A = 0.274mm2).
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but we were well in the stimulated emission region. More pump power would on the
other hand have destroyed our micro-cavity and as we are mainly interested in the
directional emission properties we spared the cavity and refer to Rex’s thesis Ref. [59]
where a more detailed analysis was performed.

8.6 Imaging Experiments of deformed Microcavi-

ties

In this section we show the results of the imaging experiment described in Sec-
tion 8.4.2. The relative angle is accurate to plus or minus 5◦ degrees and is deter-
mined by making laser-emission measurements from a square-shaped micro-cavity,
specifically designed on the photographic mask to serve the purpose of alignment.
All the other microstructures, during the mask designing time, are aligned relative
to the square. The square, acting as a calibration marker, emits laser radiation (8
beams) only at its four corners and propagates parallel to its edges. Therefore, when
the CCD camera is normal to one edge of the square, two equally bright spots should
appear from the two edges. The relative angle is varied by either rotating the sample
while keeping the CCD camera stationary or vice versa. Another powerful method
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Figure 8.13: Relative width of the boundary of shape D1 vs. far-field angle (angle of
the tangents). (red) mathematical shape; (blue), (black), (green) width of the CCD
camera image with a fixed cutoff (at 91.000) with a shift far-field angle shift of 15◦

, 5◦ , −10◦, all normalized to one. A clear correlation of the minima is visible and
allows for fine adjustment of the far-field angle. The 5◦ far-field shift appears to be
the best fit. Human selection of the cutoff for each image graph will get an even
better fit.

is shown in Fig. 8.13. We use here the observation that the width of the cavity is a
function of the far-field angle. By calculating the width of the mathematical shape
and overlaying it onto the relative width of the emission pattern recorded by the
CCD camera (we chose here a constant cut-off to mark the boundary of the shape)
we can clearly find the zero degree far-field.
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8.6.1 D1 Shape
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Figure 8.14: A) wavefunction real-space plot (the outside and inside field are scaled
to the same intensity for display purpose), B) theoretical and experimental far-field
emission, C) experimental near-field. The numerical mode is at kR = 29.0147 −
0.009307i, with a Q = 6, 235.

In Section 8.1.2 we discussed the ray dynamics in the D1 shape, and hoped
for a stable resonance localized on the triangular orbit. The pump intensity and
the beam quality where not sufficient to uniformly flood pump the sample for the
imaging experiment. The 3rd Harmonic generator generated a diffraction pattern
in the beam which made it non-uniform. Defocusing the beam to produce a nearly
uniform beam, at the loss of power, was not possible, as our sample needed all
the power to have emission over the background noise. Flood pumping and thus
exiting the uni-directional mode was therefore not possible with the current setup
and sample. We were however able to use an axicon lens to excite a whispering
gallery mode. In Fig. 8.14 B) we show the experimental far-field data and compare
it to a numerical calculation. From the numerics we can learn that the resonance is
of WG type. The angular momentum components of the mode are strongly localized
around |m| = 75 ∼ 82. Emission occurs at the points of highest curvature Fig. 8.14
C) in an almost tangent direction. In Chapter 5 we have shown that a ray-dynamical
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Figure 8.15: A) real-space picture of random initial conditions above the critical
line. B) far-field intensity of random initial condition (red) and far-field for Gaussian
bundle started on the periodic orbit (blue). In all graphs 6000 initial conditions
iterated for 300 times.
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description for high sinχ modes can be appropriate. Following this thought we start
in a ray simulation a bundle of rays above the critical line. We can see in Fig. 8.15
that the random bundle indeed shows the pattern seen in the experiment and in
the numerical simulation. As we started uniformly above the critical line a number
of rays were also started in the island of the triangular orbit. The axicon pumping
seems to have favored just the WG component of the far-field.

In future we hope to obtain a better quality sample with a lower lasing threshold
so that we can excite the resonance we found numerically solving the Helmholtz
equation following Chapter 4. Here, we can indeed find resonances localized on this
periodic orbit. A ground state with its far-field directionality is shown in Fig. 8.16.

A) B)

30

210

60

240

90

270

120

300

150

330

180 0

Figure 8.16: A) wavefunction real-space plot (the outside and inside field are scaled to
the same intensity for display purpose), B) far-field emission of the dominant stable
triangular orbit with a resonance at kR = 30.1808− 0.01388i and a Q = 4, 349.

8.6.2 Ellipse: ε = 0.16 & ε = 0.20

In this section we analyze and interpret GaN data previously obtained by Nathan
Rex [59] from elliptical cavities. The image data is collected for the lower deformation
in Fig. 8.17, and for the higher deformation in Fig. 8.20. We can see a large shift in the
far-field emission (Figs. C) with deformation. This is in contrast to the quadrupolar
shape studied in the same material. In his thesis Rex argued that the change might
be due to the onset of a bouncing ball type resonance (For a detailed discussion of the
ray-dynamics in the ellipse refer to Section 3.3.3). For the lower deformation, clearly
a WG-type resonance was chosen by the micro laser. From the Husimi distribution
in Fig. 8.18 we can infer that the mode is mainly localized above the critical line at
sinχc = 0.377 and only ‘dips’ at the points of highest curvature below the critical
line. The expected emission is in the 90◦ range as we have seen from the experimental
data. At higher deformation the structure in the phase-space remains similar, as the
ellipse is integrable. One possible explanation for the drastic far-field shift between
both deformations, could be that a bouncing ball type orbit might become broad
enough in angle to be confined above the critical line, to have enough gain to be the
dominant mode. We show the bouncing ball mode with the closest overlap in the
far-field in Fig. 8.19 A). In part B) of the figure we show its theoretical image field
data. Clearly the image field is completely different than that of Fig. 8.20.
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Figure 8.17: A) image data for the GaN ellipse with ε = 0.16. B) theoretical image
data projecting the Husimi distribution into the far-field. C) The experimental far-
field (green) and the calculated far-field (red). The mode used is shown in Fig. 8.18.

A) B)

Figure 8.18: A) real-space and B) phase-space projection of a resonance in the ellipse
with n = 2.65, ε = 0.16 and kR = 49.908 − 0.00597i, Q = 16, 722. We clearly see
that the associated mode for the image data is an whispering gallery type orbit.

A) B)

Figure 8.19: A) real-space and B) image of a ‘bouncing-ball’ type resonance in the
ellipse who’s main peak is in the far-field direction comparable to Fig. 8.21 with
n = 2.65, ε = 0.20 and kR = 49.945 − 0.1034i, Q = 966. The image data is very
different from that in Fig. 8.21.

We find that the emitting state is actually a separatrix state. In the real space
wavefunction plot Fig. 8.21 A) we can see that the whispering gallery orbit starts to
self-focus. This self focusing is the main reason that the far-field direction gets shifted
into the 25◦ region. We have seen in this section that although the type of resonance
selected stays the same the far-field can shift considerably. This further emphasizes
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Figure 8.20: A) image data for the GaN ellipse with ε = 0.20. B) theoretical image
data projecting the Husimi distribution into the far-field. C) The experimental far-
field (green) and the calculated far-field (red). The mode used is shown in Fig. 8.21.

A) B)

Figure 8.21: A) real-space and B) phase-space projection of a resonance in the ellipse
with n = 2.65, ε = 0.20 and kR = 49.659 − 0.05197i, Q = 1, 911. The associated
mode for the image data is of whispering gallery type.

that the combination of farfield and image strongly constrains the possible resonances
and allows good theoretical identification of the lasing mode.

