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ABSTRACT

Hydrodynamic interactions couple the Brownian motion of all colloidal particles,
yet the fundamental equations of hydrodynamics defy exact solution for all but the
simplest colloidal systems. We measure Brownian motion in a variety of few-body
colloidal systems using blinking optical tweezers and interpret our data in light of
the predictions of an approximate theory, Stokeslet analysis. Stokeslet analysis de-
scribes the weak hydrodynamic coupling of arbitrary numbers of colloidal spheres
in free and confined geometries. This theory assumes that the separations between
the spheres are much greater than their radii and models their hydrodynamic in-
teractions as those between point-like particles. We find that Stokeslet analysis’
predictions are consistent with our measurements, and that it accounts for many-
body interactions ignored by the linear superposition of hydrodynamic drag forces.

While Stokeslet analysis can be scaled to analyze larger many-body systems,
conventional optical tweezer techniques cannot manipulate more than a few par-
ticles. Therefore, we have invented a simple, robust and inexpensive technique to
create multiple optical traps from a single laser beam using computer generated
holograms. These holographic optical tweezer arrays can trap thousands of par-
ticles in arbitrary configurations. In addition to enabling direct measurements of
many-body interactions, holographic optical tweezer arrays can be applied to study
structural phase transitions in colloidal systems, to assemble microscopically tex-

tured materials, and to sort and manipulate biological materials.



CHAPTER 1
THE PHYSICS OF COLLOIDAL SUSPENSIONS

1.1 Colloidal Suspensions

A colloid is a suspension of microscopic particles in a liquid. Colloidal particles
vary in size from 1nm to 10 wm. They can be made of inorganic materials such
as gold, clay or silica, or organic materials such as fatty acids, proteins, plastics or
even entire cells. Colloidal particles are typically suspended in water. Interactions
between particles and with external fields are typically weaker than or comparable
to the thermal energy scale. Therefore, in thermal equilibrium, colloidal particles
tend to be evenly distributed throughout the suspending fluid.

Colloidal suspensions are vital to human life. Blood, Fig. 1.1, is predominantly
made up of 5 um diameter lozenge-shaped cells suspended in an aqueous electrolyte.
Milk, Fig. 1.2, is made up of globules of fat and protein suspended in water. Over the
centuries, people have learned to exploit the properties of colloidal suspensions for
industrial needs. Paint and glue are colloidal suspensions. The industrial production
of many familiar substances rely on the enormous surface area to volume ratios of
colloidal particles to efficiently catalyze chemical reactions.

In recent years, there has been a resurgent interest in the physical properties
of colloidal suspensions, driven by new insights into their microscopic behavior and
the desire to create new materials and devices. Colloidal particles interact through

a wide range of forces that are delicately balanced in a typical colloidal suspension.
1



Figure 1.2: Homogenized cow’s milk.
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The relative strength and range of these interactions determine a suspension’s sta-
bility and structure. For example, if attractive dispersion forces between colloidal
particles are not balanced by repulsive electrostatic or steric interactions, the par-
ticles will coagulate and fall out of the suspension. The early history of modern
colloid science focused on understanding and controlling this balance of forces to
stabilize colloidal suspensions.

More recently, the focus of colloid science has shifted from stability to structure.
Depending on the exact nature of the balance of forces in a colloidal suspension,
colloidal particles can be arranged in a variety of structural phases including both
common gaseous, liquid, and crystalline phases as well as more exotic phases with no
atomic counterparts. For example, if repulsive forces exceed the thermal energy scale
in dense suspensions of identical particles, the particles can form ordered structures
called colloidal crystals, Fig. 1.3. Soon after light microscopy first revealed their
organized structure [1], colloidal crystals came to be studied as a model system for
understanding the equilibrium structure and non-equilibrium melting and freezing
of conventional atomic crystals.

The study of colloidal crystals has received a further boost in recent years be-
cause of their fabulous optical properties [2-5]. Since the lattice constants of col-
loidal crystals are comparable to the wavelength of light, colloidal crystals scatter
visible light of different wavelengths in different directions, just as atomic crystals
Bragg scatter x-rays of different energies into different angles. Consequently, col-
loidal crystals, made up of millions of transparent spheres, can shimmer brightly
with a wide spectrum of colors. This is the same effect that gives an opal its char-
acteristic colored glow, for an opal is a dessicated crystal of colloidal silica spheres

[6]. Yet colloidal crystals can interact with light in more subtle and powerful ways.



Figure 1.3: Colloidal crystal. 352 nm diameter charged polystyrene spheres.

Colloidal crystals made up of special types of particles are predicted to have a full
photonic band gap [7-9]. In analogy to the electronic band gaps in semiconductors,
a photon whose energy lies within a photonic band gap cannot propagate through
the crystal. Photons within the band gap are strongly affected by defects in per-
fect photonic crystals, which can form resonant cavities, waveguides and switches.
Someday, these pieces may be wired together to create logical elements, with the
ultimate goal of creating fast and efficient photonic computers.

Recently, colloidal systems have been studied as models for explaining the phys-
ical processes underlying biological systems. Large bio-molecules, and complex
cellular components experience the same forces as simple colloidal particles [10-13].
As we advance our understanding of the fundamental interactions and dynamics of
colloidal systems, we will gain new insight into the mechanics of the fundamental

building blocks of biological systems.
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The forces that drive the motions of colloidal particles lie at the heart of all
colloidal phenomena. These forces arise from interactions with the suspending fluid
and interactions between the particles. The interactions between particles are me-
diated by the fluid and can be surprisingly complex in even the simplest of systems.
This thesis describes measurements of hydrodynamic interactions in colloidal sys-
tems whose well defined and tightly controlled geometries enable us to directly test

a versatile new theory of the hydrodynamic coupling between colloidal particles.

1.2 Brownian Motion

Colloidal particles never rest. They jiggle and jerk along the fractal trajectories
first observed by Brown in 1827 [14]. At the turn of the 20th century, Einstein
[15], Langevin [16], and Perrin [17,18] placed the observed motion of Brownian
particles in the context of macroscopic diffusion, equilibrium thermodynamics, and
the molecular nature of matter. Simply stated, they found that the solvent shares its
thermal energy with colloidal particles through constant intermolecular collisions.
The incessant Brownian motion of colloidal particles drives the suspension towards
a macroscopically uniform dispersed state, with any inhomogeneities eventually
diffusing away. Diffusion therefore describes the evolution of a colloidal suspension’s

macroscopic structure.

1.2.1 Fick’s Laws

We now know that diffusion is driven by the Brownian motion of individual col-
loidal particles. However, Fick developed the first quantitative theory of diffusion in

1855, without any knowledge of the underlying Brownian motion [19]. Fick’s result
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follows from two simple principles. First, colloidal particles tend to diffuse down
concentration gradients. According to Fick’s first law of diffusion, the diffusive flux

of colloidal particles is proportional to the gradient of their concentration
JP(7) = =D Vn(7), (1.1)

where D is the diffusion coefficient of the colloidal particles and n(7) is the concen-
tration of colloid at 7. Second, the total number of colloidal particles is conserved.

Therefore, the concentration of spheres must satisfy

on [

5= V-, (1.2)

If the particles’ dynamics are solely diffusive then J = JP and we can combine

these two equations to arrive at Fick’s second law,

5 = D V. (1.3)

Therefore, if a collection of N colloidal spheres starts off at 7, at t = 0, then the

concentration evolves according to

n(r,t) =

N —|F—F0|2] (1.4)

(47 Dt)d/2 exp| =

in d dimensions. The cloud of particles expands such that its mean-squared width

increases linearly with time,

(r(t)?) = 2dD1. (1.5)



1.2.2 Stokes-FEinstein Relation

In 1905, Einstein related the diffusion coefficient of a colloidal suspension to its
temperature, the size of its constituent particles, and the viscosity of its solvent. He
considered a colloidal suspension in an applied potential, ®(7). In equilibrium, the
net particle flux must vanish, J(7) = 0. Therefore, the diffusive flux J2 (7) must be
balanced by an interaction-driven flux, J7 (), resulting from gradients in ®(7).

To calculate the flux due to interactions with the external field, Einstein assumed
that the particles’ motions are overdamped. Overdamped particles move only when
driven. Specifically, the velocity of an overdamped particle, @(7), is proportional to

—

the applied force, f(7),

—

() = b f(7), (1.6)

where b is the particle’s hydrodynamic mobility. The force on a particle at 7" is given

by the gradient of the externally applied potential,

F(7) = —Va(7). (1.7)

In equilibrium, the potential is related to the concentration of particles through the

Boltzmann distribution,

n(7) = ng exp [— fg] . (1.8)

Thus, f(7) = kgT Vlog[n(7)]. Since, J(7) = n(7) v(7), we can combine the above



to give
JL(7) = kgT b Vn(7). (1.9)

Applying the condition for equilibrium, JP 4+ JT = 0, to Egs. 1.1 and 1.9, we
find that

D = kgTh. (1.10)

Therefore, if the colloidal particle is a sphere of radius, a, and is immersed in a
fluid of viscosity, 7, then we can apply Stokes’ law for the hydrodynamic mobility,
b = (6mna)~", to obtain the Stokes-Einstein relation,

kT

D = :
6mna

(1.11)

Equations 1.5 and 1.11 provide a means to determine Boltzmann’s constant, and
thus Avogadro’s number, by measuring the Brownian motion of colloidal particles
of known radius in a fluid of known viscosity and temperature. This experiment

won Perrin the Nobel prize in 1926.

1.2.8 Langevin Theory

Langevin developed an alternative formalism for describing the Brownian motion of

a single particle based on Newton’s second law and a simple model of a Brownian



particle’s collisions with solvent molecules. The Langevin equation,
mo(t) = —yvu(t) + v(t), (1.12)

says that the total force on a Brownian particle is the sum its hydrodynamic drag
and a random force due to collisions with solvent molecules. The hydrodynamic
drag coefficient, «y, is the inverse of the mobility. For a sphere, v = 1/b = 67na.
The random force, v(t), vanishes on average, (v(t)) = 0 , and is assumed to be

uncorrelated over all accessible length and time scales,
(w(t)r(0)) =T6(t), (1.13)

where I' characterizes the strength of the random force. The Langevin equation,

Eq. 1.12, can be solved for the particle’s velocity,

t /!
v(t) = v(te)e” 1)/ 4 % e~ =Ty "ay (1.14)
to

where the viscous relaxation time, 7 = m/7, ranges from 10~13 t0 1076 sec for typ-
ical aqueous colloids. This formal solution for v(t) can be combined with the statis-
tical properties of the random thermal force, v(t), to calculate the auto-correlation

of the particle’s velocity,
t
(v(t)v(0)) = 5—e™T, (1.15)

where ¢ > 0. Therefore, sampling the particle’s motions at intervals greater

than 7 yields completely uncorrelated velocities, and the particles effectively have
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no inertial mass. At short times, the equipartition theorem must hold, so that
%m(v(O)v(O)) = %kBT. Combining this with Eq. 1.15 yields Einstein’s relation be-

tween the microscopic random driving force and the macroscopic drag,
'=2~vkpgT. (1.16)

This result was the original expression of the fluctuation-dissipation theorem. Fi-
nally, the expression for the particle’s velocity, v(t), can be integrated and averaged

to give the Brownian particle’s mean-squared displacement,
([2(t) — z(to)]?) = 2D(t — 1), (1.17)

where D = kgT/6mna. Fick’s law yielded the same result, Eq. 1.5, but now it
is apparent that Brownian motion is driven by microscopic collisions with individ-
ual solvent molecules and moderated by hydrodynamic coupling to the solvent’s
macroscopic flow-field.

The Langevin equation also can describe the motion of a Brownian particle in

a harmonic well [20],
mi(t) = —yi(t) — kx + v(t), (1.18)
where k is the well’s curvature. In the overdamped limit, mz — 0, so

vi = —kx + v(t), (1.19)
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which is formally equivalent to Eq. 1.12. Thus, the particle’s trajectory is given by

_k( 1 [t _kp_y

o(t) = z(to)e 77t 4 = / e 7 Oy(n)ar, (1.20)
Y Jto

and the autocorrelation of the particle’s position evolves according to

((1)2(0)) = k]ZTe_%t, (1.21)

where ¢t > 0. A trajectory’s correlations decay exponentially with a timescale,
7! = 7/k, set by viscous drag and the shape of the confining potential. This result
will be useful in the Appendix, where we study the motions of colloidal particles

trapped in optical tweezers.

1.3 Colloidal Interactions

While the interactions with the solvent drive the Brownian motion of colloidal par-
ticles, interactions between colloidal particles affect the stability and phase behavior
of colloidal suspensions. Dispersion, electrostatic, entropic and hydrodynamic forces
play important roles in the properties of colloidal suspensions.

