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Onset of Buckling in Drying Droplets of Colloidal Suspensions
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Minute concentrations of suspended particles can dramatically alter the behavior of a drying droplet.
After a period of isotropic shrinkage, similar to droplets of a pure liquid, these droplets suddenly buckle
like an elastic shell. While linear elasticity is able to describe the morphology of the buckled droplets, it
fails to predict the onset of buckling. Instead, we find that buckling is coincident with a stress-induced
fluid to solid transition in a shell of particles at a droplet’s surface, occurring when attractive capillary
forces overcome stabilizing electrostatic forces between particles.
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Drying suspensions show a stunning blend of fluid and
elastic behavior. For example, even tiny concentrations of
suspended particles can dramatically alter the behavior of a
drying droplet. Rather than simply shrinking isotropically,
drying colloidal droplets can undergo striking mechanical
instabilities, such as fracture and buckling [1]. The basic
physics of these instabilities are relatively well understood
for elastic materials. However, drying suspensions can be
viscoelastic: depending on the experimental time scale,
they can either store energy in elastic deformation or
relieve stress through viscous flow. In addition, the kinetics
of drying drives suspensions far from equilibrium, leading
to dramatic changes in material properties as solvent evap-
orates [2]. Thus, drying droplets pose a number of intrigu-
ing fundamental questions. However, they also play an
important technological role. For example, spray drying,
where fine powders are produced by the rapid drying of
aerosols, has become the method of choice for manufac-
turing large quantities of many foodstuffs, pharmaceuti-
cals, polymers, and detergents [3,4]. Despite these broad
industrial applications, little is known about the mechanics
of drying droplets. Recent experiments investigating dry-
ing sessile droplets have shed some light on the problem
[1,2], suggesting that the morphologies of buckled colloi-
dal droplets can be interpreted using the theory of thin
elastic shells. However, a clear picture of the subtle inter-
play between forces, structure, and kinetics inside colloidal
droplets far from equilibrium has not emerged to describe
how drying transforms fluid droplets into buckled elastic
shells. Therefore, a new framework is required to under-
stand the mechanical instabilities of drying droplets.

In this Letter, we describe the drying of freely suspended
droplets of colloidal suspensions. Initially, these droplets
behave like pure liquids and shrink isotropically.
Eventually, the droplets buckle like elastic shells. While
linear elasticity is able to describe the morphology of
buckled droplets, the classic elastic buckling criterion can-
not predict the onset of this instability. We present a new
framework for understanding buckling in drying colloidal
droplets. As droplets dry, a viscoelastic shell of densely
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packed particles forms at its surface. Initially, the shell
yields and thickens as the droplet shrinks. Eventually, the
capillary forces that drive deformation of the shell over-
come the electrostatic forces stabilizing the particles. At
this point, the shell undergoes a sol-gel transition, becomes
elastic, and buckles.

We observe the dynamics of drying droplets of aqueous
suspensions of monodisperse carboxylate-modified poly-
styrene colloids (Interfacial Dynamics Corp.). We use the
Leidenfrost effect to keep the droplets freely suspended.
This effect is familiar to anyone who has sprinkled water
on a hot griddle to check the temperature: fluid droplets do
not wet surfaces above about 150 �C; rather, they float on a
thin layer of their own vapor [5]. The shape of a
Leidenfrost droplet is determined by a balance of capillary
and gravitational forces. If the droplet radius, R, is smaller
than the capillary length, l �

������������
�=�g

p
, surface tension over-

comes gravity and the droplet remains spherical [6]. Here,
� is the density, g is the acceleration due to gravity, and �
is the surface tension. For water near 100 �C, the capillary
length l � 2:5 mm. Thus, to ensure that they are spherical,
we study droplets with radii from 0.8 to 2.2 mm. Using
high-speed video, we image the drying of droplets sus-
pended above a concave stainless steel surface maintained
at 200 �C. Initially, the colloidal particles have no apparent
effect and the droplet shrinks isotropically. Ultimately, the
droplets undergo a sudden buckling transition, as shown in
Fig. 1(a). The shapes of these buckled droplets closely
resemble deflated elastic shells. The observed morpholo-
gies are consistent with those obtained from simulations of
buckling elastic shells [7] using Surface Evolver [8]
[Fig. 1(b)]. Indeed, scanning electron microscopy (SEM)
images of fully dried droplets reveal a hollow core sur-
rounded by a buckled shell of densely packed particles, as
shown in Fig. 2.

This shell forms as particles pile up just inside the drying
droplet’s receding air-water interface. The boundary be-
tween the shell and the bulk of the droplet is sharp when the
time for the fluid to evaporate, �dry, is much less than the
time required for homogenizing the droplet, �mix. The
2-1  2005 The American Physical Society
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FIG. 2. SEM images of a buckled, dried, and fractured shell
created from a suspension of 85 nm spheres. (a) Scale bar
represents 200 �m. (b) Scale bar represents 10 �m.