8.6.3 Scar of David1

In this section we review briefly the experiment and theory of the first observed
lasing scar in a GaN sample [3, 16]. Experimental data shown in Fig. 8.22 is for
the quadrupolar deformation ε = 0.12. We observe a far-field angle θ ≈ 74◦, which
correlates with emission from the region of the sidewall around φ ≈ +17◦. The data
also show a secondary bright spot at slightly negative φ ≈ −5◦ and another one at
φ ≈ 162◦ which do not lead to strong maxima in the first quadrant in the far-field.
Observation of a small number of well-localized bright spots on the sidewall suggests
a lasing mode based on a short periodic ray trajectory, contrary to the lasing from a
WG orbit in the previous Section. In Fig. 8.23, we have indicated the approximate
positions of the four bright spots on the boundary (the image-field can be unfolded
to the range θ = 0 . . . 2π using the symmetry of the quadrupole). The image-fields
for the polymer lasers showed more bright spots and a variable number of them,

1See our paper in Ref. [3]
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Figure 8.22: (a) Experimental data showing in color scale the CCD images (converted
to sidewall angle φ) as a function of camera angle θ. Three bright spots are observed
on the boundary for camera angles in the 1st quadrant, at φ ≈ 17◦, 162◦,−5◦. (b)
Calculated image field corresponding to the scarred mode shown in Fig. 8.25. (c)
Calculated and experimental far-field patterns obtained by integrating over φ for
each θ.

inconsistent with as single short periodic orbit. In the same figure is shown a view
of the SOS at this deformation.

The only stable structures to result in localized modes in the framework of the
previous section, are the bouncing ball, the bowtie, fish and diamond islands. For
comparison, the stable bouncing ball mode would emit from φ = ±90◦ in the direction
θ = ±90◦. The stable four-bounce bowtie mode, dominant in the devices of Ref. [8],
is also ruled out by our data. It is very low-Q at this deformation due to its small

Figure 8.23: The SOS of the quadrupolar billiard at a deformation of ε = 0.12. The
red vertical lines indicate the values of φ at which the bright spots in the image-field
are observed. On the right is a schematic indicating in red the experimental bright
spots in the real space. The location of these spots is strongly inconsistent with the
bowtie orbit at this deformation but is consistent with modes based the two triangle
orbits shown. These orbits would have the two “dark” bounce points (indicated in
black) that are well above total internal reflection for the index of n = 2.65
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Figure 8.24: The variation of the trace of the monodromy matrix with respect to
the quadrupolar deformation ε. The black circle indicates the experimental value
ε = 0.12, at which TrM = −5.27. The two dashed lines delimit the regime −2 <
TrM < 2 at which the triangular orbit is stable. In the inset is shown real space
simulation of a ray orbit started with initial conditions which are away from the
triangle fixed point at least by δφ = 10−3, δ sinχ = 10−4, followed for 20 bounces.

angle of incidence and would give bright spots at φ = ±90◦± 17◦, far away from the
brightest spot at φ = 17◦ (see Fig. 8.23). There is however a pair of symmetry-related
isosceles triangular periodic orbits with bounce points very close to the observed
bright spots (see Fig. 8.23). The two equivalent bounce points of each triangle
at φ = ±17◦ and 180◦ ± 17◦ have sinχ ≈ 0.42, very near to the critical value,
sinχc = 1/n = 0.38, whereas the bounce points at φ = ±90◦ have sinχ = 0.64 and
should emit negligibly (Fig. 8.23). This accounts for the three bright spots observed
experimentally in Fig. 8.22(a) (the fourth spot at φ ≈ 197◦ is completely blocked
from emission into the first quadrant). Note furthermore the proximity of the four
emitting bounce points to critical incidence; a simple application of Snell’s law to
these rays would lead to far-field maxima in reasonable agreement with the observed
peaks in the far-field distribution Fig. 8.22(c) (however not with the image-field data,
see below).

These basic observations could be explained with generalized Gaussian modes [93],
were it not for the fact that the triangular periodic orbit is unstable at this deforma-
tion. In Fig. 8.24, we plot the trace of the monodromy matrix as a function of defor-
mation (see Section 3.2.5), which shows that at deformation ε = 0.12, TrM = −5.27.
The triangular periodic orbit is unstable with a Lyapunov exponent of λ ≈ 1.62 (see
Fig. 8.24). The Gaussian optics approach which was useful for the modes localized
on a stable bowtie periodic orbit modes will fail here as the width of the Gaussian
becomes imaginary (see Section 6.5). Failure of the method however doesn’t mean
that localized modes do not exist. In fact, numerical solution of the quasi-bound
states at this deformation, using the method of Chapter 4, finds modes localized on
the triangular orbit, as seen in the configuration space plot in Fig. 8.25(a). A much
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Figure 8.25: (a) Real-space false color plot of the modulus of the electric field for
a calculated quasi-bound state of nkR0 ≈ 129 (n is the index of refraction, k is
the real part of the resonant wave-vector) and ε = 0.12 which is scarred by the
triangular periodic orbits shown in the inset (M. V. Berry has termed this the “Scar
of David”). The four points of low incidence angle which should emit strongly are
indicated. (b) Husimi (phase-space distribution) for the same mode projected onto
the surface of section of the resonator. The x-axis is φW and the y-axis is sinχ, the
angle of incidence at the boundary. The surface of section for the corresponding ray
dynamics is shown in black, indicating that there are no stable islands (orbits) near
the high intensity points for this mode. Instead the high intensity points coincide
well with the bounce points of the unstable triangular orbits (triangles). The black
line denotes sinχc = 1/n for GaN; the triangle orbits are just above this line and
would be strongly confined whereas the stable bowtie orbits (bowtie symbols) are
well below and would not be favored under uniform pumping conditions.

clearer picture, free of interference fringes, is provided by the Husimi plot of this
mode in Fig. 8.25(b) projected onto the SOS. The brightest spots clearly coincide
with the triangular fixed points, and the whole density is localized in the midst of
the chaotic sea. This mode is an instance of a scarred state and is one of the most
surprising and esoteric objects of quantum chaos theory.

However closer inspection of the image-field in Fig. 8.22(a) presents an intriguing
puzzle from the point of view of ray optics. A mode localized on these triangular
orbits might be expected to emit from the four bounce points approximately in the
tangent direction according to Snell’s law; this means that the bright spot at φ = 17◦

should emit into the direction θ ≈ 115◦ (Fig. 8.26 A), whereas the data clearly in-
dicate that the φ = 17◦ bright spot emits in the direction θ = 72◦. (Note that
the Snell’s law argument worked well for the polymer lasers in Chapter 5.) Thus
the emission pattern here violates the intuitive expectations of ray optics by 43◦,
a huge discrepancy (see Fig. 8.26 A). Moreover, λ/nR = 2.8 × 10−3, so we are far
into the regime in which the wavelength is small compared to the geometric fea-
tures of the resonator and ray optics would be expected to be a good approximation.
To ensure that this discrepancy did not arise from some error in the experimental
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A)

∆θ

B)

Figure 8.26: A) Schematics showing the three emitted “beams” detected in the ex-
periment (solid lines) and illustrates their strong deviation from Snell’s law (dashed
tangent lines). B) Ray-dynamical simulation using the intensity of the Husimi dis-
tribution in Fig. 8.25 as intensity for a bundle of rays in the SOS. The ray intensities
are then projected into real-space.

image-field we used the intensity distribution of the Husimi projection and used it
as intensity distribution for an ensemble of rays started in the SOS. We followed
the rays as described in Chapter 3 and note the far-field and project them into the
real space shown in Fig. 8.26 B). To back this with a wave description we simu-
lated the full experimental set-up, starting with our numerically-determined scarred
solution (Fig. 8.25(a)) inside the resonator and propagating it through an aperture
and lens into the far-field, reproducing the expected image-field. The way to do this
is described in Ref. [66]. The image-field corresponding to the numerical resonance
calculated in this manner is reproduced in Fig. 8.22(b). The good agreement with
the experimental data in Fig. 8.22(a) indicates that the effect is real and is robust
over a range of wavelengths, it has been termed ‘Fresnel filtering’ [3, 113]. In the
next section we will observe a resonance located on a periodic orbit as it changes
from an elliptic to a hyperbolic fix-point.