Derjaguin, Landau, Verwey and Overbeek developed the standard theory of
electrostatic and dispersion interactions in colloidal suspensions [21] to explain the
stability of charge-stabilized colloidal suspensions. Colloidal particles suspended in
a fluid of lower dielectric constant are attracted to each other by strong van der
Waals or dispersion forces, created by thermally driven fluctuations of their dipole

moments. For two spheres of radius a, whose surfaces are separated by a distance
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h, these fluctuation-induced attractions have the form

Vir) A 2 2 z? -4
kgT ~ 6 (x2—4+x_2+ln[ z2 }>’ (1.22)

where * = h/a, and A is the Hamacker constant which depends on the mate-

rial properties of the spheres and the intervening solvent [10]. For latex particles
suspended in water, the Hamacker constant is comparable to kgT'. Dispersion at-
tractions are negligible when the spheres are separated by more than about 100 nm,
but they become enormous when the spheres are in contact. Two spheres that ap-
proach each other within the range of dispersion attractions stick to one another
irreversibly. In order to create a stable colloidal suspension, repulsive interactions
must overcome these strong attractive interactions between colloidal particles. Col-
loidal suspensions are typically stabilized by introducing steric or electrostatic in-
teractions between the particles.

The electrostatic repulsion between like-charged colloidal particles is screened
by the solvent’s ions, and is naturally described in terms of the Poisson-Boltzmann
theory of the distribution of mobile ions [21]. A linearized mean field description

yields

U(T) *2 et 2 AB _gr
=7 — 1.2
kgT 1+ ka r & (1.23)

for the screened Coulomb repulsion between a pair of identical spheres, where Z*
is the spheres’ effective charge, s 1 is the inverse screening length, a is the spheres’
radius, Ap is the Bjerrum length, and r is the center-to-center distance separating

the spheres. The Bjerrum length is the separation where two electrons repel one
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another with 1 kgT,

e2

Ap=———.
B Amepe kgT

(1.24)

The screening length, 14;_1, depends on the concentration, n;, and valence, z;, of

each ionic species,

2

K= —C Z n; 222 (1.25)
)

eockpT

This picture is only valid when the coupling between the spheres and the mobile
ions is much weaker than kg7'. Outside of this regime, non-linear coupling and ion-
ion correlations can overscreen [22] or possibly even reverse the sign of electrostatic
interactions [13,23-25].

Entropically-driven forces can also play important roles in polydisperse suspen-
sions and mixtures of colloid and polymers. Entropic or depletion forces have been
the focus of much recent work [26-31].

Finally, hydrodynamic interactions can couple the motions of all colloidal par-
ticles. As particles move through a fluid, they create long-ranged hydrodynamic
flows, which apply forces to other particles in the fluid. The nature of hydrody-
namic coupling in colloidal suspensions is considered in detail in Chapter 3. In
addition to presenting the form of interactions in simple two-body systems, we
consider many-body hydrodynamic interactions in dilute suspensions of confined
colloid. We measure Brownian motion in a variety of few-body colloidal systems
using blinking optical tweezers, and interpret our data in light of the predictions

of Stokeslet analysis. While Stokeslet analysis can be extended to describe weak
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hydrodynamic coupling between arbitrary numbers of particles, conventional opti-
cal tweezer techniques cannot manipulate more than a few particles. In Chapter
4, we present a simple, robust and inexpensive technique to create multiple op-
tical traps from a single laser beam using computer generated holograms. These
holographic optical tweezer arrays can trap thousands of particles in arbitrary con-
figurations. In addition to enabling direct measurements of many-body interactions,
holographic optical tweezer arrays can be applied to study structural phase tran-
sitions in colloidal systems, to assemble microscopically textured materials and to

sort and manipulate biological materials.



CHAPTER 2
MICROSCOPIC OBSERVATION AND MANIPULATION
OF COLLOIDAL SUSPENSIONS

This chapter describes the experimental techniques employed in this thesis for study-
ing the dynamics of colloidal suspensions. Digital video microscopy records the
trajectories of individual colloidal particles. These trajectories can be analyzed to
understand both the dynamics of individual particles and the collective behavior
of many particles. Optical tweezers can manipulate individual colloidal particles,
and have enabled precise measurements of the interactions and dynamics of small
numbers of particles. Techniques developed in the course of this research will soon
enhance the utility of optical tweezers to address collective phenomena in colloidal

suspensions and enable the micro-assembly of new materials [32].

2.1 Digital Video Microscopy

Digital video microscopy (DVM) combines conventional optical microscopy, digital
imaging and computerized image processing to observe, record and calculate the
trajectories of colloidal particles. First, the particles are imaged with bright field
microscopy, Fig. 2.1. An inverted optical microscope (Olympus IMT-2) equipped
with an oil-immersion objective lens (Olympus S-Plan Apochromat, NA = 1.4,

f = 1.62mm, 100x) projects images of the suspension onto a CCD camera (NEC

15
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TI-324A), which encodes the images in a standard video signal. The images are
displayed on a television monitor and recorded by a VCR (JVC BR-S822DXU).

Once images have been recorded on video tape, they are digitized, stored, and
processed by a personal computer. A frame grabber (MuTech MV1000/1350) dig-
itizes the video images and the computer records them to disk in real-time. One
standard video image, or frame, is generated every 1/30sec. Each frame is the
superposition of two interlaced partial images, or fields, which are exposed once
every 1/60 sec, Fig. 2.2. Image processing algorithms [33], implemented in IDL
(Interactive Data Language, Research Systems Inc.), filter the images, identify par-
ticles, and track their movements. Particle locations can be sampled 60 times per
second with a resolution, dx, of about 20nm. The resulting particle trajectories
can be analyzed to extract information regarding the colloidal suspension’s physical
properties.

Digital video microscopy is a powerful technique, yet subject to several limita-
tions. For example, wave optics and Brownian motion place lower limits on the size
of colloidal particles that can be tracked with DVM. Only particles whose size is
comparable to or larger than the wavelength of light can form resolvable images,
that is, a 2 A\/2. Brownian motion also blurs the image of a colloidal particle when it
diffuses a distance greater than the spatial resolution of our imaging system, dx, dur-
ing the exposure time, 7¢zp, of the CCD. Therefore we require (Ax2(rexp)> < 0z2,

or

kBT Texp

a > (2.1)

3mn da2

On the other hand, if the particles are too big, the Brownian motions, which disperse
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Figure 2.1: Digital video microscopy. Light from a halogen lamp, HL, is focused by
a condenser lens, CL, onto the colloidal sample cell, SC. A microscope objective,
MO, and additional transfer optics project an image of the colloid onto the surface
of a CCD camera, CCD. The CCD’s video signal is displayed on a television mon-
itor, TV, and recorded by a VCR, VCR. A personal computer, PC, stores and
processes the images.
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Figure 2.2: Image processing. (a): The original interlaced image. (b): A single
field, rescaled to the original image size. (¢): The band-pass filtered image. (d):
The particle location, the brightness centroid of the band-pass filtered image. Axes
are calibrated in microns.
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them throughout the suspension, will be overwhelmed by inertial effects. If the
particles are dispersed in water at room temperature, these considerations lead to
an optimal range of particle diameters from about 0.5 to 3 ym. Further limitations
of DVM and some alternative particle tracking techniques are presented in the

Appendix.

2.2 The Optical Tweezer

In 1986, Arthur Ashkin and coworkers showed that a tightly focused laser beam can
trap microscopic dielectric particles at the bottom of a three-dimensional potential
well, several kgT deep and less than a cubic-wavelength in volume [34]. Their inven-
tion, the optical tweezer, is revolutionizing the way scientists study the microscopic
structure and dynamics of aqueous systems. Scientists have used the optical tweezer
to measure tiny forces in physical [23, 31, 35-39] and biological [40-45] systems, and

to sort and assemble microscopic particles [32,46-48].

2.2.1 Rayleigh Theory of Optical Tweezers

Even though existing theories cannot describe the tweezer effect over a wide range of
particle sizes and compositions, they can provide practical insight into the physics of
optical tweezers. Simple descriptions of the optical trapping effect can be formulated
for dielectric spheres in the ray optics [49] and Rayleigh limits [50].

We present the results of Harada’s Rayleigh theory of optical tweezers [50].
Harada derives the optical forces on a dielectric sphere whose radius, a, is much

smaller than the wavelength of trapping light, a << A. The sphere is modeled as a
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point dipole of strength, p'= ozE, where E is the electric field of the laser light,

a = 4reg < L ) a3 (2.2)

€+ 2¢

is the sphere’s polarizability, € is the sphere’s dielectric constant at optical frequen-
cies, and ¢q is the dielectric constant of the medium surrounding the sphere. This
is the quasi-static limit, where we assume that the electronic configuration of the
particle can follow the oscillations of the electric field in phase. This assumption
is valid whenever the frequency of the laser is tuned below the sphere’s electronic
resonances. In this limit, laser light exerts two forces on dielectric particles: the
scattering force, F;, and the gradient force, ﬁv.

The scattering force drives the particle along the direction of propagation of
the illuminating radiation. A sub-wavelength dielectric sphere scatters light with
a dipole radiation pattern. While the illuminating radiation has a well-defined
momentum density, described by the Poynting vector, 5’, the scattered light has
no net momentum. Therefore, conservation of momentum requires that the sphere
feels a force, F;, along the original direction of propagation of the laser light:

<8 o ava(e—a s
Fs = gﬂ(ka) a ?<m> S. (2.3)

The gradient force drives the particle along the gradient of the laser’s intensity.
An electric dipole, p, experiences a force, ﬁv = (p- ﬁ)ﬁ, in a spatially varying
electric field, E. Since the sphere’s dipole moment is proportional to the electric
field, ﬁv = a(E . ﬁ)ﬁ . Assuming V x E =0 and applying some vector identities,

we find that ﬁv o< ﬁ(ﬁ . E) For an electromagnetic plane wave, ﬁv o ﬁ|§\
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Taking geometrical factors into account, Harada shows that

Fy = 2ﬂa3@(%>ﬁ|§|. (2.4)
The gradient force is proportional to the dielectric constant mismatch between the
particle and the medium in which it is suspended. If the particle’s dielectric constant
is greater than the suspending medium’s, it will be driven toward bright regions.

If the laser is focused to a tight spot, as in Fig. 2.3, then the gradient force will
draw the particle toward the focus, while the scattering force will drive the particle
along the direction of the laser’s propagation. These forces will balance, and the
particle will be trapped at a point just beyond the focus of the beam.

Many applications require precise knowledge of the forces felt by a particle in
an optical tweezer. In principle, a trap’s potential energy profile can be calculated
from the optical properties of the trap and the particle. In practice, trapping forces
are extremely sensitive to the geometry and composition of the trapped particle
and the optical properties of the trap.. Several techniques for measuring the force

profile of an optical tweezer are presented in the Appendix.

2.2.2 Practical Considerations

A simple optical tweezer can be built from a laser and a high numerical-aperture
microscope objective lens, (NA 2 1.2). Dielectric particles with a wide range of
sizes and compositions can be trapped with about a milliwatt of laser light. Ashkin
demonstrated the tweezer effect over a wide range of sphere sizes, from 25nm to
tens of micrometers [51]. One must be careful to avoid any electronic or geometrical

resonances [52] of the particle, which can introduce a phase lag between the incident
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Figure 2.3: The optical tweezer. The gradient force, ﬁv, drives particles towards
the focal point of a converging laser beam. The scattering force, F’:g, drives particles
along the direction of the laser’s propagation. The particle is trapped just beyond
the laser’s focal plane, FP.
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electric field and the particle’s induced dipole moment, reducing the strength of the
gradient force or even reversing its direction. In general, particles that absorb any of
the laser’s light will be quickly destroyed in the focal point of a conventional optical
tweezer, where the laser light is incredibly intense, about 1 mW/ qu =109 w/ m2.
Svoboda has shown, nonetheless, that conventional optical tweezers can trap 35nm
gold Rayleigh particles [53].

While conventional optical tweezers can typically trap only non-absorbing di-
electric particles whose dielectric constant is greater than that of the surrounding
medium, variats of the optical tweezer can trap a wider range of particles. Sasaki
has trapped 3 wm iron particles inside an optical cage made by rapidly scanning
a simple tweezer in a circle [54]. Rubinsztein-Dunlop has shown that micron-sized
absorbing particles can be trapped in dark optical traps created from optical vortex
modes [55]. The same group has recently demonstrated that micron-sized birefrin-
gent particles trapped with circularly polarized light experience large torques which
rotate the particles at rates over 350 Hz [56].