(b)

(a)

FIG. 1 (color online). Buckling instability in a drying droplet.
(a) A colloidal droplet (
i � 0:4%, a � 85 nm, and Ri �
1:3 mm) levitates above a hot plate maintained at 200 �C.
Adjacent snapshots are separated by 1.5 s. The second snapshot
shows the onset of buckling. The scale bar represents 0.5 mm.
(b) Simulation of a buckling elastic shell with �T=R�B � 0:09
and Poisson ratio 0.4 shows similar morphologies.
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mixing time can be estimated as the time a suspended
particle takes to diffuse across the radius of the droplet,
�mix � R2=D, where D is the single particle diffusion
coefficient. In our experiments, �dry � 60 s while �mix *

103 s. Therefore, the inner core of a droplet remains at its
initial volume fraction, 
i, while a shell of thickness T
forms with volume fraction 
c. We apply mass conserva-
tion to determine the relative thickness of the shell during
isotropic shrinkage,

T
R

� 1�
�

c �
i�Ri=R�

3


c �
i

�
1=3
; (1)

where Ri is the initial droplet radius. As the volume of the
droplet decreases, new particles join the shell. In addition,
the surface area of the droplet shrinks as it dries, forcing
the shell to thicken and its particles to rearrange.

Capillary forces drive the deformation of the shell. As
water evaporates, tiny menisci form in the gaps between
particles at the surface of the shell. The pressure just inside
the menisci is 2�=rM below atmospheric pressure, where
rM is the local radius of curvature. The tension created by
this interfacial curvature simultaneously pulls fluid toward
the outer surface and drives particles inward. The radius of
curvature, and thus the forces, adjusts to follow fluid
evaporation and keep the particles wet.

The shell’s response to capillary forces is viscoelastic.
During isotropic shrinkage, the viscous nature of the shell
dominates as it yields and thickens. However, in order to
buckle, the shell must become elastic. Therefore, the onset
of buckling must correspond to a crossover from the vis-
cous to elastic regimes of the shell’s rheology.

To clarify the relationship between buckling and shell
geometry, we explore the variation of the onset of buckling
with the initial droplet radius and initial particle volume
fraction. These two parameters control the relative thick-
ness of the shell [Eq. (1)]. We identify the onset of buckling
01830
as the instant when the horizontal and vertical radii of the
droplet become measurably different. The droplet’s radius
at the onset of buckling, RB, increases linearly with the
initial radius of the droplet. Therefore, RB=Ri is indepen-
dent of Ri, as shown in the inset to Fig. 3(a). The buckling
radius scales with the initial particle volume fraction as

1=3i , as shown in Fig. 3(a). The onset of buckling is
observable down to remarkably low volume fractions,
 �
10�4. Applying Eq. (1) to our data, we calculate the
relative thickness of the shell at the point of buckling for
each initial volume fraction. Notably, we find that �T=R�B
is constant over two decades of 
i, as shown in Fig. 3(b).
Therefore, the onset of buckling occurs at a critical relative
thickness, independent of Ri and 
i. Assuming a volume
fraction of particles inside the shell equal to 0.58, we find
�T=R�B � 0:09� 0:03 for particle radii of a � 85 nm.
The precise value of 
c does not affect the scaling of
�T=R�B with 
i, but it does affect the absolute values of
�T=R�B. The inferred value of �T=R�B is consistent with the
elastic shell simulations, as shown in Fig. 1(b). For a �
1000 nm, we find �T=R�B � 0:28� 0:14 and observe
slightly different buckling morphologies, as expected for
thicker shells.

The thickness of a shell is a key parameter in determin-
ing the stress needed to drive its deformation. We relate
stress and shell thickness by considering the relative flow
of fluid and particles as the droplet shrinks. Modeling the
shell as a porous medium, we use Darcy’s law to estimate
the pressure drop required to drive fluid flow through the
particle shell, �P � �TJ=k. Here � is the fluid viscosity,
J � dR=dt is the volumetric flux of fluid through the shell
per unit area, and k is the shell permeability. We estimate
the permeability with the Carmen-Kozeny relation k �
1
45

�1�
c�
3


2c
a2. Combining this picture with Eq. (1) and mea-

surements of R and dR=dt at the point of buckling, we
estimate the pressure drop across the shell at the point of
buckling, ��P�B. Remarkably, the pressure drop is inde-
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FIG. 4 (color online). Calculated pressure drop at buckling for
85 nm and 1 �m particles, filled and open symbols, respectively.
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FIG. 3 (color online). Effect of shell geometry on buckling.
(a) The radius of the shell at the point of buckling for different
initial volume fractions, for spheres of radius 85 and 1000 nm.
Ri � 1:3 mm. The solid lines show 
1=3i scaling. Inset: the ratio
of the buckling radius to the initial radius, RB=Ri, for a range of
initial droplet radii. Particle radius, a � 85 nm. 
i � 0:002.
(b) The inferred relative thickness of the shell at the point of
buckling, �T=R�B, for a range of different initial volume frac-
tions.
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pendent of the initial volume fraction, as shown in Fig. 4.
We find that ��P�B is �5:0� 1:4� kPa and �116� 52� Pa
for the 85 nm and 1000 nm suspensions, respectively.