8.6.4 Quadrupole Hexadecapole: Stable & Scar

In this section we again refer to experimental data obtained by Rex [59] for the
quadrupole-hexadecapolar deformations, defined by the mathematical equation:

r(φ) = 1 + ε(cos2 φ+
3

2
cos4 φ). (8.7)

The far-field emission data are reproduced in Fig. 8.27. All the deformations above
ε = 0.12 show a well-localized emission which has approximately the same char-
acter over a wide range of deformations. Looking at the SOS of the quadrupole-
hexadecapole at ε = 0.12, we note that there is a stable orbit – a triangular one
– this time however rotated 90◦ from the one observed in the quadrupole [3], with
bounce points at φ = 0◦ and φ = 180◦, at which points the trajectory is incident
just above the critical angle for TIR. These are also the points where the maximum
emission is emanating from the boundary, according to the imaging data. Unlike
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Figure 8.27: A) Far-field emission data for quadrupole-hexadecapole for deformations
of ε = 0.12 (blue), ε = 0.16 (red), ε = 0.18 (green), and ε = 0.2 (black). B) trace of
the monodromy matrix vs. deformation for the triangular orbit in the quadrupole-
hexadecapole. For |TrM | < 2 the orbit is stable, otherwise unstable, see Section 3.2.5.

the quadrupole lasers then, for this shape there is a stable orbit with bounce points
near the critical angle. We expect Gaussian modes [93] similar to the bowtie modes
seen in the QC lasers [8]. An example of such a mode localized on the stable tri-
angular orbit and resulting in emission consistent with the experimental results is
shown in Fig. 8.28. For this shape, these triangular orbits become unstable above
a deformation of ε = 0.13, and despite this change, the far-field data don’t change
in any appreciable way (Fig. 8.28). Figure 8.29 shows results of calculations for the
deformation ε = 0.16. The Husimi projection of this mode reveals that it’s localized
on the triangular periodic orbit, in the vicinity of which complete chaos reigns. Thus,
the laser operates on a mode which is based on one and the same classical periodic
orbit, insensitive to whether it’s stable or unstable.
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Figure 8.28: (a) A numerically calculated mode for a quadrupole-hexadecapolar
deformation of ε = 0.12 and n = 2.65. (b) Husimi projection of the mode in (a).
Clearly, the projection is localized on a reflection symmetric pair of stable triangular
periodic orbits. (c) The calculated far-field emission pattern.
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Figure 8.29: (a) A numerically calculated mode for a quadrupole-hexadecapolar
deformation of ε = 0.16 and n = 2.65. (b) Husimi projection of the mode in (a).
The projection is localized on a triangular orbit of the same geometry as the one
in Fig. 8.29, but at this deformation the motion in its vicinity is unstable, leading
to chaotic motion. The resulting mode is hence a scarred state. (c) The calculated
far-field emission pattern.

8.7 Conclusion

We have presented the first data from samples with only one axis of symmetry, and we
hope to soon be able to provide experimental data to report the first unidirectional
laser based on a smooth boundary. From the review of all of the experiments in
GaN it is clear that lasing modes of cylindrical micro-resonators need not be based
on ‘regular’ modes such as stable orbits or whispering gallery modes, but also can
get feedback from unstable ray trajectories. It is worth remarking that unstable
Fabry-Perot laser resonators have been known since almost the initial conception
of the laser [114, 115] and for many purposes are the best design for high-gain
laser devices [85] because of their large modal volumes. In ARC micro-lasers such
unstable lasing action arises naturally as one increases the deformation, with the
SOS being dominated by more and more chaotic motion. Whether there is any
advantage of micro-lasers based on unstable modes remains to be seen. One crucial
point that needs emphasis is that there do exist many complicated chaotic modes
which are not related to any single periodic orbit. Indeed in the passive cavity these
modes dominate the spectrum as kR→∞. However, it may be that the non-linear
effects in lasing cavities, either by averaging over fluctuating modes or by mode-
locking, enhance the role of modes based on short periodic orbits, whether stable or
unstable. It is striking that all of the experiments on semiconductor ARC lasers can
be interpreted as demonstrating lasing from such modes.



Chapter 9

Conclusion and Open Questions

In this thesis we studied asymmetric dielectric resonant cavities. Due to the lack
of symmetry these cavities in general give rise to non-integrable ray dynamics. We
presented and expanded tools from the theory of non-linear dynamical systems to
understand the emission directionality for various deformed polymer microlasers.
The importance of short term dynamics in the chaotic region of the phase space
was analyzed and linked to unstable manifolds of short unstable periodic orbits. We
were able to show that the effect known as dynamical eclipsing is not dependent on
the regular structures of the phase space but rather the unstable ones in the chaotic
portion of the SOS. This theory lead to the prediction of directional emission from a
completely chaotic stadium microlaser. We hope that experimental data for such an
experiment will soon be available. As we explained the emission directionality just
in terms of ray-dynamics. The next step could be to write the time propagation of
a wavepacket localized in this vicinity of the relevant region of phase space.

Experiments were done on a “space-capsule” GaN microcavity to confirm our
theoretical predictions. The shape was designed in such a way that it is supposed to
have uni-directional emission. We were unfortunately unable to excite the specific
three bounce orbit giving rise to this emission as the sample and pump quality was
not efficient for strong flood pumping. Nevertheless, we were able to report the
first one-fold symmetric whispering gallery orbit laser, which emits in three distinct
directions. Hopefully we will be able to repeat the experiment with a new sample
of better quality. If we had success with this experiment the way for phase space
engineering of resonator emission properties would be open!

As all the experiments are done on three dimensional structures we derived the
vector wave-equation for a dielectric rod with arbitrary cross-section. For the special
case of the rotationally symmetric rod, the cylinder, we presented the EBK quan-
tization scheme. We realized that the condition of the translational symmetry for
the polarization induces a non-trivial phase shift in the resonance condition. This
polarization critical angle has to our knowledge not been observed before!

For a rod with arbitrary cross-section we derived a quantization scheme based
on the parabolic equation method. This scheme allows us to find the resonance
conditions and construct wave solutions for stable periodic orbits of the projected
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motion. For the set of resonances which do not correlate to regular structures of
the phase space no such methods exist. There are a number of interesting questions
to be explored in this context. We have developed an efficient numerical method
to solve the vector wave-equation for dielectric rods with arbitrary cross-section and
thus can analyse polarization properties of resonances numerically. With the help of
the Jones algebra approach, we build a polarization ray-tracing routine to investigate
this domain. So far we were not able to obtain specific results. Some open questions
are:

• Identifying the nature of the lasing mode in ARCs is somtimes difficult. Can
we use polarization properties to pin down which mode is lasing and where its
main weight is in the mixed phase space.

• Do ARCs have useful properties as polarization filters or analyzers?

• What is a proper measure for polarization in a ray-dynamical experiment, the
proper starting conditions?

• What are the effects of unstable manifolds on polarization?

• In a scattering experiment with a polarized plane wave, what are the effects of
regular structures/ chaos?

• Generalize the formalism for non-uniform fiber width.

Overall, we have shown that the wonderful study of non-integrable dynamics and
the rise of chaos in billiards has a very fruitful connection to the emission properties
of microlasers. Various optical phenomena bear important implications to micro-
photonic device design which needs further exploration.



Appendix A

Ray-dynamical properties of

special orbits

A number of special periodic orbits will frequently show up in this thesis. Here we
will combine their properties.

A.1 The Quadrupole

We define the quadrupolar shape by

r(φ)/Ro =
1√

1 + 1/2ε2
(1 + cos 2φ) (A.1)

where the prefactor insures that the area of the quadrupole is fixed constant at π,
Ro is just the overall scale.

