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We describe and implement a technique for extracting forces from the relaxation of an overdamped
thermal system with normal modes. At sufficiently short time intervals, the evolution of a normal mode is
well described by a one-dimensional Smoluchowski equation with constant drift velocity v, and diffusion
coefficent D. By virtue of fluctuation dissipation, these transport coefficients are simply related to
conservative forces, F, acting on the normal mode: F � kBTv=D. This relationship implicitly accounts
for hydrodynamic interactions, requires no mechanical calibration, makes no assumptions about the form
of conservative forces, and requires no prior knowledge of material properties. We apply this method to
measure the electrostatic interactions of polymer microspheres suspended in nonpolar microemulsions.
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The structure and stability of colloidal dispersions de-
pend sensitively on the interactions of suspended particles.
An early triumph of colloid science was the Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory [1,2] which jux-
taposes short-range van der Waals forces and longer-range
electrostatic forces to characterize the stability of aqueous
colloidal dispersions. Yet the role of electrostatic interac-
tions in nonpolar solvents has remained controversial [3].
Electrostatic forces between surfaces in nonpolar solvents
have recently been reported for a variety of surfaces in
nonpolar microemulsions [4–6]. In certain regimes, mea-
sured interactions [6] are identical to the screened-
Coulomb component of the standard DLVO theory. In
others, a novel counterion-only double-layer theory is
needed to describe observed forces [7]. While the reality
of electrostatic interactions in nonpolar environments has
been established, their origin and significance remain mys-
terious. To that end, robust methods for measuring inter-
particle forces are needed to bring out the underlying
physics.

A variety of methods have emerged to directly measure
colloidal forces. The surface forces apparatus [4,8] and
atomic force microscope [5,9] measure forces mechani-
cally and have respective force resolutions at the nN and
pN scales. Alternatively, native thermal fluctuations can
reveal interparticle forces. Such methods are well suited to
real-space imaging and provide force resolutions on the fN
scale. For weakly interacting systems, the potential, U, can
be extracted from the equilibrium probability distribution,
Peq, by inverting the Boltzmann equation, U=kBT �
� lnPeq [10,11]. Similarly, liquid-structure theory or re-
verse Monte Carlo methods enable the extraction of pair-
potentials from the pair-correlation function, g�r�, of stable
semidilute dispersions of identical particles [6,12,13]. This
method assumes pairwise additivity of potentials [14] and
is difficult to implement without introducing artifacts from
confining surfaces. All of these equilibrium methods are
limited to interactions of less than a few kBT. An alter-
native approach, due to Crocker and Grier [15], analyzes

the dynamics of a system relaxing toward equilibrium.
Their method, Markovian Dynamics Extrapolation
(MDE), offers the attractive advantage of sampling higher
interaction energies by driving the system out of equilib-
rium with an external force. MDE elegantly identifies the
equilibrium distribution, Peq, as an eigenvector (with ei-
genvalue one) of the experimentally sampled probability
evolution operator. However, forces are not extracted from
local properties of the trajectories. Rather, the dynamics
must be thoroughly sampled over the full range of the
interaction—from hard-core repulsion at short range to
zero force at long range. Furthermore, systematic effects
due to sampling errors on the calculation of the eigenvec-
tors are hard to quantify, and artifacts from hydrodynamics
are difficult to rule out.

In this Letter, we present a simple method for extracting
conservative forces between isolated pairs of colloidal
particles from the statistics of their trajectories at short
time intervals. While our experimental apparatus is a
straight-forward extension of the blinking optical tweezers
introduced by Crocker and Grier [15], we propose an
alternative method of data analysis that measures forces
locally and implicitly accounts for hydrodynamic cou-
pling. We apply this method to characterize the electro-
static interactions of polymer colloids suspended in a
nonpolar microemulsion.

We measure the electrostatic interactions of carboxylate
modified polystyrene latex particles, radius a � 600 nm
(Interfacial Dynamics Corp.), suspended at vanishingly
small volume fraction, � � 10�6, in a nonpolar micro-
emulsion of AOT (sodium di-2-ethylhexylsulfosuccinate)
in hexadecane. Samples are prepared and stored in a low-
humidity glove box. A glass chamber, constructed from a
standard microscope slide, three microscope coverslips
(No 1.5), and UV curing epoxy (Norland 61), holds the
sample for optical microscopy and micromanipulation. An
inverted optical microscope (Nikon TE2000) equipped
with an oil immersion lens (100X, N.A. 1.4) images the
suspension in bright field. Images are recorded on a high
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speed digital video camera (Photron Fastcam 1024PCI) at a
frame rate of 500 Hz. Centroid algorithms [16], imple-
mented in MATLAB, locate particle centers to a resolution of
about 10 nm.