The emergence of a critical pressure suggests that the
crossover from viscous to elastic behavior is initiated by
stress. The origin of the critical buckling pressure is clari-
fied by considering the forces acting on individual colloidal
particles. Particles confined to the air-water interface are
driven together by capillary forces. During isotropic
shrinkage, the magnitude of the capillary forces is about
�a2�P, since the pressure drop across the air-water inter-
face is equal to the pressure drop across the shell.
Therefore, the critical buckling pressure, ��P�B, corre-
sponds to a critical force, FB � �a2��P�B. We find that
FB � �37� 10� pN and �120� 50� pN for the small and
large spheres, respectively. These forces are of the same
order of magnitude as those expected to provide electro-
static stabilization between colloidal particles and can be
estimated with measured values of the Hamacker constant
and surface potential. The force between two highly
01830
charged spheres whose surfaces are separated by a distance
D� a can be estimated as [9]

F�D� �
64�ano�

2kBT
�

e��D �
aA

12D2
; (2)

where no is the number density of monovalent electrolyte,
� is the Debye screening length, and A is the Hamacker
constant. The parameter, � � tanh�e!=4kBT�, captures the
saturation of the electrostatic repulsion with large values of
the surface potential, ! . A combination of electrokinetic
and aggregation experiments on similar spheres suggests
that ! � �100 mV and A � 1:3	 10�20 J [10].
Assuming an electrolyte concentration of 1:6 �M, corre-
sponding to dissolved carbon dioxide, we calculate maxi-
mum repulsive forces of about 10 pN and 100 pN for the
85 nm and 1000 nm spheres, respectively. This estimate not
only captures the magnitude of measured values of FB but
also reproduces the observed dependence on particle size.

Our analysis suggests that the forces between particles in
a drying droplet play an important role in determining the
onset of buckling. We hypothesize that buckling occurs
when the capillary forces driving the deformation and flow
of a shell overcome the electrostatic forces stabilizing the
particles against aggregation. Therefore, at a critical value
of the capillary forces, the particles undergo a sol-gel
transition, transforming the shell from a viscous fluid to
an elastic solid, and triggering the onset of buckling.

We test this picture by modifying the interactions of
particles in the shell. We vary the concentration of divalent
salt and observe the buckling of a suspension of the 85 nm
particles at an initial volume fraction of 0.4%. As shown in
Fig. 5(a), small quantities of divalent salt have a dramatic
effect on the morphology of a drying colloidal droplet.
Generally, the shells have a more crumpled appearance.
This occurs because the shells are thinner, having buckled
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FIG. 5 (color online). Salt-induced buckling. (a) Buckling of a
colloidal droplet (
i � 0:4%, a � 85 nm, and Ri � 1:3 mm)
with 1 mMMgCl2. Adjacent snapshots are separated by 8 s. The
scale bar represents 1 mm. (b) The measured buckling radius
increases with the concentration of MgCl2. Concentrations of
MgCl2 are plotted at the point of buckling, assuming salt remains
well mixed during drying. The solid line indicates the buckling
radius at no added salt. (c) Calculated interfacial force at buck-
ling with salt concentration. The solid line indicates force at no
added salt.
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at larger values of R, as shown in Fig. 5(b). Calculating the
force between particles at buckling, we find that the in-
ferred destabilization force approaches zero as the concen-
tration ofMgCl2 approaches 1 mM [Fig. 5(c)]. This can be
understood by considering the electrostatic interaction of
the magnesium ions with the surface of the spheres. Using
Boltzmann statistics, we can estimate the concentration of
magnesium ions at the particle surface: 
Mg2��surface �

Mg2��bulk exp�2e!=kBT�. Therefore, as the bulk concen-
tration of MgCl2 approaches 1 mM, the concentration of
magnesium at the particle surface reaches the solubility
limit of about 5 M and condenses to neutralize the particle
charge.

This stress-induced fluid to solid transition should be a
generic feature of drying suspensions of particles whose
interactions have strong short range attractions and rela-
tively long range repulsive stabilizing forces, typical of
most aqueous suspensions. By tuning the interactions be-
tween particles, the onset of buckling and the morphology
of the final shell can be adjusted. This new understanding
could provide guidance for engineering the morphology of
spray-dried particles. Furthermore, stress-induced gelation
01830
may also play an important role in the onset of other elastic
instabilities in other geometries, such as the fracture of
drying films [11]. Finally, stress-induced gelation may
provide a simple means of measuring the forces stabilizing
particles in suspension.
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