A.1.1 Bouncing Ball type orbits

Period-2 Orbits: Bouncing Ball Orbit

Figure A.1: Both Bouncing Ball orbits in the quadrupole of ε = 0.08. The solid orbit
is the stable two-bounce, the dashed the unstable orbits.
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At ε = 0 we have an infinite number of period-2 orbits. For a small perturbation
ε 6= 0 we have seen that the infinite set breaks down and only two remain. One stable
orbit along the minor axis of the quadrupole and one unstable along the major axis
(Fig. A.1).

Period-4 Orbits: Bowtie & Bird

φ

ψ

χ

Figure A.2: Bowtie & Bird orbits born from the period doubling bifurcation of the
stable two bounce orbit at ε = 1/9. Here shown at ε = 0.15. Note for the Bird that
there are two separate orbits but the same number of fixed-points in the SOS. For
the Bowtie we see that χ = π

4
− φ

2
and Ψ = 3/4π + φ/2.

We noted before that the stable BB-orbit undergoes a period doubling bifurcation
at ε = 1/9. Following the geometry for the Bowtie in Fig. A.2 we can solve the
equation

− cosφ

1 + sinφ
= tan Ψ =

dy

dx
=

cosφ

sinφ
· ε+ 1− 6ε sin2 φ

ε− 1− 6ε cos2 φ
(A.2)

to give the analytic solution of the position of the bowtie bounce coordinates to be

φ(ε) = arcsin

(
−1

3
+

√
5

18
+

1

6ε

)
and sinχ(ε) =

√
4

6
− 1

2

√
5

18
+

1

6ε
(A.3)

The bowtie becomes unstable at ε ≈ 0.2308 where it bifurcates with TrM = 2 into
two period-4 tilted bowties. For the ‘Bird’ we will not go into these details, as it is
and will remain unstable.

Period-6 Orbits: Fish & Hexagram

In the ‘Fish’ orbit we encounter an orbit that has normal incidence on the boundary.
We might wonder if it is a general statement that every orbit needs to have an even
number of normal reflections (note that zero is an even number). We have seen that
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Figure A.3: Fish (stable) and the Hexagram (unstable) orbits born from the bifur-
cation of the stable two-bounce orbit at ε ≈ 0.0588. Here shown at ε = 0.08.

for the BB, the ’Bird’ and the Fish this is the case. Proof: Every periodic orbit
retraces itself after N-reflections. At normal incidence the reflection will return the
way it came. To fulfill the statement that every periodic orbit retraces itself after
N-reflections, it needs to reflect upon itself at least another time. The maximum
number of times it can reflect upon itself is two as we defined the period of an PO
to have the smallest number of reflections before retracing itself.

A.1.2 Whispering gallery type orbits

Period-3 Orbits: Triangles

h

χ
0

Ψ

x

1−ε

χ1

Figure A.4: Triangular PO in quadrupole with ε = 0.07. The left PO is stable ‘Star
of David’, the right unstable. We note for the ‘Star of David’: Ψ = π/2 + χ1.

The period-3 triangular orbits are the shortest orbits that exist in the whispering
gallery-type class. It is not born through a bifurcation, but exists already in the
circle. Once ε 6= 0 the infinite set of triangles breaks down into a set of two orbits,
stable and unstable. We can calculate the position of the ‘Star of David’ triangle
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Table A.1: Positions of the two triangular orbits in the quadrupole with respect to
deformation.

‘Star of David’ other Triangle
ε φ sinχ1 φo sinχo φ1 sinχ1 TrM

0.00 0.523598 0.50000 0.0 0.5000 1.0472 0.5000 2.0000
0.01 0.498268 0.49250 0.0 0.4849 1.0206 0.5075 2.0045
0.02 0.474303 0.48505 0.0 0.4697 0.9930 0.5149 2.0361
0.03 0.451751 0.47766 0.0 0.4545 0.9646 0.5223 2.1209
0.04 0.430610 0.47035 0.0 0.4394 0.9357 0.5294 2.2834
0.05 0.410835 0.46313 0.0 0.4246 0.9067 0.5364 2.5452
0.06 0.392360 0.45602 0.0 0.4103 0.8781 0.5430 2.9241
0.07 0.375103 0.44900 0.0 0.3965 0.8500 0.5493 3.4331
0.08 0.358977 0.44209 0.0 0.3833 0.8229 0.5553 4.0797
0.09 0.343895 0.43526 0.0 0.3708 0.7969 0.5609 4.8662
0.10 0.329769 0.42852 0.0 0.3591 0.7722 0.5661 5.7901
0.11 0.316521 0.42187 0.0 0.3481 0.7488 0.5709 6.8446
0.12 0.304075 0.41529 0.0 0.3377 0.7268 0.5754 8.0201
0.13 0.292362 0.40878 0.0 0.3281 0.7061 0.5796 9.3049
0.14 0.281319 0.40234 0.0 0.3191 0.6867 0.5835 10.6865
0.15 0.270890 0.39596 0.0 0.3107 0.6685 0.5871 12.1521
0.16 0.261022 0.38964 0.0 0.3028 0.6514 0.5904 13.6891
0.17 0.251671 0.38338 0.0 0.2955 0.6354 0.5935 15.2858
0.18 0.242794 0.37717 0.0 0.2886 0.6204 0.5964 16.9313
0.19 0.234354 0.37100 0.0 0.2822 0.6064 0.5991 18.6158
0.20 0.226316 0.36488 0.0 0.2762 0.5932 0.6016 20.3304

pair following Fig. A.4, where we note that

cotχo = tan 2χ1 =
(1− ε) + r sinφ

r cosφ
(A.4)

further the tangent at the bounce point (φo, sinχo) is given by

−dy
dx

= tan Ψ and tan(π/2 + χ1) = − cotχ1 (A.5)

thus
(1− ε) + r sinφ

r cosφ
= tan 2χ1 =

2 tan Ψ

tan2 Ψ− 1
=

2 dy
dx

dy
dx

2 − 1
(A.6)

this we can solve numerically getting the positions of the bounce points with respect
to the deviation shown in Tab. A.1. The triangle becomes unstable at ε ≈ 0.0978.
Where TrM = −2, R = 1, l/m = 1/2, thus a period doubling bifurcation (N ×m =
3 × 2) resulting in a period-6 orbit. The fixed-point becomes inversion hyperbolic.
With similar calculations we can calculate the positions and stability of the other
triangle (given in Tab. A.1). Note that this fixed-point is also inversion hyperbolic.



APPENDIX A. RAY-DYNAMICAL PROPERTIES OF SPECIAL ORBITS 161

Period-4 Orbits: Diamond & Rectangle
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χ
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χd
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Ψ

Figure A.5: Diamond and Rectangular PO in quadrupole with ε = 0.08. The left
PO is stable, the right unstable.

The next relevant set of periodic orbits bifurcates out of the square in the circle.
Upon ε 6= 0 they separate into the Diamond (stable) and Rectangle (unstable) (see
Fig. A.5). For the ‘Diamond’ we note:

sinχo = arctan
1− ε
1 + ε

, sinχ1 = arctan
1 + ε

1− ε (A.7)

The trace of the monodromy matrix of the ‘Diamond’ is simply

Tr(M) = Tr(m)2 − 4, with Tr(m) = 4
d(d− y0 − y1)

yoy1

+ 2 (A.8)

For the rectangle, finding the reflection point is not as trivial as for the diamond,
though its angle of incidence is conserved with χ = π/4, thus the tangent angle is
Ψ = 3/4π and we can write the condition for the reflection point.

cosφ

sinφ
· ε+ 1− 6ε sin2 φ

ε− 1− 6ε cos2 φ
= tan Ψ = tan

(
3

4
π

)
= −1 (A.9)

The Diamond gets unstable at ε ≈ 0.1367 where it undergoes a simple bifurcation
(TrM = 2, R = 0, l/m = 1/1) leading to two displaced ‘Kites’, the original fixed-
point gets normal hyperbolic. In Tab. A.2 we calculate the reflection points and the
angle of incidence for both of the PO for different deformations.