While a simple optical tweezer requires only a laser and an objective lens, a
few more optical elements are typically added to the optical train for imaging and
steering. One can simultaneously trap and image colloidal particles by adding a
dichroic mirror, which reflects the laser light and transmits the rest of the optical
spectrum to a CCD camera, as shown in Fig. 2.4. One can steer the tweezer
through the objective’s field of view by adding a simple two-lens telescope and a
beam-steering device, such as a gimbal mounted mirror, Fig. 2.4. The telescope
should image the output plane of the beam steering device onto the back aperture

of the microscope objective lens.
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Figure 2.4: Blinking optical tweezer apparatus. A Coherent Verdi diode-pumped
solid-state laser, LSR, emits 10 to 5000 mW of green light, A =532nm. A
galvanometer-driven mirror, GDM deflects the beam. A 3 : 2 Keplerian tele-
scope, T, made of two plano-convex lenses, f = 300, 200 mm, projects an image of
the surface of the GDM onto the back aperture of the microscope objective lens,
MO. The objective lens focuses the laser into an optical tweezer. A dichroic mir-
ror, DM, reflecting A = 532 nm, allows for simultaneous trapping and imaging by a
CCD camera, CCD. The tweezer is extinguished by steering the laser beam onto a
beam block, BB. The steering mirror, GDM, is controlled by a galvanometer driver,
GD, Cambridge Technology, 603X Dual-Axis Mirror Positioning System. The gal-
vanometer driver positions the mirror in proportion to a voltage signal provided by
a function generator, FG. The function generator can be triggered by a sync pulse,
emitted by the CCD camera and processed by a divide by N counter, 1/N .
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There are several schemes for creating multiple optical tweezers. Most simply,
N tweezers can be made by separately focusing /N laser beams with one microscope
objective lens. If these N beams are created from a single laser with multiple beam
splitters [35,57], this technique becomes prohibitively cumbersome and expensive
when N is much larger than two. Alternatively, the interference pattern of N
beams can trap many more than N particles [58-60]. Indeed, the interference
patterns of several laser beams can create hundreds of bright spots whose lateral
intensity gradients attract particles. However, the axial intensity gradients near
these bright spots are too weak to overcome radiation pressure and particles can
only be trapped against a wall. The overall layout of traps is limited to highly
symmetric arrangements, and the optical train is extremely difficult to align.

Time-sharing has become the standard method for generating several traps from
a single laser. A rapidly moving optical tweezer can create a time-averaged intensity
pattern capable of trapping many spheres. If the tweezer oscillates rapidly between
a number of positions where it pauses briefly, the time-averaged intensity pattern is
dominated by several bright spots each of which functions as a conventional optical
tweezer. It is essential that the tweezer’s velocity between traps, v, is much greater
than the maximum velocity that the particle can follow. A sphere’s maximum veloc-
ity in a tweezer is determined by the balance of optical and hydrodynamic forces.
Therefore, the tweezer’s velocity between traps must satisfy v > Fpee/(67n0),
where Fyqz is the maximum force exerted by the tweezer. The tweezer’s velocity
also limits the total number of traps, since the period of the tweezer’s trajectory
must be less than the time it takes the sphere to diffuse from a trap. If the tweezer is
steered by galvanometer-driven mirrors, then time sharing techniques cannot make

more than ten traps. Using accousto-optic deflectors to steer the trapping beam
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[61], one can create up to one hundred independent traps. We use time sharing tech-
niques to create two blinking optical tweezers for measuring interactions between
colloidal particles, Fig. 2.4.

Alternatively, if the tweezer moves without resting along its path, the time-
averaged intensity profile will be smooth, and can trap particles all along the
tweezer’s trajectory. Crocker [31] has trapped a few particles on a scanned line,
and Sasaki [46,47] has trapped dozens of particles in more complicated patterns.
Continuous patterns have weak intensity gradients and typically form very weak
traps. To mitigate these weaker trapping forces, particles must be trapped near
walls [31] or in highly viscous fluids [46, 47].

In Chapter 4, we present methods for trapping thousands of particles in arbitrary

configurations using holographic techniques.

2.3 Blinking Optical Tweezers

DVM and optical tweezers can be combined into sensitive and efficient probes of
the dynamics of colloidal systems, offering substantial improvements over passive
observations. For example, pairwise interaction potentials can be extracted from
passive observations of the equilibrium structure of dilute suspensions [62-64]. Lig-
uid structure theory [65] provides the framework to analyze this data by relating the
interaction potential to the two-point correlation function of the particle density. In
principle, this technique can return precise results for weakly interacting particles.
In practice, these experiments require enormous amounts of data and can only be
executed in confined geometries where the particles are restricted to move within

the nearly two dimensional focal volume of a microscope objective. Alternatively,
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Crocker and Grier have used blinking optical tweezers to measure pairwise inter-
actions [23,35,36]. Their non-equilibrium technique requires much less data, can
measure interactions at small separations where interactions are very strong, and
does not require geometrical confinement.

Generally, blinking optical tweezers can precisely measure the dynamics of a
colloidal system near a particular configuration [33]. First, optical tweezers trap
and arrange the particles, Fig. 2.5. Then the tweezers are extinguished and the
particle trajectories are recorded while the particles freely diffuse and interact. As
time passes, the particles tend to diffuse away from their initial configuration. Before
they travel too far, the tweezers turn back on and return the particles to their initial
positions. Repeating this process many times makes it possible to characterize
the statistical fluctuations of the system from near initial configuration. Crocker
analyzed this information to extract the electrostatic and hydrodynamic interactions
between pairs of colloidal spheres [23,36]. In Chapter 3, we use blinking optical
tweezers to study the hydrodynamic interactions of colloidal particles in confined
geometries.

We have built a second-generation blinking optical tweezers system to rapidly
measure the interactions between particles under computer control with minimal
geometrical projection errors. The tweezers are turned on and off by steering the
beam from the microscope objective lens to a beam block with a galvanometer-
driven mirror, Fig. 2.4. A timing circuit synchronizes the blinking of the tweezer
with the exposure of the video frames, Fig. 2.6. Multiple optical tweezers are created
using the time-sharing technique. Small displacements of the galvanometer-driven
mirror translate the optical tweezer in the focal plane of the objective lens. The

galvanometer-driven mirror positions the tweezer in proportion to a control volt-
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Figure 2.5: Blinking optical tweezer measurement. An optical tweezer traps a par-
ticle. The tweezer releases the particle and the dynamics of the free particle are
recorded. Before the particle can diffuse too far, the trap returns the particle to is
initial position, and the process is repeated. Each box represents successive video
fields.
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age applied by a function generator. A personal computer calculates the trajectory
needed to produce a particular arrangement of traps and transfers this information
to the function generator. In our experiments, tweezers trap particles for somewhat
less than 1/60 sec, during the exposure time of one video field. The tweezers are
then extinguished for five fields, 5/60 sec. Our digital video capture system, Fig. 2.1,
records all of these images, with and without the tweezer. Image processing algo-
rithms implemented in IDL, identify and reject all the images where the tweezer
is on, while locating and tracking freely diffusing particles when the tweezer is off.
Between tweezer bursts, the particle trajectories are sampled 5 times, at 1/60 sec

intervals. These trajectories are analyzed to reveal the underlying physics.

2.3.1 Brownian Motion of a Single Colloidal Particle

As a simple example of blinking optical tweezer techniques, we measure the diffusion
coefficient of a single Brownian sphere. In this experiment, one micron diameter
silica spheres, ((a = (0.495 + 0.025)um, Duke Scientific, Cat. No. 8100) are sus-
pended in water at 7' = (29.00+0.01)°C, while a blinking optical tweezer repeatedly
traps and releases a single sphere. DVM images and tracks the sphere for 400 sec,
yielding about 4000 trajectories, each with five time steps. These trajectories are
analyzed to calculate P(Az,7), the probability that the particle will move a dis-
tance Az along one dimension in a time 7. Our ensemble of five-point trajectories
provides samples of Az for 4 time intervals, 7 = 1/60, 2/60, 3/60, and 4/60 sec.
Since these time intervals are all much longer than the system’s viscous relaxation
time, which is about 0.1 usec, each displacement is independent. Therefore, each

five-point trajectory provides 4, 3, 2, and 1 independent samples of particle dis-
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Figure 2.6: Synchronization of tweezer and camera. (a) The CCD camera exposes
a field every 1/60 sec. (b) The CCD camera outputs a sync signal, where leading
edges encode the exposure of an even field. (¢) A divide-by-N counter outputs a
leading edge every N frames, here N=3. (d) The leading edge of the divide-by-
N signal triggers a function generator to output a burst that is amplified by the
galvanometer driver, and steers the tweezer from its beam block. (e) Two tweezers
can be made by alternating the tweezer between two “on” positions.



31

1200
1000

Frequency
(@))
o
o
T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T ‘ T T T

06 -04 -02 00 02 04 06
Ax [um]

Figure 2.7: Distribution of one dimensional displacements, Ax. T = 1/60 sec. Fit
to Eq. 1.4.

placements for 7 = 1/60, 2/60, 3/60, and 4/60 sec, respectively. Fig. 2.7 shows
P(Azx,1/60 sec), the probability distribution of one dimensional displacements for
T = 1/60 sec. As predicted by Eq. 1.4, the distribution is well fit by a Gaussian of
width 02 = (Az(7)2) = (0.0179£0.0002) zm?2. This calculation is repeated for each
time-step to generate the mean-squared displacement as a function of time, plotted
in Fig. 2.8. As predicted by Eq. 1.17, the displacements are well fit by a straight
line through the origin, (Az(7)?) = 2D7. The slope of this line gives a diffusion
coefficient D = (0.5440.01) um?/sec, which agrees with the Stokes-Einstein predic-
tion, Eq. 1.11, D = kgT/(6mna) = (0.55 4 0.03) pm?/sec. In the next chapter, this
sort of blinking optical tweezer measurement is applied to study the hydrodynamic

coupling of Brownian spheres.
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Figure 2.8: One-dimensional mean-squared displacement versus time.
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CHAPTER 3
WEAK HYDRODYNAMIC COUPLING OF
MANY-PARTICLE COLLOIDAL SYSTEMS

Brownian motion dominates the dynamics of individual colloidal particles. These
random motions are driven by microscopic collisions with individual solvent mol-
ecules and are moderated by hydrodynamic coupling to the solvent’s macroscopic
flow-field. Einstein quantified this relationship, showing that the diffusion coeffi-
cient of an isolated colloidal sphere is proportional to both the available thermal
energy and the particle’s hydrodynamic mobility, D = kgT'b. For a single sphere
in an unbounded fluid, the mobility has the simple Stokes form and the correspond-
ing diffusion coefficient is D = kgT/(6mna). Interactions with other particles and
bounding surfaces modify the sphere’s flow-field, affecting its mobility and diffu-
sivity. Because these flows are prohibitively difficult to calculate, even for quite
simple systems of particles and bounding surfaces, many phenomena in hydrody-
namically coupled colloidal suspensions still defy even qualitative explanation. For
example, shear flows can drive both the melting or freezing of colloidal crystals
[66,67]. Hydrodynamic interactions in suspensions of sedimenting colloidal particles
can create highly correlated and seemingly divergent fluctuations in sedimentation
velocity [68-70]. Hydrodynamic coupling strongly modifies colloidal particles’ elec-
trophoretic mobility leading to a panoply of pattern-forming instabilities in dense

suspensions [24,71-74]. Recently, Squires [75] has suggested that some observed
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like-charged attractions between colloidal particles[25] may be hydrodynamic rather
than electrostatic in origin. As a step toward understanding some of these more
complex phenomena, we turn our attention to a few simple systems whose behavior
sheds new light on the more general problem of hydrodynamic coupling in colloidal
suspensions.

After describing the basic laws that govern colloidal hydrodynamics, we intro-
duce a general formalism for describing the weakly coupled Brownian motion of
many spheres. We then apply this formalism to explain trends observed in precise
measurements of colloidal hydrodynamic coupling near one wall and between two

walls.

3.1 Low Reynolds Number Hydrodynamics

Hydrodynamic interactions can couple the motions of otherwise non-interacting
colloidal particles. As particles move through a fluid, they create long-ranged hy-
drodynamic flows which can couple to the motions of other particles. In this section,
we present the mathematical formalism describing hydrodynamic flows, how moving
particles create these flows, and how these flows drive the motions of particles.
Hydrodynamic flows are described by their velocity and pressure fields, @ and p.
The Navier-Stokes equation relates the velocity and pressure fields of incompressible

Newtonian fluids:
allj — =\ o = 2—'
p(— + (4 - V)u) = —-Vp+1nV-q, (3.1)

where p and 7 are the fluid’s density and viscosity, respectively. An analog to

Newton’s second law, Eq. 3.1 describes how pressure and velocity gradients exert
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forces on fluid elements, changing their momenta. The relative strengths of these
forces are clarified by rewriting Eq. 3.1 in dimensionless form. Rescaling velocity,
length and time by characteristic values, U, L and L/U, Eq. 3.1 can be rewritten
as [21],

1
Re(% + (i’ - ﬁ’)'{[’) =V + nV'Q'IZ’, (3.2)

where the primes indicate rescaled variables, and the Reynolds number,

L
Re = %. (3.3)

compares the relative influence of inertial and viscous effects. When the Reynolds
number is much less than one, the inertial terms of the left-hand side of the Navier-

Stokes equation can be ignored and
Vp = V2. (3.4)
Combined with the mathematical statement of incompressibility,
V-i=0, (3.5)

and the no-slip boundary condition, Eq. 3.4 completely describes the flow fluids at
low Reynolds number. Egs. 3.4 and 3.5 are referred to as the Stokes equations [76].