We extract interparticle forces from the statistical prop-
erties of the trajectories of isolated pairs of beads. We use
blinking optical tweezers [15] to repeatedly trap and re-
lease particles at a desired separation, as shown in
Fig. 1(a). This method allows us to efficiently acquire
good statistics for the trajectories of spheres in unlikely
configurations. In our setup, described elsewhere [17], a
pair of optical traps is made with the 532 nm output of a
diode-pumped solid state laser (Coherent Verdi V-5) using
holographic optical tweezers [18–20]. To avoid wall ef-
fects [21–23], particles are trapped at least 10 �m from the

walls of the sample chamber. Once the optical tweezers
have set the height and initial separation of the beads, we
blink the laser using a chopper (Thorlabs MC1000A) at a
rate 1=� � 20 Hz, with a duty cycle of 1:6. While the laser
is off, the particles move freely, traveling distances up to
about 200 nm. This motion is a combination of thermal
diffusion and drift induced by interparticle forces. As the
solvent does not absorb a measurable amount of trapping
light, we expect that local heating by the optical tweezers is
not significant. Furthermore, if any heat were delivered by
the laser, it would be dissipated within microseconds by
thermal conduction. By studying the motions of the parti-
cles only when the trap is off, we ensure that our measure-
ments are insensitive to the details of the interaction of the
trap with the particles and to any interactions between
particles due to light scattering in the traps [24].

We characterize the stochastic trajectories of free parti-
cles with time-dependent two-particle probability distribu-
tions. We reduce the trajectories to a list of statistically
independent events, characterized by initial and final par-
ticle separations, ri and rf, and a time interval, �t. Each
event is assigned to a spatial bin according to its initial
separation. We count the number of events with a particular
value of displacement, �r � �rf � ri�, for each separation,
r, and time interval, �t. While each event describes parti-
cle dynamics between a single pair of laser flashes, we
concatenate events across many flashes to get good statis-
tics. The resulting histogram, N�r;�r;�t�, represents the
time-dependent two-particle probability distribution, and
is well fit by a Gaussian curve. Histograms for different
values of �t at a separation r � 2:04 �m are plotted in
Fig. 1(b). The mean displacement, �r, and the variance of
the displacement, �2

�r, increase linearly with time, as
shown in Fig. 1(c). The slope of the mean displacement
provides a drift velocity, v. Likewise, the slope of the
variance provides a diffusion coefficient, D. We observe
these linear relationships at all particle separations.

The separation dependence of the velocity and diffusion
coefficients are plotted in Fig. 2. The relative velocity is
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FIG. 1 (color online). Statistics of Particle Trajectories at Short
Time Intervals (a) Typical images of trapped and free micro-
spheres in 1 mM AOT/hexadecane. (b) A histogram of �r at
various �t is plotted for a separation r � 2:04 �m. (c) Fits of
the mean displacement and the mean squared displacement as a
function of time yield two transport coefficients v and D,
respectively.
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FIG. 2. Separation dependence of (a) v�r�, the mean velocity
of separation, and (b) D�r�, the relative diffusion coefficient in
1 mM AOT/hexadecane.
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positive and decreases slowly from a maximum at the
smallest separation, suggesting a long-range repulsive
force. In contrast, the diffusion is suppressed by viscous
forces as particles come near contact. At low Reynolds
number, force and velocity are related through the hydro-
dynamic mobility tensor, ~v � b � ~F. The mobility, b, gen-
erally depends on the size and separation of the spheres and
the viscosity of the solvent. If the particles and solvent have
been characterized in separate experiments, then the mo-
bility can be calculated from existing theory [25].
However, typical expressions for hydrodynamic mobility
are complicated by the presence of surface charge and
counterions [26]. Without a priori knowledge of the zeta
potential and screening length, these challenging calcula-
tions become intractable. We sidestep this obstacle by
exploiting our simultaneous measurement of the relative
velocity and diffusion coefficients.

To clarify the relationship between the transport coef-
ficients and forces, let us consider a generalized form of
Fick’s first law for a system of N interacting particles [27]:

 

~J i �
X
j

f�Dij � �
~rjP� �� ~rjU�P	g: (1)

Here, ~Ji is the probability current of the ith particle, Dij is
the diffusivity tensor, P � P� ~r1; . . . ; ~rN; t� is the probabil-
ity distribution, � � 1=kBT, and U� ~r1; . . . ~rN� is the poten-
tial energy. The first term in Eq. (1) is the current due to
coupled diffusion, and the second term captures drift due to
conservative forces. Enforcing the conservation of proba-
bility, we arrive at the Smoluchowski equation:

 @tP �
X
i

� ~ri � ~Ji �
X
i;j

f ~ri � Dij � �
~rjP� �� ~rjU�P	g:

(2)

The Onsager relations [28] demand that, Dij � Dji.
Therefore, Dij can be diagonalized by a set of normal
coordinates, ~x1 . . . ~xN . If the interaction potential is a linear
combination of contributions from each mode, U �P
iUi� ~xi�, then the probability distribution can be sepa-

rated, P �
Q
iPi� ~xi�, and

 @tPi � ~ri � �Di �
~riPi � ~viPi	; (3)

where ~vi � ��Di �
~riUi. Here we have restricted our

analysis to short time intervals so that the spatial depen-
dence of the normal modes can be ignored. This is valid,
provided that �xiv

0
i 
 vi,��xiv

0
i 
 vi, �xiD

0
i 
 Di, and

��xiD
0
i 
 Di, where primed variables indicate spatial de-

rivatives. Furthermore, the vector nature of the normal
modes can be ignored provided that their displacements
are small compared to their magnitude: �xi 
 xi and
��xi 
 xi. This leads to a tractable one-dimensional
form for the Smoluchowski equation:

 

_P i � DiP
00
i � �vi �D

0
i�P
0
i: (4)

For D0i 
 vi, this is solved by a Gaussian distribution,

 P��xi;�t� � �2��2
�xi
��1=2 exp

�
�
��xi � �xi�

2

2�2
�xi

�
; (5)

where �xi � vi�t and �2
�xi
� 2Di�t. Thus, we arrive at a

convenient expression for the conservative force acting on
the ith normal mode,

 Fi � �U0i � kBT
vi
Di
: (6)

This equation, a direct consequence of fluctuation-
dissipation, relates the force to locally measured transport
coefficients without appealing to particular models of hy-
drodynamic or conservative forces.

This analysis is readily applied to identical colloidal
particles, where the separation vector, ~r, is a normal
mode of the diffusion tensor and U � U� ~r� [25]. The
interparticle forces can be directly calculated by dividing
the drift velocities by the diffusivities at each separation
found in Fig. 2. The resulting force profile is shown in
Fig. 3. These spheres show purely repulsive interactions
with a maximum measurable force of about 100 fN and a
resolution of a few fN. The interparticle forces fall off
slowly as the particle separation increases, with measur-
able repulsions out to about five particle diameters. These
results are well -fit by a screened-Coulomb form,
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FIG. 3. Electrostatic forces between charged colloidal particles
in a nonpolar solvent. Repulsion between carboxylate modifed
PS at two concentrations of AOT, as noted. Curves are fits to
screened-Coulomb interactions (inset) Interaction energy,
U�r�=kBT, implied by a fit at 1 mM AOT.
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 F�r� � kBT
�
e�
kBT

�
2 a2

�B

e�	�r�2a�

r

�
1

r
� 	

�
; (7)

where the Bjerrum length �B � e2=4�

okBT. This fit
returns a screening length 	�1 � 5:0� 0:2 �m and an
apparent surface potential, je�=kBTj � 3:30� 0:04. It is
important to note that the fitted value of je�j reflects the
surface potential as seen from long range. This value will
be smaller than the actual surface potential for highly
charged surfaces due to nonlinear screening near the par-
ticle surface.

Interparticle forces vary with the concentration of sur-
factant. When the concentration of AOT is increased to
10 mM, the range and scale of the interparticle forces drop,
as shown in Fig. 3. In particular, the screening length is
lowered to 0:6� 0:1 �m and the apparent surface poten-
tial is significantly reduced je�=kBTj � 1:8� 0:1.
Previous work on a related system [6] reported similar
values of 	 and � .

Interaction potentials,U�r�, can be calculated from these
parameters, as demonstrated in the inset of Fig. 3. The
potential is soft and long-ranged, decaying from about
100kBT at contact to <kBT at about r � 10 �m. We use
fitted values of 	�1 and je�=kBTj because we have found
direct integration of the force curve to be highly unreli-
able; by simply varying the size of the spatial bins, con-
ventional potentials with screened-Coulomb forms can be
transformed into anomalous potentials with long-range
attractions.

We present a method for extracting the conservative
forces between colloidal particles from the statistics of
their trajectories. This method requires no separate mea-
surements of solvent and particle properties. The only
supporting measurements are the spatial and temporal
calibrations of the imaging system and the temperature
of the sample. Additionally, our measurement is com-
pletely independent of specific models for hydrodynamic
and electrostatic interactions between particles. Our
method of data analysis, rooted in the general principles
of nonequilibrium statistical mechanics, may be extended
to probe generalized forces acting on fluctuating normal
modes of any thermal system, from more complex colloi-
dal systems to the internal dynamics of molecules.
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