A.2 Ray-dynamics in the Spiral

The Spiral shape has attracted a lot of attention lately [17] as it lead to the first
uni-directional microcavity InGaN laser. Its shape is defined as

r = 1 +
ε

2π
φ, with φ = 0..2π (A.10)
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Table A.2: Positions of the two period-4 orbits in the quadrupole with respect to
deformation.

‘Diamond’ Rectangle
ε sinχo sinχ1 φo sinχo

0.00 0.7071 0.7071 0.7854 0.7071
0.01 0.7000 0.7141 0.7654 0.7071
0.02 0.6928 0.7211 0.7456 0.7071
0.03 0.6856 0.7280 0.7261 0.7071
0.04 0.6783 0.7348 0.7070 0.7071
0.05 0.6709 0.7415 0.6885 0.7071
0.06 0.6635 0.7482 0.6706 0.7071
0.07 0.6560 0.7548 0.6534 0.7071
0.08 0.6485 0.7612 0.6370 0.7071
0.09 0.6409 0.7676 0.6213 0.7071
0.10 0.6332 0.7740 0.6064 0.7071
0.11 0.6256 0.7802 0.5922 0.7071
0.12 0.6178 0.7863 0.5787 0.7071
0.13 0.6100 0.7924 0.5660 0.7071
0.14 0.6022 0.7983 0.5539 0.7071
0.15 0.5944 0.8042 0.5424 0.7071
0.16 0.5865 0.8099 0.5315 0.7071
0.17 0.5786 0.8156 0.5212 0.7071
0.18 0.5707 0.8212 0.5115 0.7071
0.19 0.5627 0.8267 0.5022 0.7071
0.20 0.5547 0.8321 0.4934 0.7071
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Figure A.6: spiral of deformation ε = 0.10

This shape is of theoretical interest as it does not obey any symmetry and is non-
convex. Here we will mention just a few of its properties. We can see immediately
that the radius of the spiral boundary increased constantly away from the notch.
The notch has two discontinuities. As the curvature is positive everywhere the angle
of incidence will increase with every refection on the same sheet 0 < φ < 2π. Lets
first assume a negative sense of rotation (see Fig. A.6 for definition). The angle
of incidence will increase with every reflection of the boundary, till we have almost
normal incidence, and then the the rotational sense will change, still increasing sinχ
at every iteration. A jump over the notch will increase the angle of incidence even
more. This can clearly be seen in Fig. A.7 where we plot the angle of incidence vs.
the number of iterations. The notch is only visible for the positive sense of rotation.
If we hit the notch, the sense of rotation changes sign, (and so does sinχ) and the
angle of incidence continues to increase.
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Figure A.7: sinχ vs. the number of iterations in the spiral with ε = 0.07 for an
initial sinχ = −0.8682 and φ = 2π − 0.008. The constant curvature of the spiral
results into a monotonic increase in the angle of incidence, so does a jump over the
notch. A reflection at the notch results into a change in the rotational sense, note
the refection point at the notch.
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An interesting point to observe from this is that there cannot be any periodic
orbits which do not have a reflection on the notch. Furthermore we state that due
to the monotonic increase of the angle of incidence with every reflection, that any
periodic orbit must be at least once have normal incidence on the curved boundary.



Appendix B

Geometric derivation of

generalized Snell’s law
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Figure B.1: Ray-picture for far-field.

We have derived in Section 2.4.1 a generalized Snell’s law. Here we will derive
this generalized Snell’s law in a purely geometric fashion. An incoming ray P1 with
angle of incidence η gets reflected into P2 and refracted into R. The 2-d Snell’s law
Eq. (3.76) gives us the angle α = arcsin(n sinχ) in the plane of incidence. As the
refracted ray lies in the plane of P1 and P2 we can write it as a sum of the incoming
and reflected ray.

R = P1 + λP2 (B.1)

We can calculate b through the geometry of Fig. B.1.

b =
sin β

sin γ
|P1| (B.2)
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we write further

sin β

sin γ
=

sin(α− η)
sin(α + η)

=
sinα cos η − cosα sin η

sinα cos η + cosα sin η
, with γ = π − 2η − β = π − η − α

(B.3)

=
n cos η −

√
1− n2 sin2 η

n cos η +
√

1− n2 sin2 η
= λ(η) (B.4)

using for the far-field angle the angle of incidence and Snell’s law

sinα = n sin η and cosα =

√
1− n2 sin2 η. (B.5)

It is interesting to note that λ(η) coincides exactly with the Fresnel reflection co-
efficient for the perpendicular field (rs), i.e. Ez-field (TM-mode). We currently do
not have a clear enough understanding to make intuitive sense out of this interesting
fact. We can now come to our final result and write the vector of our refracted ray
as

R = P1 + λ(η)
|P1|
|P2|P

2. (B.6)

From this equation we can conclude that the far-field for the general 3-d ray P1

does not have the same far-field directionality as its projection onto the (x, y)-plane.
There we would get

r = p1 + λ(χ)
|p1|
|p2|p

2 (B.7)

and as χ 6= η we will in general not get the same far-field direction. A usefull quantity
that we can calculate with this idea is the projected farfield angle σ (See Fig. 2.3
C)):

cos σ =
cosχ(1− λ)√

cos2 χ(1− λ)2 + sin2 χ(1 + λ)2
(B.8)

and

sinσ =
sinχ(1 + λ)√

cos2 χ(1− λ)2 + sin2 χ(1 + λ)2
(B.9)

=
n cos θ sinχ√
1− n2 sin2 θ

(B.10)



Appendix C

Phase-shift between Ez and Bz

Just following Maxwell’s equation we can derive a nice little result relating to a
general phase difference between the z components of the EM field. For this we
will assume that Ez has the simple phase dependence Ez ∼ cosmϕ. The divergence
equations states that the divergence of the electric field with no sources vanishes.

0 = ∇ ·E = ∂ρEρ +
1

ρ
∂ϕEϕ + ∂zEz (C.1)

Assuming a dependence Ez ∼ cosmϕ we know from linear algebra that the terms
in the divergence need to be linear dependent in order to vanish. We need at least
another ∼ cosmϕ to cancel the Ez component. The remaining term would then need
either to be zero or linearly dependent. The ∂ρ derivative does not change the field,
but the ∂ϕ does. Therefore, Eρ ∼ cosmϕ and Eϕ ∼ sinmϕ, thus the Eϕ component
has a π/2 phase shift in φ. Now we should apply the curl theorem to determine the
phase of the Bz component.

B = ∇×E =




1
ρ
∂ϕEz−∂zEϕ
∂zEρ−∂ρEz
∂ρEϕ−1

ρ
∂ϕEρ


 =



∼ sinmϕ
∼ cosmϕ
∼ sinmϕ


 (C.2)

From here we can conclude that the Bz and Ez are each in different symmetry
classes. A similar argument can be formulated for the deformed case. As we will see
in Section 4.12 they will project onto either cosmϕ or sinmϕ. As sinmϕ and cosmϕ
are linearly independent, we can make the above argument for every component and
thus can make a statement about the symmetry class of the Ez and Bz solutions.
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Appendix D

Normal and Tangential derivatives

of the field

Throughout this thesis we will refer to normal and tangential derivatives. Here we
will write down these derivatives explicitly. In terms of polar coordinates (φ̂, r̂) we
write the tangent and normal as

t̂ =
1√

r′2 + r2

[
r′(φ)φ̂ + r(φ)r̂

]
n̂ =

1√
r′2 + r2

[
r(φ)φ̂− r′(φ)r̂

]
(D.1)

We can write the gradient in polar coordinates as

∇(r,φ) =
∂

∂r
r̂ +

1

r

∂

∂φ
φ̂ (D.2)

and defining Γ =
√
r′2 + r2 we can now write the tangential and normal derivative

as

∂t = t̂ · ∇ =
1

Γ

{
r′(φ)

∂

∂r
+
r(φ)

r(φ)

∂

∂φ

}
(D.3)

∂n = n̂ · ∇ =
1

Γ

{
r(φ)

∂

∂r
− r′(φ)

r(φ)

∂

∂φ

}
(D.4)

(D.5)
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Appendix E

Resonance conditions in the 2-d

For completeness sake we list here the two resonance conditions for the case of sep-
arable polarizations at kz = 0. Later in Chapter 7 we will be able use them for
asymptotic descriptions of the resonances.