Hydrodynamic flows in colloidal systems have very small Reynolds numbers and
are well described by the Stokes equations. This can be seen by applying Eq. 3.3 to

calculate the range of Reynolds numbers encountered in typical experiments. Taking
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the characteristic length scale of fluid flow to be the size of a colloidal particle, L
can vary from about 1nm to 1 um. Colloidal particles are typically suspended in
water at room temperature, with a density of about 103 k’g/m3 and a viscosity of
about 1073 Nsec/m?. Fluid velocities vary from about 1 — 100 um/s. Therefore,
the Reynolds numbers of colloidal systems vary from about 1079 to 104

Many techniques have been developed to solve the Stokes equations, but Green’s
function techniques are a convenient choice for colloidal systems [21,77]. One ob-
tains the Green’s function for a particular arrangement of fixed surfaces by concep-
tually applying a unit force in the 3 direction at the origin, and solving the Stokes

equations,
Vp = nV@ + §(7)B, (3.6)

for the resulting fluid velocity in a direction « at an arbitrary point of observation

7. The result for an unbounded fluid,

1 [ ral
635 =5 |2 + 2. (3.7)

is called a Stokeslet. Since the Stokes equations are linear, flow-fields created by
forces exerted by finite objects can be calculated by integrating the Green’s function,
Eq. 3.7, over the surface of the object [78]. Care must be taken to match the fluid’s
velocity with the object’s velocity at the object’s surface. However, boundary effects
can be ignored when the observer is far away from the object applying the force,

r > a. In this case, the flow-field is well described by the Stokeslet itself, Eq. 3.7.
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Conversely, the Green’s function technique can be applied to find the force on
an object in an existing flow. If a sphere of radius a is immersed in a viscous
fluid whose velocity field is @,(7) in the absence of the sphere, then the sphere will

experience a force,
F = 6mnal(6(2) - 9) + = V(@) (3.8)

where ¥ is the sphere’s velocity and & is the position of its center. This expression
is referred to as Faxen’s first law. In a uniform external velocity field, Faxen’s first

law reduces to the familiar Stokes result,

—

F = 6mna (i — 7). (3.9)

Eqgs. 3.7 and 3.8 together describe how hydrodynamic interactions can couple
the motions of otherwise non-interacting colloidal particles, with Eq. 3.7 describing
how a particle’s motions excite long-ranged flows and Eq. 3.8 describing how these
flows can influence the motions of other particles. In the next section, we apply
this theoretical framework to formulate a theory describing the coupled Brownian

motion of otherwise noninteracting spheres.

3.2 Theory of Coupled Brownian Motion

3.2.1 Generalizing Fick’s Laws

Consider a system of N colloidal spheres whose motions are coupled through hy-

drodynamic interactions. The probability of finding the spheres in a particular
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configuration, {7, ...,7n}, is given by a distribution function P(7,...,7y). Gra-
dients of P(77,...,7n) drive fluxes of particles, as described by a generalization of

Fick’s first law,
D —)
Jia(r) = _Dia,jﬂ OJﬂP, (310)

where D; is the component of the diffusivity tensor, D, which describes the

a.jp
ensemble-averaged flux of the ith particle in the « direction due to gradients of
the jth particle’s probability density in the [ direction. Off-diagonal terms in
D reflect correlated motions among the particles and vanish for noninteracting
particles. In writing Eq. 3.10, we have adopted the the summation convention for

repeated indices. The conservation of probability requires that fluxes of particles

must be matched by flows in the probability distribution,

oP
a = —0iaJia- (3.11)

If the particles only interact hydrodynamically, then J;, = Jﬂ, and we can combine

Egs. 3.10 and 3.11 to obtain a generalized version of Fick’s second law, Eq. 1.3,

oP
= = Oia Dia,jp 0jp P. (3.12)

If the particles are weakly interacting, the form of the diffusivity tensor does not

change much for small particle displacements, and on short timescales

oP

o= Djw,p Oia 9 P. (3.13)
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Since D;q jz is symmetric under the interchange of ¢ and jf, it can be diag-
onalized by a set of 3N normal coordinates, v,,, which are linear combinations of

the single particle coordinates, {71, ..., 7N},

Yy = Ayia Tia- (3.14)

In this coordinate system, the diffusion of each coordinate is independent and the
diffusion equation, Eq. 3.13, reduces to a 3N-dimensional analog of Fick’s second

law for free diffusion, Eq. 1.3,

oP o2p

Therefore, the system’s distribution function takes on the familiar Gaussian form,

Eq. 1.4,

(3.16)

3N 9
_ 1 —(Ay)
P(AYy, ..., Mgy, T) = y|=|1 Do eXP[ D, },

Just like the single particle coordinates in an uncoupled system, the mean-squared

displacements of the normal coordinates increase linearly with time,
(A (7))?) = 2Dy 7. (3.17)

Applying the coordinate transformation, Eq. 3.14, to the solution, Eq. 3.16,
gives the evolution of the probability distribution in single particle coordinates.

Ar; o AT
P(AT, ..., Afy,T) o« exp|—D7L.  — e =ib

it (3.18)
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where

p-1. Ayia Qv,jB
g D,

(3.19)

and Di_al,kak%jﬂ = 0jq,jg- By contributing to the off-diagonal elements of D,

coupling causes the displacements of diffusing particles to be correlated [79],
<A’I"ia(7')A7"jﬂ(T)> = 2D7/C¥7]ﬂ T. (320)

Eq 3.20 shows that individual particles diffuse regularly, but with modified diffusion
coefficients. Comparing Eqgs. 3.17 and 3.20, we can relate the diffusivities of the

normal modes to the single particle diffusivities,
D, = Avia v B Dia,jﬂ- (3.21)

3.2.2 Generalizing the Stokes-Einstein Relation

We have developed the kinematics of coupled Brownian motion, but we have not
yet related the diffusion tensor to the hydrodynamic properties of the system. For
simple diffusion, Einstein showed that the diffusion constant is the product of the
spheres’ mobilities, b, and the thermal energy, kgT. Batchelor [80] generalized
Einstein’s argument to relate the diffusion tensor, D, to the hydrodynamic mobility
tensor, b. In thermal equilibrium, the probability to find the spheres in a particular

configuration, {71, ...,7n}, is given by Boltzmann’s distribution,

—o(7, ..., FN)} ’ (3.22)

P(71,...,TN) = exp [ kT
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where ®(7,...,7y) is the potential energy of the configuration due to interactions
among the spheres. For the system to remain in equilibrium, the ensemble-average
probability flux of each particle, fi(F), must be zero at all locations, 7. Each
particle’s probability flux is the sum of its diffusive flux, J:;-D (7), and its flux due
to interactions with the other particles, J:-I (7). The diffusive flux, j;-D (7), is given
by Eq. 3.10. We now calculate the flux of the ¢th particle due to interactions with
other particles. At low Reynolds number, particles only move when forced. If
the particles in a suspension are not coupled, then the average velocity of the ith
particle is proportional to the force applied to it, v;o, = bf;q- In the presence of
hydrodynamic coupling, the ith sphere can also move in response to a force applied

to the jth particle,

Via = bia i fig; (3.23)

where b;, ;3 is the component of the mobility tensor, b, which describes the «
component of the sth particle’s velocity when a unit force is applied to the jth
particle in the 8 direction. Since the system is in thermal equilibrium, the force
on the jth particle, f;j3 = —0;3®(r1,...,7N), can be expressed in terms of the
probability distribution, P,

fip = kpT=15— (3.24)
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=

Since J (i) = P(7) v(7), we can combine the above results to obtain the interaction-

mediated flux,
JL(7) = kpT b j5 0;5P (3.25)

Combining Egs. 3.10 and 3.25 with the statement of equilibrium, j;-D (7) +J:-I (™) =0,

we find the generalized Stokes-Einstein relation
D =kgTh. (3.26)

In order to calculate the diffusivity tensor, we must first formulate the particles’

hydrodynamic interactions.

3.2.8 Stokeslet Analysis

In principle, the mobility tensor, b, can be calculated by solving the Stokes equa-
tions, Egs. 3.4 and 3.5. However, the Stokes equations can only be solved in closed
form for the simple case of a free sphere, Eq. 3.8. Asymptotic expressions are avail-
able for two spheres, for one sphere near a wall, and for a few highly symmetric
configurations of other few-body systems [76].

However, in the limit of weak coupling, Stokeslet analysis [70, 77]can describe the
hydrodynamic interactions between arbitrary numbers of free and confined particles.
Stokeslet analysis approximates the flow-field due to each sphere in a suspension as
that due to a point force. Faxen’s first law then enables us to calculate the response

of each sphere to the flow-field generated by all others.
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Consider two spherical colloidal particles, ¢ and j, separated by a distance much

greater than their radii. The mobility tensor, b;, jg, has two terms,

dia,jB

The first term is self mobility of the ith sphere, and the second term describes the
external contribution due to interactions with the jth particle. Since the spheres
are well-separated, a force applied by the jth sphere can be modeled as a point-like
force, as shown in Fig. 3.1. Therefore, the jth sphere’s flow at the location of the
1th particle is given by a Stokeslet, G’i 5(7’2 — 7). Faxen’s law, Eq. 3.8, describes
how the ith particle responds to this flow. Retaining only first-order terms in a/r,
one finds that the sth sphere moves with the local fluid velocity, v;, = Gg’ ﬂ(ﬂ- —7)-
Therefore, the external contribution to the ith sphere’s mobility due to interactions

with the jth particle is approximately
S — —
big jp = Gap(Ti — Tj)- (3.28)

The downside of this approximation is that the calculated flows do not satisfy no-
slip boundary conditions at the sphere’s surfaces. The upside is that contributions
to the mobility from different spheres add linearly. Thus we are able to calculate
the dynamical properties of arbitrary arrangements of well-separated particles. We
apply this formalism in the following sections to interpret measurements of hydro-

dynamic coupling in colloidal suspensions.



44

Fj U;
i

Figure 3.1: Stokeslet approzimation of hydrodynamic interactions. To calculate the
hydrodynamic interaction of two colloidal spheres, we model each sphere as a point
particle.

3.3 Coupled Brownian Motion of Two Spheres

Let us apply Stokeslet analysis to calculate the diffusivity tensor of two identical
weakly-coupled spheres, located at 77 and 7. The spheres are separated by a
displacement 7 = 75 — 7] which is much larger than their radii, a/r < 1. Thus

Egs. 3.7 and 3.28 imply that the components of the mobility tensor are,

Sinjs (1= 0;j) 0
bia 5 = St . | ”)[ o 2P (3.29)

6mna 8mn T 3

where 7 and j are either 1 or 2.
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Diagonalizing the mobility tensor yields four normal modes [80]: two collective

modes, Ap”#, and two relative modes, ARH,J_’

Apy = R-Aj= Az +21)/2, (3.30)
ARy =R-AR = Az — 71)/2, (3.31)
Apy = (1 - RR)AG= Ay2 + y1)/2, (3.32)
AR, = (1—RR)AR = A(ys —y1)/2, (3.33)

where § = (7 +7)/2, R = (7, — 7)/2, and the second equality in each equation
gives the form of each coordinate in the special case where the spheres are confined
to move in two dimensions, and the spheres are initially separated by 7 = rZ. We
can now apply the generalized Stokes-Einstein relation and Eq. 3.21 to calculate

the modes’ diffusivities:

R
D|'|0 = kBT(blx,lx + b2x,2x + blx,?x + b2$,1$)/47 (3_34)

R
D7 = kT (by,1y + bay 2y & b1y 29 + b2y.1y) /4, (3.35)

where sums apply to the collective modes and the differences apply to the relative

modes. Applying Eq. 3.29 to these expressions for the diffusivities yields:

3

pRy _ Do 3a a
Dy (r)y = 5 [1i2r+o<r3>], (3.36)

3

pR\ _ Do 3a a
DI (r) = 5 [1i4r+0<r3)]’ (3.37)

where the positive corrections apply to collective modes and the negative to relative

modes, and D, = kgT/(6mna). The collective diffusion coefficients, Dﬁ) and Di,
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are enhanced by hydrodynamic coupling because the flow-field due to the motion
of one sphere moves in the same direction as the other sphere. Conversely, relative
diffusion coefficients, Dﬁ% and Df, are suppressed because the flow-field due to the

motion of one sphere opposes the motion of the other sphere.

p,R

L to fifth order in a/r, including

Batchelor [80] calculated expressions for D

the finite size of the spheres and their distortions of each other’s fields:

o) = Bfegie (-7 () w0 ()] o
ARGy = %[1i%%i%(%)3+(9(j—2)], (3.39)

Crocker measured the dependence of these four diffusive modes on the separation
of the spheres using blinking optical tweezers [36], and found good agreement with
Batchelor’s result. If agreement between measured and calculated diffusivities rely
on retaining the highest order terms in Batchelor’s expansion, then we might be con-
cerned that Stokeslet analysis’ first-order result might fare poorly when compared
with measurements.

We measured the relative diffusion coefficients of two one micron diameter silica
spheres ( @ = (0.495+0.025) pum, Duke Scientific, Cat. No. 8100), using the second
generation blinking optical tweezers setup described in Chapter 2. The spheres were
suspended in a 2mM aqueous solution of NaCl at 7" = (29.00 £ 0.01)°C. The salt
was added to the solution to reduce the Debye screening length to 7 nm, minimizing
the electrostatic interactions between the spheres. The solution was sandwiched
between a microscope slide and a #1 coverslip which were stringently cleaned with
an acid-peroxide wash, and sealed with a UV-cured epoxy (Norland type 88). The

microscope slide and cover slip were separated by (140 £ 2) um. A pair of blinking
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optical tweezers repeatedly trapped the spheres in a plane 25 um from the nearest
glass surface, and continuously varied the separation of the spheres from 2 to 10 um.
The tweezers were periodically extinguished for 83 ms, and the trajectories of the
spheres were analyzed to extract the diffusivities of the four modes, as described
as Chapter 2. The measured diffusivities appear in Fig. 3.2 with the Stokeslet
predictions of Eqgs. 3.36 and 3.37 and Batchelor’s higher-order predictions, Egs. 3.38
and 3.39, all with no adjustable parameters. Not only do both the Stokeslet and
higher-order solutions capture all trends in the measurements, but they also agree
remarkably well with each other. Apparently Batchelor’s higher-order corrections
are not needed, even when the spheres approach one another within four radii. As
long as Batchelor’s higher-order corrections are irrelevant, the particles’ mobilities
may be added according to Eq. 3.27. This in turn suggests that Stokeslet analysis

can be scaled to dilute suspensions with arbitrary numbers of particles.