TM case

The boundary conditions for the Ez component are Eq. (2.32) and Eq. (2.35) which
reduce with kz = 0 to:

Ez1

∣∣∣
∂D

= Ez2

∣∣∣
∂D

(E.1)

∂nEz1

∣∣∣
∂D

= ∂nEz2

∣∣∣
∂D

(E.2)

Using the ansatz Eq. (4.8) we get the system of equations

(
Jm −Hm

∂ρJm −∂ρHm

)(
αm
γm

)
= 0 (E.3)

We thus have to ensure that the determinate of the matrix vanishes.

Hm∂ρJm − Jm∂ρHm = 0 (E.4)

Using the relations for the Bessel-functions

∂ρJm = n
(
Jm−1 −

m

nkR
Jm

)
and ∂ρHm =

(
Hm−1 −

m

kR
Hm

)
(E.5)

We find
JmHm−1 = nHmJm−1 (E.6)
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TE case

The boundary conditions for the Bz component are Eq. (2.33) and Eq. (2.34) which
reduce with kz = 0 to:

Bz1

∣∣∣
∂D

= Bz2

∣∣∣
∂D

(E.7)

∂nBz1

∣∣∣
∂D

= n2∂nBz2

∣∣∣
∂D

(E.8)

Using the ansatz Eq. (4.8) we get the system of equations

(
Jm −Hm

∂ρJm −n2∂ρHm

)(
αm
γm

)
= 0 (E.9)

We thus have to ensure that the determinate of the matrix vanishes.

Hm∂ρJm − n2Jm∂ρHm = 0 (E.10)

We find using the above mentioned recursion relations for the Bessel-functions

Jm−1Hm +
m

x

(
n− 1

n

)
HmJm − nHm−1Jm = 0 (E.11)

E.1 Above Barrier expansion for the circle

Using the large argument expansion kR À m for the Bessel functions (see Ap-
pendix G)

Jm ≈
√

2

πnkR
cos
(
nkR−mπ

2
− π

4

)
(E.12)

Hm ≈
√

2

πkR
exp i

(
kR−mπ

2
− π

4

)
(E.13)

we can calculate the ratio of two Bessel-functions:

Jm−1

Jm
= − tan

(
nkR−mπ

2
− π

4

)
(E.14)

Hm−1

Hm

= exp
{
i
π

2

}
= i (E.15)

TM case

For the TM case the resonance condition Eq. (E.6) writes as

n
Jm−1

Jm
=
Hm−1

Hm

(E.16)
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and using the above relations yields

−n tan
(
nkR−mπ

2
− π

4

)
= i. (E.17)

Solving for nkR we get

nkR = π

(
m

2
+

1

4
+ j

)
+ arctan

(
− i
n

)
. (E.18)

With the complex relation for the arctan

arctan z = − i
2

ln
1 + iz

1− iz , (E.19)

we can state our final asymptotic resonance condition for the TM resonances

kR =
π

n

(
j +

m

2
+

1

4

)
− i

2n
ln
n+ 1

n− 1
(E.20)

TE case

For the TE case the resonance condition Eq. (E.11) writes as

Jm−1

Jm
=
m

x

(
n− 1

n

)
− nHm−1

Hm

(E.21)

using the above relation as in the TM case we get

tan
(
nkR−mπ

2
− π

4

)
=

m

kR

(
n− 1

n

)
− in (E.22)

noting that we are interested in the limit kRÀ m we write

kR ≈ π

n

(
j +

m

2
+

1

4

)
− i

2n
ln

1 + n

1− n

≈ π

n

(
j +

m

2
+

1

4

)
− i

2n
ln(−1)

n+ 1

n− 1

≈ π

n

(
j +

m

2
+

1

4

)
− i

2n

(
ln
n+ 1

n− 1
+ ln(−1)

)

≈ π

n

(
j +

m

2
+

1

4

)
− i

2n

(
ln
n+ 1

n− 1
+ iπ

)

≈ π

n

(
j +

m

2
+

1

4

)
+

π

2n
− i

2n
ln
n+ 1

n− 1
.

We can now stat the final asymptotic expression for the TE resonance as

kR ≈ π

n

(
j +

m+ 1

2
+

1

4

)
− i

2n
ln
n+ 1

n− 1
(E.23)
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Table E.1: First twenty resonances for the TM and TE fields, given in kR. The
asymptotic resonances Ẽz are given by Eq. E.20

j Ez(m = 1, j) Ẽz(m = 1, j) Bz(m = 1, j) Ez(m = 2, j)

0 1.4706− 0.5106i 1.5707− 0.5364i 2.4487− 0.5806i 2.2835− 0.4521i
1 3.6204− 0.5310i 3.6651− 0.5364i 4.6266− 0.5487i 4.5316− 0.5166i
2 5.7308− 0.5342i 5.7595− 0.5364i 6.7485− 0.5422i 6.6829− 0.5275i
3 7.8328− 0.5352i 7.8539− 0.5364i 8.8570− 0.5398i 8.8069− 0.5314i
4 9.9316− 0.5357i 9.9483− 0.5364i 10.9599− 0.5386i 10.9194− 0.5332i
5 12.0289− 0.5359i 12.0427− 0.5364i 13.0601− 0.5380i 13.0261− 0.5341i
6 14.1253− 0.5360i 14.1371− 0.5364i 15.1586− 0.5376i 15.1293− 0.5347i
7 16.2213− 0.5361i 16.2315− 0.5364i 17.2561− 0.5373i 17.2304− 0.5351i
8 18.3168− 0.5362i 18.3259− 0.5364i 19.3530− 0.5371i 19.3300− 0.5354i
9 20.4121− 0.5362i 20.4203− 0.5364i 21.4494− 0.5370i 21.4286− 0.5356i

10 22.5073− 0.5363i 22.5147− 0.5364i 23.5454− 0.5369i 23.5265− 0.5357i
11 24.6023− 0.5363i 24.6091− 0.5364i 25.6411− 0.5368i 25.6238− 0.5358i
12 26.6972− 0.5363i 26.7035− 0.5364i 27.7367− 0.5368i 27.7206− 0.5359i
13 28.7921− 0.5363i 28.7979− 0.5364i 29.8320− 0.5367i 29.8171− 0.5360i
14 30.8869− 0.5363i 30.8923− 0.5364i 31.9273− 0.5367i 31.9134− 0.5360i
15 32.9816− 0.5364i 32.9867− 0.5364i 34.0224− 0.5367i 34.0094− 0.5361i
16 35.0763− 0.5364i 35.0811− 0.5364i 36.1175− 0.5366i 36.1052− 0.5361i
17 37.1710− 0.5364i 37.1755− 0.5364i 38.2125− 0.5366i 38.2009− 0.5362i
18 39.2656− 0.5364i 39.2699− 0.5364i 40.3074− 0.5366i 40.2964− 0.5362i
19 41.3602− 0.5364i 41.3643− 0.5364i 42.4023− 0.5366i 42.3918− 0.5362i
20 43.4548− 0.5364i 43.4586− 0.5364i 44.4971− 0.5366i 44.4871− 0.5362i
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E.2 A perturbative approach for narrow width res-

onances in the circle

Here we will describe a perturbative approach to calculate the resonance width of
long-lived states γ = x + iy, with x, y ∈ �

, where |y| ¿ x. This is the region of
whispering gallery modes. In this limit we can expand the Bessel functions in the
resonance condition as

Jm(nkR) ' Jm(nx) + inyJ ′
m(nx), and (E.24)

H+
m(kR) ' H+

m(x) + inyH+′
m (x) (E.25)

where ′ describes the derivative with respect to the argument. When the argument
is clear we will omit it in the following equations. All calculations are done here just
for the TM case. Similar arguments hold for the TE case. For the TM condition
Eq. (E.6) we get

{
nJm−1H

+
m − JmH+

m−1

}
+

iy
{
nJm−1H

+′
m + n2J ′

m−1H
+
m − JmH+′

m−1 − nJ ′
mH

+
m−1

}
= 0

(E.26)

Another perturbations can be used if we only consider a small image nary part of
the index of refraction n = nR + inI with nR À nI

Jm(nx) ' Jm(nRx) + inIxJ
′
m(nRx). (E.27)

To first order in y and nI and considering that the argument of J is only the real
part of the index of refraction

[
nRJm−1H

+
m − JmH+

m−1

]

+iy

[
1

x

{
JmH

+
m−1 − nRJm−1H

+
m

}
+
(
1− n2

R

)
JmH

+
m

]
(E.28)

+inI

[{
mJm−1 − nRxJm

}
H+
m −

{
xJm−1 −

m

nR
Jm

}
H+
m−1

]
= 0.

Let us write the equations as

A(x) + iyB(x) + inIC(x) = 0 (E.29)

where

A(x) =

[
nRJm−1H

+
m − JmH+

m−1

]

B(x) =

[
1

x

{
JmH

+
m−1 − nRJm−1H

+
m

}
+
(
1− n2

R

)
JmH

+
m

]

C(x) =

[{
mJm−1 − nRxJm

}
H+
m −

{
xJm−1 −

m

nR
Jm

}
H+
m−1

]
.
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We can now recognize A as the known resonance condition. The resonance width
can be determined by

y = i
A
B − nI

C
B

= −
{

1

n2
R

ln
nR + 1

nR − 1

}
JmNm−1 − Jm−1Nm

J2
m +N2

m

− nI
C
B . (E.30)

The coefficient C/B unfortunately does not simplify nicely and we are forced to let
it sit like it is.



Appendix F

Symmetry reduction in the

wave-equation

Most structures in this thesis have symmetries. Here we analyse the symmetries
found in the quadrupolar deformation type. We also considered quadrupole-hexadecaploar
and elliptical deformations in Chapter 5. A general symmetric shape like Fig. F.1
has the following symmetries in respect to the x and y axis

φ → φ : 1
φ → − φ : σx
φ → π − φ : σy
φ → φ − π : σxy

. (F.1)

We can combine these to give us the the symmetry group

{1, σx, σy, σxy} (F.2)

PSfrag replacements
x

y

φ

Figure F.1: Symmetric Shape

PSfrag replacements
(+,+) (+,−)

(−,+) (−,−)

Figure F.2: Nodal appearance in
the wavefunction for the four dif-
ferent symmetries.
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namely the C2 ⊗ C2 point group. We can now apply this symmetry class on the
Helmholtz equation to construct symmetrized wave functions

Ψ++ = (1 + σy + σx + σxy) Ψ
Ψ+− = (1 + σy + σx − σxy) Ψ
Ψ−+ = (1 − σy + σx − σxy) Ψ
Ψ−− = (1 − σy − σx + σxy) Ψ

. (F.3)

As the Bessel functions in our Ansatz depend only on the the radius at an angle φ
and are thus invariant under the symmetry operation

1r(φ) = σxr(φ) = σyr(φ) = σxyr(φ), (F.4)

only the exponents are effected by the symmetry operators. We can write this out
in terms of the Ψ++ internal wave function

Ψ++ =
∞∑

m=−∞

(
αmH

+
m(kr) + βmH

−
m(kR)

) [
eimφ + eim(π−φ) + e−imφ + eim(φ−π)

]

=
∞∑

m=−∞

(
αmH

+
m(kr) + βmH

−
m(kR)

) [
eimφ(1 + e−imφ) + e−imφ(1 + eimφ)

]

=
∞∑

m=−∞

(
αmH

+
m(kr) + βmH

−
m(kR)

)
4 · cosmφ ∀m even

=
∞∑

m=0

(
(αm + α−m)H+

m(kr) + (βm + β−m)H−
m(kR)

)
4 · cosmφ ∀m even

=
∞∑

m=0

(
αmH

+
m(kr) + βmH

−
m(kR)

)
4 · cosmφ ∀m even. (F.5)

We see that these symmetry considerations reduced the matrix size by a factor of
four! The same arguments holding for the other symmetries, gives respectively

Ψ++ =
∞∑

m=0

(
αmH

+
m(kr) + βmH

−
m(kr)

)
4 · cosmφ ∀ m even (F.6)

Ψ+− =
∞∑

m=0

(
αmH

+
m(kr) + βmH

−
m(kr)

)
4i · sinmφ ∀ m odd (F.7)

Ψ−+ =
∞∑

m=0

(
αmH

+
m(kr) + βmH

−
m(kr)

)
4 · cosmφ ∀ m odd (F.8)

Ψ−− =
∞∑

m=1

(
αmH

+
m(kr) + βmH

−
m(kR)

)
4i · sinmφ ∀ m even (F.9)

These Ansätze together with the boundary conditions can be written as a generalized
eigenvalue problem with a block matrix size of (N + 1)× (N + 1), compared to the
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(2N + 1)× (2N + 1) size in the non symmetry reduced problem. We have not only
noticed a huge speed increase for the calculation, but also an increase in numerical
stability. The effect of the symmetry can easily be seen at a wavefunction plot, when
we compare the nodal structure. In Fig. 4.16 we have related the nodal structure of
the real space wave function to our definition of the symmetries for the convenience
of the reader.



Appendix G

Bessel function relations

Bessel functions whether we like them or not show up throughout this thesis. This
collection of identities have been usefull, and will be used throughout the thesis.

G.1 Definition of Hankel function

The Hankelfunction can be defined as the sum of the Besselfunction of the first kind
Jm and the Neuman function Nm (sometimes given as Ym)

H±
m = Jm ± iNm (G.1)

from this follows the relation that we will use

H+
m +H−

m = (Jm + iNm) + (Jm − iNm) = 2Jm. (G.2)

G.2 Recursion relation for Bessel functions

The follwoing is true for of Jm(x), H±
m(x), Nm(x)

2m

x
Qm(x) = Qm−1(x) +Qm+1(x) (G.3)

2
d

dx
Qm(x) = Qm−1(x)−Qm+1(x) (G.4)

where Q can be either of J,H,N
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G.3 Derivative relation for Bessel functions

The derivative of Jm(x), H±
m(x), Nm(x) is given by

d

dx
Qm(x) = Qm−1(x)−

m

x
Qm(x) (G.5)

d

dx
Qm(x) =

m

x
Qm(x)−Qm+1(x) (G.6)

(G.7)

where Q can be either of J,H,N

G.3.1 Jm∂ρHm and Hm∂ρJm

These two forms show up all the time in the resonance conditions here we give them
in with the recursion relations:

Jm(γ1x)∂ρHm(γ2x) = γ2Jm(γ1x)

[
Hm−1(γ2x)−

m

γ2

Hm(γ2x)

]
(G.8)

Hm(γ2x)∂ρJm(γ1x) = γ1Hm(γ2x)

[
Jm−1(γ1x)−

m

γ1

Jm(γ1x)

]
(G.9)

(G.10)

G.4 Large argument expansion xÀ m

Using the large argument expansion xÀ m for the Bessel functions:

Jm ≈
√

2

πx
cos
(
x−mπ

2
− π

4

)
(G.11)

Hm ≈
√

2

πx
exp i

(
x−mπ

2
− π

4

)
(G.12)

we can calculate the ratio of two Bessel-functions:

Jm−1

Jm
= − tan

(
x−mπ

2
− π

4

)
(G.13)

Hm−1

Hm

= exp
{
i
π

2

}
= i (G.14)
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versité Paris VII, 1982.