3.4 Brownian Motion of One Sphere near a Wall

In many cases of practical and fundamental interest, Brownian particles interact
not only with each other, but also with the walls of their container. The next
two sections develop the method of hydrodynamic images through which Stokeslet
analysis can be used to calculate the influence of bounding walls on colloidal spheres’
dynamics. A wall resists the flow-field accompanying the motion of nearby particles,
reducing their mobilities. Faxen calculated an asymptotic expansion for the mobility
of a sphere near a planar boundary in 1927 [76]. This expansion has been verified

experimentally for Brownian spheres by Pralle [81] and Lin [82].
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Figure 3.2: The coupled diffusion of two spheres. Clockwise from top left Dﬁ, Di,

Dﬁ%, Df. The solid lines show the Stokeslet prediction, and dotted lines show
Batchelor’s” higher-order result. Dashed lines show the asymptotic value of the
diffusion coefficient. Batchelor’s higher-order terms are irrelevant at these length
scales.
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Figure 3.3: Image system for one sphere near a planar wall.

The Green’s function for a point force a distance h above a solid surface must
be modified so that the fluid’s velocity vanishes on the surface. Lorentz calculated
this Green’s function in 1896 [83], but Blake later realized that this solution is more
easily obtained by the method of images [84]. Blake noted that the wall’s no-slip
boundary condition is satisfied by canceling the original Stokeslet’s flow at the wall
with that due to an image system comprised of a Stokeslet (S), a source doublet
(D), and a Stokeslet doublet (SD), all placed a distance h below the surface of the
wall [77,84], as shown in Fig. 3.3. The flow due to this image system is described

by the Green’s function



20

where B = 7 — 2h2 is the position of Stokeslet’s image, and

D i 1 0 T
GDy(m) = %(1_25“2)%(7?) (3.41)
0
Gag () = (1= 20z) 5-GE(7 (3.42)

are Green’s functions for a source dipole and a Stokeslet doublet, respectively. The
external contribution to the mobility of a sphere located at 7 = hZ is the wall’s

contribution to the Green’s function at 7, b 5= GO%(F — R):

e -3

€ = = — 3.43

bea = Uyy 32mnh (3.43)
-3

bt = —— 3.44

All other terms of the mobility tensor are zero.
Therefore, two diffusion coefficients describe this system: D” for displacements
within a plane parallel to the wall, and D for displacements perpendicular to the

wall,

Dy(h) = Do [1—1%%+0(Z—§>] (3.45)
D,(h) = D, [1—§%+0(Z—§>]. (3.46)

Faxen gave an asymptotic expression for D (h), satisfying the no-slip boundary

condition on the sphere and the wall to fifth order in (a/h) [76],

[ T RO 1010 R Y
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Figure 3.4: Suppression of mobility near a surface. The solid circles show the mea-
sured in-plane diffusion coefficient of a single sphere, where the radii of the circles
indicate the statistical error bars. The solid line plots the Stokeslet prediction,
Eq. 3.45. A dotted line plots Faxen’s higher-order result, but is almost perfectly
obscured by the Stokeslet prediction.

Using the same experimental apparatus described in Section 3.3, we measured
the in-plane diffusion coefficient of a single sphere near a glass wall. In these ex-
periments, the galvanometer-driven mirror generated only one blinking optical trap
whose height above the surface of the wall was varied in from 1.5 to 25 um by
translating the microscope objective along its optical axis. The measured values
of DH(h) are plotted in Fig. 3.4, along with the Stokeslet predictions and Faxen’s
series expansion. Once again, we see that higher-order corrections are not needed

to describe the hydrodynamic coupling of a sphere to a nearby wall at these length-

scales. In the following sections, we describe how this result can be extended to
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Figure 3.5: Two spheres near a wall and their images.

understand the diffusion of many spheres near one wall, and to the considerably

more complex problem of a single sphere between two parallel walls.

3.5 Coupled Brownian Motion of Two Spheres near a Wall

Consider the Brownian motion of two spheres near a planar surface, Fig. 3.5. When
the spheres are far from the wall, their coupled diffusion should be described ade-
quately by Eqgs. 3.36 and 3.37. Similarly, when the spheres are much closer to the
wall than to each other, the diffusivity of one sphere near a wall, Egs. 3.45 and 3.46,
should describe the behavior of each sphere. At intermediate separations, however,
neither set of formulae is accurate. Stokeslet analysis captures the behavior of the
system over the range of accessible configurations, while predictions based on the
linear superposition of drag forces fail [85].

Oseen [76] suggested that the total hydrodynamic drag on each of two spheres
near a wall may be approximated by the sum of the drags contributed by the other
particle and by the wall. In particular, the total drag on each diffusive mode, v, is

the sum of the free particle drags, the drag due to interactions between the spheres,
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and drag due to interactions with the wall,

Yo (1, h) = You + [0 (1) = You] + [0 (h) = Youl, (3.48)

where 7y, is the drag on the mode when the spheres are not interacting, 7,(r)
is the drag due to direct interactions between the spheres, and 7,(h) is the drag
due to coupling with the wall. Applying the Stokes-Einstein relation, the diffusion

coefficient of each mode, D, (r, h) is
-1 _ n—1 -1 -1
D, *(r,h) = D, (r)+ D, *(h) — D, . (3.49)

This result approaches the sphere-sphere, and the sphere-wall formulae as h — oo
and r — 00, respectively.

Alternatively, we calculate the diffusivity tensor using Stokeslet analysis. The

€

f0.j B is the o component of the fluid velocity

external contribution to the mobility, b
at the position of the ith sphere arising when a unit force is applied in the g direction

to the jth sphere. Therefore,
b5, 5= (1= 6;)G2 5(F; — 75) + GVo (7 — ;) (3.50)
10,708 1)/ ap\" J af\'t 71/

where each sphere interacts with its own image, the other sphere, and the image
of the other sphere. Even though this analysis is only valid to first order in a/r
it includes many-body terms ignored by the linear superposition of drag forces.
Diagonalizing the mobility tensor shows that the four modes identified in the pre-
vious section, AR||7 1 Ap“’ |, are no longer independent. The normal modes of

this systems are shown in Fig. 3.6. The independent modes of motion are rotated
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Figure 3.6: Cross-sectional view of the diffusive modes of two spheres near a wall.
Collective motion normal to the wall becomes increasingly coupled with relative
motion parallel to the wall as h approaches r. Collective normal modes at large r
cross over continuously to relative parallel modes as r decreases. The dashed line
at © = 0 indicates the symmetry plane. Graphic courtesy of Todd Squires.

with respect to the bounding wall by an amount that depends strongly on both

r and h. Even though the experimentally accessible in-plane modes are no longer

independent, we can still calculate their diffusivities using Eq. 3.21,

R
le = kpT(biy1z + 02222 £ b1g,20 £ b2g12) /4, (3.51)

R
Df’ = kBT(bly,ly + b2y,2y + bly,Zy + bgyjly)/ll, (3.52)

where the positive sign corresponds to collective motion, the negative sign to rel-

ative motion, and Z is the direction of the vector connecting the spheres’ centers.
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3 .3
Applying Eq. 3.50, we find that to O (%g, %g),

bRy _ Dol _9a 3af  1+3¢

D) = = _1 16h:|:4r<1 o) | (3.53)
pR, o _ Dol 9a 3af 1+€+3€

Dy~ h) = — |1 16h12T<1 o )| (3.54)

where & = 4h2/r2.

Using the blinking optical tweezer setup described in Section 3.3, we have mea-
sured the evolution of these four diffusion coefficients as a function of separation
and height above the wall. A pair of blinking optical tweezers repeatedly trapped
and released the spheres a height h above a glass wall, while varying their sepa-
ration, r, from 2 to 10 um. The height, h, above the wall was varied from 1.6 to
25 um by translating the microscope objective along its optical axis. Fig. 3.7 shows
the four diffusion constants as a function of separation at h = 1.55 um above a
wall. The linear superposition approximation of Eq. 3.58 fares poorly, while the
Stokeslet analysis gives quantitatively good predictions. The predictions based on
the linear superposition of drag forces become increasingly accurate for increasing
ball-ball and ball-wall separations. Stokeslet analysis, on the other hand, does just
as well for the entire range of separations considered. To demonstrate this, we plot
in Fig. 3.8 the x?2 deviation of the four diffusivities from their predicted values as a

function of height above the wall, where

N
() = 1 37 (D5 (13, h) — DI (s, 1) foi) (3.55)
1=1

The linear superposition of hydrodynamic drag fails over all distances where cou-
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Figure 3.7: Coupled diffusion two spheres mear a wall. Clockwise from top left
Dﬁ , Dﬁ, Dﬁz, Df. Solid lines are Stokeslet analysis predictions. Dotted lines are
predictions based on the linear superposition of drag forces, using Batchelor and
Faxen’s high-order expansions and Eq. 3.49.



57

O Linear Superposition of Drag
® Stokeslet Analysis

\ ‘ \
- e / & -
© b\Oo T
10, TN 8i ) Q@\ o i
b O\\@O ® | : ~ o QQ
X o o et . 050,
777777 ° - - = .\Qt ;771*7.,@‘);,
° o o0
1 " )
\ ‘ \
@&y o 9@
0 o~ |
Y 10 \\Q\\\ oo 87 2 O\OQ\\OO ]
° \\QQ QQ i O\\ [ ]
e el e e N
° ) [ .Q.O
4 ° PY O
1

hlpm] hlpm]

Figure 3.8: Comparing Stokeslet analysis and the linear superposition of hydrody-
namic drag. X2 deviation of the four diffusion coefficients as a function of height
above the wall. The open circles are for the linear superposition of drag, and the
filled circles are for Stokeslet analysis. The dashed lines are guides to the eye to
indicate trends in the data.
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Figure 3.9: A sphere between two walls.

pling with the wall is appreciable, while the Stokeslet approach fits the data rea-
sonably well over the full range of data. Therefore many-body contributions to the
hydrodynamic interactions of colloidal spheres cannot be ignored when the spheres
are near a planar no-slip boundary. These many-body interactions are the source of
Squires’ hydrodynamically induced like-charged attractions, [75], and may account
for some of the complex hydrodynamic behaviors described in the introduction to
this chapter. With a view toward describing many-body interactions in suspensions
confined between two walls, we now consider the hydrodynamics of a single sphere

between two walls.

3.6 Brownian Motion of One Sphere between Two Walls

We now consider the Brownian motion of a single sphere between two parallel
planes, separated by a distance H, Fig. 3.9. The description of this deceptively
simple system has proven vexing for all but the most symmetric placements of the
sphere between the walls. Indeed, recent efforts to extend the available solutions to
less symmetric arrangements have led to demonstrably inaccurate results [87]. The

simple linear superposition of drag forces performs surprisingly well, particularly
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in light of its poor performance in the previous section. The Stokeslet solution to
this problem is exceedingly complex, but its results can be readily scaled up to
multi-sphere systems.

Faxen obtained asymptotic expressions for the mobility for three highly sym-

metric locations between parallel walls, h = H/4, H/2, 3H/4 [76]:

2

3
1—-0.6526 % + 0.1475 %3

4 5
—0.131 % — 0.0644 %, h =1 31
h h e (3.56)

3
1— 1.004% + 0.418 2—3

4 5 H
+02197 —0.169%,  h=4.

ho’

These predictions satisfy the no-slip boundary condition on the surfaces of the
sphere and both walls, and are plotted as triangles in Fig. 3.10 for various wall
separations, H.

Oseen [76, 88] applied the linear superposition of drag forces to this system [89],
approximating the total drag on the sphere by the sum of its self drag and the

separate contributions of each wall,

Y(h) = Yo + [vF(h) — vo] + [Yr(H — h) — 0], (3.57)

where yp(h) is the drag on a sphere a height h above a single wall in a semi-infinite

system. Applying the Stokes-Einstein relation to this result, we obtain

D™Y(h) = D' (h) + DR (H — h) — D31, (3.58)
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Figure 3.10: Theoretical predictions for D”(h) between two parallel walls.

where D;l(h) is Faxen’s result for one wall, Eq. 3.47. The resulting predictions for
D“(h) are plotted as dashed lines in Fig. 3.10. Faucheux and Libchaber measured
the diffusivities of several particles confined between two glass plates using digital
video microscopy [89]. Averaging the diffusivities over h, they found good agreement
with Oseen’s approximation.