[81] J. M. Greene. Two-dimensional measure-preserving mappings. Journal of
Mathematical Physics, 9(5):760–768, 1968.

[82] J. M. Greene, R. S. MacKay, F. Vivaldi, and M. J. Feigenbaum. Universal
behaviour in families of area-preserving maps. Physica D, 3(3):468–486, 1981.



BIBLIOGRAPHY 186

[83] K. R. Meyer. Generic bifurcation of periodic points. Trans. Am. Math. Soc.,
149:95–&, 1970.

[84] J.-M. Mao and J. B. Delos. Hamiltonian bifurcation theory of closed orbits in
the diamagnetic Kepler problem. Phys. Rev. A., 45(3):1746, 1991.

[85] A. E. Siegman. Lasers. University Science Books, Mill Valley, California, 1986.

[86] SLATEC. SLATEC Common Mathematical Library (Version 4.1), July 1993.
http://www.netlib.org/slatec/.

[87] Lord Rayleigh. On the dynamical theory of gratings. Proc. Roy. Soc., A79:399–
416, 1907.

[88] P. M. van den Berg and J. T. Fokkema. The rayleigh hypothesis in the theory
of diffraction by a perturbation in a plane surface. Radio Sci., 15:723–732,
1980.

[89] E. Doron and U. Smilansky. Semiclassical quantization of chaotic billiards – a
scatteringtheory approach. Nonlinearity, 5:1055–1084, 1992.

[90] B. Dietz, J. P. Eckmann, C. A. Pillet, U. Smilansky, and I. Ussishkin. Inside-
outside duality for planar billiards – a numerical study. Phys. Rev. E., 51:4222–
4231, 1995.

[91] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[92] N. B. Rex, R. K. Chang, and L. J. Guido. Threshold lowering in GaN micropil-
lar lasers by means of spatially selective optical pumping. IEEE Photonics
Technol. Lett., 13:1–3, 2001.

[93] H. E. Tureci, H. G. L. Schwefel, A. D. Stone, and E. E. Narimanov. Gaussian-
optical approach to stable periodic orbit resonances of partially chaotic dielec-
tric micro-cavities. Opt. Express, 10:752–776, 2002.

[94] E. J. Heller. Scars and other weak localization effects in classically chaotic
systems. Phys. Scr., T90:154–161, 2001.

[95] E. J. Heller. Bound-state eigenfunctions of classically chaotic Hamiltonian
systems – scars of periodic-orbits. Phys. Rev. Lett., 53:1515–1518, 1984.

[96] P. M. Morse and H. Feshbach. Methods of Theoretical Physics, Part I and II,
Section 2.3, “Motion of Fluids”. McGraw-Hill, New York, NY, USA, 1953.
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Index

ABCD matrix
general derivation, 116

ABDC Matrix, see Monodromy matrix
Action angle variables, 30
Adiabatic invariant curves, 76, 92
Arnol’d diffusion, 38
Asymptotic expansion

above barrier resonances, 104
Axicon lens, 142

Bessel-function
large argument expansion, 179

Bifurcation, 44
2-bounce orbit, 48

Billiard
general map, 42
Periodic Orbit, 47

Billiard map
Circle, 39
Ellipse, 40
general shape, 41
projected 3-d, 165

Billiards
D1, 136
D2, 136
ellipse, 82, 83
P1, 137
P2, 138
quadrupole, 82, 92
quadrupole-hexadecapole, 82
stadium, 101

Birkhoff coordinates, 39
Birkhoff-Poritsky conjecture, 40
Boundary conditions

Sommerfeld boundary condition, 58
Boundary image field, 86

Canonical transformation, 29
Chemically Assisted Ion Beam Etching

(CAIBE), 139
Continued fraction, 32
Curvature, see radius of curvature

Derivative
normal, 168
tangential, 168

Dynamical eclipsing, 84

EBK, 22
Ansatz, 22

Eikonal equation
derivation of, 22

Evanescent channels, 64
Experimental setup, 139–142

Imaging, 141
Spectral, 140

Far-field experiment, 72
Far-field pattern, 86
Fixed-point

elliptic, 36
hyperbolic, 37
inversion hyperbolic, 37
marginal stable, see parabolic
ordinary hyperbolic, 37
parabolic, 37
stable, 36, see elliptic
unstable, see hyperbolic

Fresnel coefficients, 54
at 2-d interface, 26
general derivation, 25
restated, 120

Fresnel Equation
modified, 108

189
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Fresnel filtering, 152

GaN Experiments, 134–154
D1, 145–146
ellipse, 146–148
quadrupole, 148–152
quadrupole-hexadecapole, 152–153

Generalized eigenvalue problem, 64
Golden mean, 33

Hamilton-Jacobi equation, 23
Hamiltonian function, 29
Hankel functions

large argument expansion, 74
Helmholtz equation, 57

general vector, 17
quasi-normal modes, 58
vector reduced, 19

Heteroclinic intersection, 38
Homoclinic intersection, 38
Homoclinic Points, 46
Hyperbolic fixed-point, see Fixed-point

Image field, 84
Integrable Hamiltonian, 29
Invariant curves, 91

Jones Algebra, 122
Jones matrix, 122
Jones vector, 122

LAPACK, 64
Lazutkin’s theorem, 43, 44
Librational orbit

definition of, 48

Manifolds
stable/unstable, 38
unstable, 77

Maxwell’s equation, 16
1-d translational symmetry, 17
boundary conditions, general, 19

Monodromy matrix, 35, 42
definition of, 35
eigenvalues, of, 36

Neumann function, 63
Numerical aperture, 141

PCA
Polarization Critical Angle, 127

Periodic Orbit, 43
Bird, 158
Bouncing Ball type, 48
Bowtie, 158
Diamond, 161
Fish, 158
Librational type, 48
Rectangle, 161
Star of David, 160
Triangle, 160
Whispering Gallery type, 50

Photolithographic mask, 135
Plane of incidence, 120
Poincaré index, 45
Poincaré Surface of Section, 33
Poincaré-Birkhoff fixed point theorem,

34
Poisson bracket, 29
Polarization

circular, 120
elliptical, 119
general, 119
Hybrid Modes, 22
linear, 119
Transverse Electric (TE), 21
Transverse Electric (TM), 120
Transverse Electromagnetic (TEM),

22
Transverse Magnetic (TM), 21, 120

Polarization Critical Angle (PCA), 127

Q-Value, 55, 59

Radius of curvature, 43
Ray-dynamics

3-d cylinder, 52
Far-field, 165

Ray-simulation, 54
Ray-tracing, 41
Residue, 44
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Resonance Condition
circle TE, 171
circle TM, 170
cylinder kz 6= 0, 60

Resonance width, 108
perturbative for Circle, 173

S-Matrix
avoided crossing, 70

Scar of David, 148
Semiclassical limit, see EBK
Snell’s Law

general derivation EBK, 24
geometric derivation, 166

Snell’s law
ray-dynamics, 54
restated, 120

Sommerfeld boundary condition, 58
Spiral, 161

Tangent map, 35
Transport equation

derivation of, 22
Twist Map, 34

Wavefunction
localized on homoclinic points, 70
Scarred orbit, 77
Whispering gallery type, 76

Winding number, 34