The Stokeslet analysis of this system is considerably more complex. Following
Blake’s method of hydrodynamic images, Liron and Mochon [90] calculated the
Green’s function for a point force between parallel planes. They found the total
flow-field, u, to be the sum of three parts, u = G5 +v+ w, where G? is the
free-space Stokeslet, v consists of an infinite series of Stokeslet images, and w is an
additional term necessary to match the no slip boundary conditions on the surface

each wall. Unfortunately, w has no clear interpretation in terms of hydrodynamic
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images. We can use this result to evaluate the walls’ influence on the sphere’s
mobility. Referring once again to Eqs. 3.27 and 3.28, we approximate the external
contribution to the mobility, b¢(h), by the fluid velocity at the sphere’s position due
to all contributions to the flow-field aside from the original Stokeslet, u — GS.

For in-plane diffusion,

Dy(#) e [T (vg) R (ag)] o e

g
Dy

> W

where

Ao ) = —2 sinh[)\;]i]nii[rl\}]l[)\(l —n)]

(3.60)

is the contribution due to a stokeslet at the sphere’s position together with an

infinite series of image stokeslets, and

A1(A\n) = {)\n2 sinh?[A(1 — n)] — sinh[2\7] +

sinh?[A] — A2
n? sinh[A] cosh[A(1 — 27)] + coth[A] sinh?[Ar] +

A (2 = ) sinh[Ang] — nsinh[A(2 — )] 2
_Z< sinh[\] )} (361)

enforces the no-flow boundary conditions at the walls. These Stokeslet predictions
for D (h) are plotted as solid lines in Fig. 3.10.

Even though they only predict the diffusion coefficient at three heights, Faxen’s
predictions are the most reliable, since they satisfy the boundary conditions on
both walls to fifth order in a/h. Liron and Mochon’s analysis satisfies the boundary

conditions on each wall to first order in a/h. Oseen’s theory ignores the boundary
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conditions on both walls, and considers the effect of each wall separately to fifth
order in a/h. When the walls are separated by more than about 8 radii, these
three theories yield nearly identical results, as can be seen in Fig. 3.10. In this
range, the theories of Liron and Faxen agree, while Oseen’s linear superposition
of drag forces slightly underestimates the mobility. For wall separations of less
than 8 radii, Oseen and Faxen’s theories agree well, while the Stokeslet analysis
underestimates the mobility. This comparison suggests Oseen’s simple theory is
capable of describing the Brownian motion of a single sphere over a wide range of
H values. While Liron’s analysis is much more cumbersome and applicable over
a smaller range of H values, it can be readily extended to describe the coupled
diffusion of many spheres, as described in the previous section.

We have measured the in plane diffusion of a two-micron diameter polystyrene
sphere (@ = (1.006 & 0.010) wm, Duke Scientific, Cat. No. 4202A ) between two
glass walls [86]. The experimental technique was nearly identical to that described
in Section 3.4. The walls were separated by roughly 8 ym and the temperature of
the system was controlled at T = (27.50 £ 0.07)°C. A small difference in height
between colloid reservoirs connected to either side of the sample cell drove a very
slow flow through the system. Measuring the profile of this flow, we were able to
locate the positions of the walls. To characterize this flow, we assume that the
sphere tracks the flow of the fluid and measure the drift velocity of the sphere along
the x and y directions as a function of height above the wall, Fig. 3.11. This flow

profile is well described by a Poiseuille flow [91],

v(z) = —— (2 — 20)(2 — 20 — H), (3.62)
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where z = h+ 2, and z, is the absolute position of the lower wall. A fit to Eq. 3.62
gives zp = (—1.0440.11) wm, and the separation of the walls, H = (8.16+0.22) um.
The measured values of D”(h) are shown in Fig. 3.12. The data are consistent with
all three theoretical formulations near the center of the cell, but the predictions
underestimate the diffusion coefficient when the sphere is near contact. This may be
the result of the coupling between the rotational motion of the sphere and its in plane
diffusion. Coupling between translational and rotational diffusion is not accounted
for in any of the three theories discussed above. Additionally, the Poiseuille flow
rotates the sphere. This rotation of the sphere is described by Faxen’s second law,

[21], and is strongest near the walls where the fluid is most strongly sheared.

3.7 Extending Stokeslet Analysis to Many-Body Systems

Stokeslet analysis simply and successfully describes the hydrodynamic coupling of
spheres in a unbounded fluid and near one bounding wall. Measurements of the
coupling of two spheres near a single wall suggest that Stokeslet analysis correctly
accounts for wall-induced many-body interactions. Stokeslet analysis is cumbersome
between two walls, and is only applicable when the walls are separated by more than
about 8 sphere radii. Even so, Stokeslet analysis can be systematically extended to
describe many-body coupling in larger confined systems.

In a recent paper [70], Brenner performs a Stokeslet analysis of large numbers
of sedimenting spheres near a wall. He shows that wall-induced many-body in-
teractions suppress the theoretically predicted [68] but experimentally illusive [69]
divergence of sedimentation velocity fluctuations. While the results of sedimen-
tation experiments are consistent with Brenner’s Stokeslet analysis, they do not

directly test its general validity.
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Figure 3.11: Pouseuille Flow. The positive flow profile is along the x direction and
the negative flow is along the y direction. Vertical lines indicate contact between
the sphere and each wall.
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Figure 3.12: Measured values of D“(h) between two parallel walls. The squares
represent Faxen’s predictions. The solid and dashed lines plot Oseen’s prediction
for a = 1.006 um and a = (1.006 &= 0.010) um, respectively. The measured diffusion
coefficients along x and y are separately plotted as circles at each height.
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Blinking optical tweezer experiments with many optical tweezers could precisely
test Stokeslet predictions of many-body effects for larger systems. However, con-
ventional techniques cannot create more than a few tweezers. Therefore, we have
developed a novel technique to trap large numbers of colloidal particles in arbi-
trary configurations. This technique, combining optical tweezers and holography, is

discussed in the next chapter.



CHAPTER 4
MASS MICROMANIPULATION OF COLLOIDAL
PARTICLES WITH HOLOGRAPHIC OPTICAL
TWEEZER ARRAYS

The optical tweezer has become a valuable tool for research in biological [40-45]
and physical [23,31,35-39] sciences. Past applications of optical tweezers to col-
loid science have concentrated on the dynamics of one or two particles, since no
simple, robust and inexpensive technology had been available to create more than
two optical tweezers. Large arrays of optical tweezers could be used to study col-
lective behavior in systems with many particles, to organize microscopic particles
into complex structures, to gently and securely grab delicate objects that cannot
be trapped with a single tweezer, and to intelligently sort microscopic particles.
We apply holographic techniques to create large arrays of optical tweezers from a
single laser beam. These holographic optical tweezer arrays are capable of trapping
hundreds of particles simultaneously, [32,92,93]. Other schemes to create multiple
optical tweezers were described in Section 2.2.

In principle, N optical tweezers can be made by separately focusing N laser
beams with a microscope objective lens, as shown in Fig. 4.1(a). In practice, this
technique becomes prohibitively cumbersome and expensive when N is much larger
than two. Alternatively, a hologram can modulate the wavefront of a single laser
beam to mimic the interference pattern of N beams converging at the entrance to

67



68

Focal Plane

Back Aperture

Figure 4.1: Holographic optical tweezer arrays. (a) N laser beams are focused by an
objective lens to create N optical tweezers. (b) A holograms sculpts the wavefront
of a single laser beam to mimic the wavefront of N beams converging on the back
aperture of the microscope objective, creating N optical tweezers in the focal plane.
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the objective lens, Fig. 4.1(b). After passing through the hologram, this sculpted
wavefront propagates as N separate beams, forming N optical tweezers in the ob-
jective lens’ focal plane. In order to mimic the wavefront of N converging beams,
a hologram must spatially modulate both the amplitude and phase of the incident
beam. However, a hologram cannot modulate a laser beam’s amplitude without
absorbing some of its energy. Not only is this is inefficient, but it will also damage
the hologram at the high laser intensities needed to make large numbers of optical
tweezers. Fortunately, optical trapping relies on the optical field’s intensity rather
than its amplitude and phase separately. Consequently, it is possible to achieve any
desired trapping pattern by modulating only the phase of the incident beam.

In this chapter, we describe the design, fabrication, and implementation of ef-
ficient phase-only holograms. Before describing the process in detail, however, we

first develop the necessary theory of Fourier Optics.

4.1 Fourier Optics of Tweezer Arrays

An array of optical tweezers can be described by the intensity distribution of laser
light in the focal plane of a microscope objective lens, I f (p). The intensity distri-
bution in the focal plane of a lens is determined by the profile of the electric field
of light incident at its input plane. While there is a one-to-one correspondence be-
tween the electric fields in the input and focal planes of a lens, an infinite number of
incident electric fields can yield the same intensity profile in the focal plane, If (9),
since intensity is independent of the phase of the electric field. Before describing
how to exploit this redundancy to create phase-only holograms, We develop the

optical principles relating the electric fields in the input and focal planes of a lens.
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Input Lens Output
Hologram Microscope Objective Tweezer Array

Figure 4.2: Fourier optics. Monochromatic light, with wavevector I;, is incident on
the input plane. A lens, of focal length f, projects the Fourier transform of the
electric field profile, E**(7), of the incident light onto the focal plane.

Suppose that the input plane of an objective lens is illuminated by linearly
polarized monochromatic light, Fig. 4.2. Then the electric field at the input plane

is described by
E™ (7 t) = E™(7)e™“e, (4.1)

where w is the frequency of the incident light and é is its polarization vector. The

electric field profile, E™(7), contains both phase and amplitude information,
E™(7) = A™(7) exp[i®"™ (7)), (4.2)

where the amplitude, A™ (7), and phase, Pin (7), are real-valued functions. Similarly,
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the electric field in the focal plane of the microscope objective is given by,
Ef(5,t) = B (p)ete, (4.3)
and
E (p) = AT () expli@? (7). (4.4)
Therefore, the intensity profile of a tweezer array,
H(5t) o B (71) - B (5, 0)" = Al ()%, (4.5)

is independent of time and the phase of the electric field profile in the focal plane.
The electric field profiles in the input and focal planes of a lens are related by a

Fourier transformation, F,

BI(7) = FEM0) = 5o D) [ P (7) A, (16)

B = FHE () = 5 / @25 PP B () IS (4.7)

where f is the focal length of the lens and £ is the wavenumber of incident light. The
lens’ geometry introduces the additional phase profile, 6(p), which does not influence
the intensity in the focal plane, and may be ignored without loss of generality [94].

As an example, let us apply Eq. 4.6 to the formation of a single optical tweezer.
Typically, an optical tweezer is created by focusing a Gaussian laser beam with a
microscope objective lens. Laser beams with other profiles may be used to increase

the tweezer’s efficiency, or to trap particles that cannot be trapped in a conventional
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tweezer [49,55,95]. For a Gaussian beam, the intensity profile of the tweezing laser

in the input plane of the objective lens is

: P —r2
I8 = 5 exp| 5| (48)
2T (o 20m

where P is the beam’s power, and oy, is its radius. The phase of a collimated
Gaussian beam is uniform in the plane normal to its wavevector, k. Therefore, the

incident electric field profile may be written as
B (F) = AB(R) = /12 (). (4.9)

Applying Eq. 4.6 to Egl (7) gives the electric field and intensity of an optical tweezer

in the focal plane of the objective lens,

/ -
I4(p) = , 4.10
G(p) o’ 0_? €xXp 20_1% ( )
where
_f
of = o O'm' (4.11)

The optical gradient forces responsible for trapping are strongest when the width
of the tweezer is minimized. Therefore, a tweezer is strongest when the width of
the incident beam is maximized. The width of the incident beam is limited by the

input aperture of the objective lens, which is equal to the product of its focal length



73

and numerical aperture, NA. Since the minimum width of a tweezer is

1

a tweezer is strongest when the objective lens has a high numerical aperture and
the trapping laser has a short wavelength.

This analysis can be generalized to understand how phase modulation can create
arrays of optical tweezers from a single laser beam. After passing through a phase
modulating hologram, the electric field profile in the input plane of an objective

lens is
E"(7) = By () exp[i®™ (7], (4.13)

where Ef)”(f’) is the electric field profile of the incident beam, and ®™(7) is the
modulated phase profile.
The electric field describing an array of identical optical tweezers at the positions

po. in the focal plane of the objective lens is

B (p) =

S B (- pw] expli®! (7)), (4.14)

where E(J; () is the electric field profile of a single tweezer. The phase profile,
®f(5), may take any real value without affecting the performance of the tweezer
array. Alternatively, B/ (p) may be written as the convolution of E(J; () and a lattice

function, 7'(p), describing the geometry of the array,

B (5) = [B] o T(7)] explid! (7)) (4.15)



74

where

T(5) = 3205~ ) (4.16)
(%
and f o g(z) denotes the convolution of f and g,

fog(@) = / P27 F(#)g(F — ). (4.17)

We can relate the electric field in the input and focal planes of the lens using

Eq. 4.6 :

FLEY() expli®™ (7]} = [E{(7) o T(7)] expli®? (7)) (4.18)

This expression can be understood in light of the frequency-convolution theorem
[96], which states that the Fourier transform of the product of two functions is equal

to the convolution of their individual transforms,

F{fg} = % F{f}o Flg}. (4.19)

Comparing Eqs. 4.18 and 4.19, we see that the electric field profile of each
tweezer is given by the Fourier transform of the unmodified incident beam,
Eg (p) = F{E{"(p)}, and the configuration of the tweezers is determined by the

Fourier transform of the phase modulation,

ym expli®” (7)] = F{expl[i®™ (7]} (4.20)
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Therefore, a hologram controls the geometry of the array without affecting the
properties of each tweezer. For example, a hologram that produces an array of
Gaussian tweezers, can also produce an array of optical vortex tweezers.

As a simple example, let us calculate the phase modulation, @Z”(F) that displaces
the focal point of a single optical tweezer by a vector, Ap. The displaced tweezer is

described by the lattice function

T(7) = 6%(7— Ap). (4.21)

Arbitrarily setting ®f(5) = 0 and inverting Eq. 4.20, we find

2 f

exp[i®™ (7)] = f—l{T T(ﬁ)} = expliki - A7/ f]. (4.22)

Therefore, one can displace an optical tweezer by applying a linear phase modula-

tion,

pin(p) = ¥ Af T (4.23)

to the laser as it enters the objective lens, where the size of the displacement of
the tweezer is proportional to the slope of the phase in the input plane. Instead
of modulating the phase with a hologram, it is usually easier to apply this phase
gradient and steer the tweezer by tilting the beam through an angle, Ap/f, as it

enters the objective lens, as in Section 2.2.
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4.2 Designing Holograms for Optical Tweezer Arrays

Using the Adaptive-Additive Algorithm

In general, designing phase modulating holograms that produce arrays of optical
tweezers is not as simple as inverting Eq. 4.20 with ®/(5) = 0, because the inverse
Fourier transform of the lattice function, T'(5), contains both amplitude and phase
information. This section describes the adaptive-additive (AA) algorithm of Soifer
et al. [97], an iterative numerical technique which explores the space of degenerate
phase profiles, ®/ (), to find a phase modulation of the incident laser beam that
creates the desired intensity profile in the focal plane of the microscope objective
lens.

The AA algorithm, Fig. 4.3, calculates the phase modulation, ®"(7), of a holo-
gram that most nearly reproduces a desired intensity pattern in the focal plane,
If(ﬁ) = |Af(ﬁ)|2, from an input beam whose profile is AZ*(7). Starting from an
initial guess for the hologram’s phase profile, @l”( ), the AA algorithm iteratively
calculates the input phase profile, <I>m(f'), that most accurately reproduces the de-
sired intensity pattern in the focal plane of a lens. Specifically, AA algorithm
minimizes the mean-squared deviation of the actual intensity profile, I (), from

the ideal intensity pattern,

1 M2
€= Z Z))2, (4.24)

where the focal plane of the microscope objective has been discretized on a M x M

square lattice.
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Figure 4.3: Adaptive-additive algorithm.
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The AA algorithm starts by calculating the electric field profile in the input
plane. For the first iteration, Eé”(r_') = A%)"(T_') exp[i@%”(?)]. For later iterations,
Ei"(7) is determined by the output of the previous iteration. The AA algorithm
applies a fast Fourier transformation (FFT) to calculate the corresponding electric
field profile in the focal plane, E,J;(ﬁ) = Afl(ﬁ) exp[i@ffb(ﬁ)]. Next, the algorithm
replaces A,J;(p") with a mixture of Af;(ﬁ) and the electric field profile of the desired

—
bl

tweezer pattern, A(J; (9)
B} (7) = (043 (p) + (1 — a) AT expli®} (7)) (4.25)

where the mixing parameter, a, lies between 0 and 1. The algorithm then transforms
the modified electric field profile, £y (7), back to the input plane to give Em (7). At
this point, the amplitude profile, flfln, no longer matches the actual laser profile, so
the algorithm replaces A%” with Aé” (7), and increments the counter, n, by one. This
completes a full iteration of the AA algorithm. The cycle is repeated until the error,
€, converges to a minimal value. The algorithm is said to have converged when the
relative change in the error parameter is less than some set value y: Ae/e < x.
For all but the simplest intensity patterns, the algorithm converges to phase
profiles that do not exactly reproduce the desired output, ¢ = 0. Instead, it typically
converges to one of many local minima of ¢, all of which produce outputs of similar
quality. The absolute quality of the reproduction depends on the complexity of
the desired intensity pattern. In particular, the algorithm is more successful at
reproducing patterns of isolated bright points, such as those that make tweezer

arrays, than it is for smooth patterns.
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The AA algorithm is readily adapted to calculate holograms for optical tweezer
arrays. For arrays of identical optical tweezers, we ignore the profile of the input
beam, using A%”(F) = 1, and set Ag(ﬁ) = %T(p") We discretize the input and
focal planes, describing the optical fields as an M x M array of double precision
real numbers. For maximum resolution, we choose the pixel size in the focal plane
to be one half-wavelength, 6 = A/2. The pixel sizes in the input and focal planes
are related by Eq. 4.6, ¢;, = ]\Z\,—gf For our choice of § = A/2, the pixel size of the
hologram is d;, = 2f/M. Finally, the AA algorithm requires an initial guess for the
phase, @6”(77). We assign an evenly distributed random number between 0 and 27
to each of @6”(17)’5 M? pixels.

The algorithm converges quite rapidly for intermediate values of the mixing
parameter, a, Fig. 4.4. For a = 0, the algorithm never moves beyond the initial
guess, and for a = 1, the algorithm often fails to converge. In all of our calculations,
we have used a = 0.5 and y = 1076, For most patterns, the algorithm converges
in about eight iterations. The error, € typically changes by less than one part in
10~2 after the second iteration, and by less than one part in 106 after about eight
iterations. While the algorithm typically does not converge to an exact solution for
complex trapping patterns, it does rapidly converge to the exact solution for our
simple example of a displaced tweezer, Eq. 4.23, Fig. 4.5.

Holograms that produce highly symmetric arrays of tweezers have a periodic
structure whose symmetry reflects the symmetries of the tweezer array. Square
arrays, Figs. 4.4, 4.6, and 4.12, are produced by holograms with a square periodic
lattice. Holograms that generate triangular cluster of tweezers, Fig. 4.14, similarly

have local triangular symmetry, but no well defined unit cell.
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Figure 4.4: Rapid convergence of the AA algorithm. The input phase and output
intensity profiles after successive iterations of the AA algorithm for a 4 x 4 square
array. The phase profile accurately reconstructs the desired output after a single
iteration. The grayscale coloring of the phase profiles encodes phaseshifts from 0 to
2 7 radians.



81

12f
1.0F (D)
08"
06"
04]
02"
00!

Phase [rad/m]
Intensity

-0.5 0.0 0.5 1.0 -1.0 -0.5

0.0
k [1/arb]

0.5

2.0 ‘ ‘ ‘ 1.2f
15l 10 (d)

: 08"
06"
04]
7 02
0.0 ‘ | ‘ 00! »

Phase [rad/m
5
Intensity

05F

A

L

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5
X [arb]

0.0
k [1/arb]

0.5

1.0

Figure 4.5: Holographic displacement of If(ﬁ). (a) A one dimensional phase profile,
@™ (7), which displaces the intensity pattern in the focal plane. The solid line plots
the exact solution, Eq. 4.23, modulo 27. The diamonds plot the numerical solution
found by the AA algorithm. (b) The resulting lattice function, 7°(p). (¢) Two-level
discretization of ®™(7). (d) The resulting lattice function. The original shifted
tweezer is reflected across the origin, and small spurious peaks appear.
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Computational techniques can exploit the periodicity of holograms in order to
increase their efficiency. Because discrete Fourier transformations yield periodic
functions, all holograms calculated with the AA algorithm can be tiled smoothly.
That is, they can serve as the unit cell for a new hologram with a periodic lattice,
and the new hologram will not have phase discontinuities at the unit cell boundaries.
Fig. 4.6 shows successive tilings of a hologram that generates the lattice function for
a 3 x 3 square array of tweezers. Successive tilings are labelled by the wavenumber,
k, which is equal to both the number of unit cells along one side of the hologram and
the lattice constant of the tweezer array in pixels. In other words, tiling changes
the length scale of lattice functions but not their geometry.

We have exploited this simple property to design holograms that produce large
lattice tweezer arrays. As a tweezer array’s lattice constant gets large, the features
on the hologram that produce it become smaller. In order to resolve these small
features, the hologram’s pixel size must be reduced. Since the width of the hologram
is fixed, the number of pixels increases with the inverse square of the pixel size. As
the holograms contain more pixels, the AA algorithm performs more operations and
consumes more memory. Practically, our computer resources do not have enough
memory to handle these extra pixels at large lattice constants. Therefore, instead
of directly calculating the hologram for a large lattice constant array, we calculate
the hologram for a small lattice constant array of the same geometry. Then, this
hologram can be tiled to create the hologram that produces large lattice constant
tweezer arrays. This tiling can be done either numerically or physically, during
the fabrication process. The hologram that produced the 20 x 20 square array in

Fig. 4.15 was tiled during the fabrication process.
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The AA algorithm generates phase profiles, @m(?"), that vary smoothly between
0 and 2m. However, it is often more convenient to fabricate binary holograms,
where there are only two phase levels, 0 and w. The holograms in this thesis
were made using etching techniques, which are described in the next section. In
principle, etching techniques can produce 2N levels of phase from N precisely aligned
etches with different masks [98]. In practice, it is extremely time consuming and
difficult to perform more than one etch on a single substrate. Therefore, all of our
demonstrations of holographic optical tweezers have used binary holograms. Binary
holograms have their limitations, but once these limitations are understood, the AA
algorithm can be used to design them.

Binary holograms are less efficient than continuous holograms and are con-
strained to create tweezer patterns that are inversion symmetric. For example,
let us return to our simple example of a hologram that displaces a single tweezer
by Apg, Eq. 4.23. Discretization replaces the smooth linear increase of phase across
the hologram with discontinuous jumps between 0 and 7, Fig. 4.5(c). The resulting
tweezer array consists of the original shifted tweezer, an equal magnitude reflection
across the origin, and some new spurious peaks, Fig. 4.5(d). In general, binary
holograms produce tweezer patterns that are unchanged upon reflection through
the origin, p — —p. Our simple example clearly demonstrates the source of this
inversion symmetry: after binary discretization, a hologram that shifts a tweezer
by Ag is indistinguishable from a hologram shifts the tweezer by —Ap, Fig. 4.5(c).
Simply stated, the laser light cannot tell if it is supposed to go left or right, so it
goes both ways, Fig. 4.5(d).

Let us consider how this inversion symmetry must be accounted for in the calcu-

lation of binary holograms. If we simply limit the binary discretization of a smooth
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holograms to cases where the pattern of tweezers is inversion symmetric, we still do
not get satisfactory tweezer arrays, Figs. 4.7(a) and (b). However, if we anticipate
the reflection, and discretize smooth holograms that produce only half of the array,
we achieve satisfactory results, as shown in Figs. 4.7(c) and (d). In practice, we
repeat this calculation about twenty times and choose the binary hologram with
the best value of the error parameter, ¢, or some other selection criterion, such as

efficiency or standard deviation of tweezer intensities.

4.3 Fabricating Holograms for Optical Tweezer Arrays

We have described techniques for calculating the phase profiles, ®"(7), of holograms
that modify the profile of a laser beam to create multiple optical tweezers in the
focal plane of a microscope objective lens. We now discuss techniques for recording
these phase profiles in actual holograms.

Phase profiles can be recorded in the surface topography of a transparent di-
electric [98] or in the orientation of liquid crystal domains in a display panel [99].
We have chosen the former approach, shown in Fig. 4.8. The dielectric material
slows the propagation of an electromagnetic wave. When a wavefront first enters
the material, it is uniformly slowed down to a velocity c¢/n, where n is the mate-
rial’s index of refraction. However, different parts of the wavefront emerge from the
material before others. The sections of the wavefront that remain in the material
fall behind the free sections of the wavefront, which travel at the speed of light, c.
The end result is that there is a relative phase shift between different parts of the
wavefront. The phase at a position, 7, is retarded in proportion to the thickness

of the dielectric, ¢, at that point, ®"(7) = —2m(n — 1)t(7)/A. In practice, the
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Figure 4.7: Dealing with the inversion symmetry of binary holograms. (a) A smooth
hologram that makes 4 x 4 array of tweezers. (b) The binary version of hologram
(a) generates an array with missing tweezers. (¢) A smooth hologram that makes a
4 x 2 array of tweezers. (d) The binary version of hologram (c) makes a satisfactory
4 x 4 array of tweezers.
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Figure 4.8: Encoding hase in depth. A plane wave is incident upon a transparent
dielectric material from below.

surface of the dielectric is textured by etching. In this case, the relative phase at 7
is proportional to the etch depth, d(7),
- d

" (1) = 2m(n — 1)@ (4.26)
In practice, it is quite difficult to create more than two depth levels with etching
techniques. Therefore, all of the holograms that we have made and tested have been
binary. Our binary holograms are made from fused-silica, which has an index of
refraction of 1.456 at the wavelength of our trapping laser, A = 532 nm. Therefore,
phase shifts of 7 radians were obtained by etching to depths of A/2(n—1) = 583 nm.
We have collaborated with the Spalding Group at Illinois Wesleyan University to

fabricate holograms. All the fabrication techniques described here were designed

and executed by Prof. Spalding and his students. The fabrication process has three
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main steps: the creation of a photo mask, the creation of an etching mask, and
etching, Fig. 4.9.

We first create a mask for the exposure of photoresist. The numerical techniques
described in previous sections are applied to calculate a binary phase profile. Then,
the phase profile is printed as a binary image, with black pixels representing a
relative phase shift of 7 radians, and white pixels representing a phase shift of
0 radians. Finally, this image is photo-reduced onto a transparent film to the actual
dimensions of the hologram. Each hologram is a square of width 2f = 3.24mm,
where f is the focal length of our microscope objective lens.

We then create a reactive-ion etch mask on the surface of the fused-silica sub-
strate. First, the 1mm thick substrate is coated with a 250 A layer of chrome,
and a 1.76 um layer of positive photoresist, Fig. 4.9(a). The photomask created
earlier is placed over the layer of photoresist, and the entire sample is exposed to
UV radiation, Fig. 4.9(b). The photomask is removed and sections of exposed pho-
toresist are chemically etched away, revealing parts of the chrome layer, Fig. 4.9(c).
The exposed chrome is etched away, exposing the sections of silica to be etched,
Fig. 4.9(d).

The exposed sections of silica are etched to a depth of 583nm, Fig. 4.9(e).
RF power ionizes and accelerates a mixture of carbon tetrafluoride and oxygen.
These reactive ions rapidly etch through the photoresist, and are halted by the
layer of chrome. The exposed silica surfaces are slowly etched, at a rate of about
5 A/sec. Finally, any remaining chrome or photoresist is removed, leaving behind a

precisely textured fused-silica surface, Fig. 4.9(f).
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Figure 4.9: Fabricating holograms with reactive ion etching.
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4.4 Design Tolerances

In this section, we describe how fabrication flaws affect the efficiency of a holographic
optical tweezer array. First, we present numerical calculations of efficiency as a
function of etch depth. Second, we present numerical and analytical calculations of
efficiency as a function of surface roughness. These results can be applied to specify
useful tolerances for fabricating holograms.

We define the efficiency of a hologram, £, to be the fraction of incident laser
energy that ends up in the planned tweezer pattern. For simplicity, we compare
the intensity pattern in the focal plane when the actual hologram is illuminated
by a uniform plane wave, I f (), to the ideal intensity pattern in the focal plane,
I({ (p) = (27 f/k)>T?(5). Therefore, the efficiency of a hologram that produces an

array of equal intensity tweezers is given by:

2 ~
o T2 () (77)

=
M?2 -
i=1 TQ(Pi)

(4.27)

The efficiency, £, is a less stringent measure of the agreement, between the ideal and
actual holograms than the error, €, since it is possible to have £ = 1 when ¢ > 0,
but € = 0 requires that £ = 1. Still, the AA algorithm rarely finds perfectly efficient
holograms.

We calculate the efficiency of four standard holograms as a function of the mag-
nitude of the fabrication defects. The four standard holograms are smooth and
binary versions of two holograms that produce square arrays of tweezers. One array
is 4 x 4 and the other is 20 x 20. Both arrays have the same lattice constant. We
calculated all four holograms twenty times, and selected the most efficient hologram

from each group to use in the both efficiency studies.
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Figure 4.10: Efficiency of hologram versus phase scale factor.

The depth of phase modulations created by an etched hologram is proportional
to the etch depth, Eq. 4.26. If the etch rate is not precisely controlled, or the
hologram is illuminated with light of the wrong wavelength, the actual phase profile,
@i (7), will differ from the design ®"(7) by a scale factor, @™ (7) = a®(7). As «
departs from unity, most of the laser light that does not contribute to the tweezer
array is focused to the position of the unmodified laser beam. Fig. 4.10 shows
the efficiency of the four standard holograms as a function of phase-scale factor,
a. Even the ideal, @ = 1, holograms are not perfectly efficient. Both smooth
holograms have ideal efficiencies near 95%. The binary holograms are less efficient,
with ideal efficiencies near 80%. Fig. 4.10 suggests that a hologram’s efficiency does

not depend strongly on the etch depth.
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Figure 4.11: Efficiency of hologram versus roughness. The symbols are numerically
calculated efficiency for specific manifestations of 7(7), while the solid curves are
the analytically calculated ensemble-averaged efficiencies.

Reactive ion-etching of fused-silica leaves a rough surface, which adds random
fluctuations to the phase profile of the trapping laser as it leaves the hologram.
Spalding et al. have measured the surface topography of fused-silica after etch-
ing. They found a Gaussian distribution of etch depths, with a standard deviation
of 60nm or /10 radians with 532 nm illumination. The etch depth fluctuations
are uncorrelated down to length scales of less than 280nm. Fig. 4.11 shows the
efficiency of the four standard holograms with increasing surface roughness. The

roughness was numerically modeled by adding uncorrelated Gaussian noise to the
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phase profiles,

() = & (7) + (), (4.28)

where the probability distribution of the noise is given by

1 —772]

p(n) = Viras &P [E (4.29)

The decay of a hologram’s efficiency with increasing surface roughness can also be
calculated analytically. Combining Eqs. 4.6 and 4.28, the electric field profile in the

focal plane is found to be

B () = % [ explithr 515 + 870+ 0() (4.30)

for a particular manifestation of the noise profile, n(7). Averaging over all the

possible phase profiles,

(B (7)) = % /dQF expli(k7- p/ f + &' (7))] (explin(7)]), (4.31)

Now, applying Eq. 4.29,

(explin(r)) = [ dn pln) explin] = expl-o /2, (432

0]

(B (7)) = expl-0g /21E (7), (4.33)
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and

(I (p)) = exp[-o3 )17 (), (4.34)

and finally,
((09)) = £(0) exp[—ag]. (4.35)

This analytical prediction of the ensemble averaged efficiency is compared along-
side the numerical calculation of the efficiency for specific manifestations of 7(7) in
Fig. 4.11. The ensemble-averaged efficiency does a fine job of describing the effi-
ciency for specific manifestations of the noise profile. Note that the absolute scale
of efficiency is set by the efficiency of the ideal hologram, o = 0, while the decay of
the efficiency as a function of roughness is the same for all holograms. Substituting
the measured value of the surface roughness for fused-silica, o ~ /10, we find that

our holograms’ efficiencies are decreased by about 10% due to surface roughness.

4.5 Trapping with Holograms

Having discussed the design and fabrication of holograms that generate optical
tweezer arrays, Figs. 4.12(a) and (b), we now discuss the incorporation of these
holograms into a conventional optical tweezer apparatus. A holographic optical
tweezer array can be created from a conventional optical tweezer setup by adding a
hologram at the back aperture of the microscope objective lens, Fig. 4.1. However,
this destroys the ability to image through the lens. Therefore, we project an image

of the illuminated hologram onto the back aperture of the microscope objective with
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Figure 4.12: Holographic optical tweezer arrays. (a) The intensity profile of the
ideal tweezer array. (b) The phase profile of the ideal hologram. (¢) The intensity

profile of a tweezer array created with the actual hologram. (d) One micron silica
spheres trapped in the array with 100 mW of laser light.
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a simple telescope, as shown in Fig. 4.13. Fig. 4.12(c) shows the intensity profile of
an optical tweezer array in the focal plane, created and observed by the optical train
shown in Fig. 4.13. A second telescope allows the entire array to be moved across
the microscope’s field of view by rotating a gimbal-mounted mirror, as described in
Section 2.2. Individual tweezers can be selectively extinguished in the intermediate
focal planes of the telescopes, where the individual beams that form them come to
a focus. Figs. 4.12(d), 4.14, 4.15 and 4.16, show spheres trapped on a small square

array, a small triangular array and a large square array of optical tweezers.

4.6 Applications of Holographic Optical Tweezer Arrays

The current realization of holographic optical tweezers, HOTs, will enable many
new experiments in the collective behavior of colloidal systems. HOTs are well
suited to measure the many-body interactions between colloidal particles [100] and
to explore the equilibrium phase behavior and transport of colloidal crystals in
external potentials. For example, consider Fig. 4.16 where 1.5 um diameter silica
spheres are trapped on a 20 x 16 square array. Outside of the region illuminated by
the array, the dense two-dimensional layer of spheres have six-fold order. However,
spheres lying on the tweezer array fill only half of the traps, forming a square
lattice whose lattice constant is stretched by a factor of /2 and rotated by 45°
relative to the tweezer array. This occurs because the lattice constant of the tweezer
array is less than the diameter of the spheres. Such experiments may shed light on
superconducting vortex structures [101, 102] and surface phase transitions [103, 104].

Yet holographic optical tweezer technology is still in its earliest stage of devel-

opment, and several new technological advances will soon dramatically increase the
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Figure 4.13: Optical train generating holographic optical tweezer arrays. A laser,
(Coherent Verdi, A = 532nm, P = 10 — 5000 mW), LSR, emits a Gaussian laser
beam. A hologram, H, modulates the phase of the beam, splitting it into several
beams. A simple telescope, T1, projects an image of the hologram onto the surface
of a gimbal-mounted mirror, GMM. A second telescope, T2, projects a slightly
enlarged image of the hologram onto the back aperture of the microscope objective
lens. A beam block, BB, can be placed in the intermediate focal plane of either
telescope to block unwanted beams. A dichroic mirror, DM, placed between the mi-
croscope objective lens, (Olympus S-Plan Apochromatic, NA = 1.4, f = 1.62mm,
100x), MO, and the CCD camera, CCD, allows for simultaneous trapping and
imaging. The dotted lines show planes that are conjugate to the focal plane of the
microscope objective lens, and dashed-lines show planes that are conjugate to its
back aperture.
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Figure 4.14: 19 point triangular array. (top) The hologram’s phase profile. (bottom)
Nineteen 1um diameter silica spheres suspended in water and trapped in the array,
illuminated with 300mW of laser light.
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Figure 4.15: 20 x 20 square array. 2pum diameter polystyrene spheres suspended in
water and trapped in the array, illuminated by 1.5W of laser light.



100

S N
O.l""ﬁ..itt!!llo..

S E A EEEEEREEEREEREN S
A E RN EEFYTERERE LR FE N
L EFEEFE R R

&
1

& »

s » Y3 8 »
& B P8 & @

® & #»

*t."....p.
e »

.o"ita-oq.
pt VR aanrei,
a B g P B apaen o
LA L AR NTEE ™
L R R L
b o-0-9 5

® 4% & & B g & »
a B

Figure 4.16: v/2 x \/2 superlattice. (top) 1.5 um diameter silica spheres trapped on
a 20 x 16 square array. The region illuminated by the tweezer array lies inside the
dashed boundary. (bottom) A Voronoi diagram displaying the the two-dimensional
Wigner-Seitz cells for each sphere. Note the process of square order extending
from bottom of the tweezer array. The above coordinate systems are calibrated in
microns. Data courtesy of P.T. Korda and G.C. Spalding
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utility of HOTs. Most importantly, liquid-crystal spatial light modulators, SLMs,
have been introduced that are capable of modulating the phase profile of laser
beam continuously from 0 and 27, and can be updated at speeds of up to 10Hz
[99]. These devices will allow the creation of time-dependent optical tweezer arrays.
Time-addressable SLMs can be combined with the particle tracking techniques of
digital video microscopy to create adaptive optical tweezers, Fig. 4.17. Adaptive op-
tical tweezers will be able to locate all the particles in the microscope’s field of view,
calculate a hologram that makes a tweezer array that will grab all the particles, ap-
ply the phase modulations to the laser, and trap the particles. Once the particles
are trapped, each particle can be moved separately. This technique could be used
to efficiently assemble materials textured on the micron scale or to sort microscopic
particles. Finally, adaptive optical tweezers could gently and securely trap large
objects, in the size range of 10 to 100um, such as eukaryotic cells, which are not
well suited to trapping by conventional tweezers. Currently, one traps large cells by
focusing a very bright tweezer onto a single spot with high dielectric contrast, such
as an organelle. Often free to move within the cytoplasm, a single organelle is not
an effective handle for the entire cell. Additionally, the high laser power of the single
tweezer can cause irreparable damage to the organelle. By weakly grabbing onto
many organelles simultaneously, adaptive optical tweeezers could gently manipulate

large cells, controlling both their position, orientation and shape.
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Figure 4.17: Adaptive optical tweezers. A microscope images a suspension of col-
loidal particles. A personal computer identifies the particles, and calculates a phase-
only hologram to trap them. A computer controlled spatial light modulator imple-
ments the computer’s design, applying a pattern of phase modulations to a laser,
which is focused by the microscope to create an array of optical tweezers which traps
all of the particles on the screen. Each particle can now be individually manipulated
to assemble a structure or to sort particles.




CONCLUSION

We have constructed a second-generation blinking optical tweezers system to study
the interactions and dynamics of one or two colloidal particles. We have measured
hydrodynamic interactions between two spheres, a sphere and a wall, two spheres
near a wall, and one sphere and two parallel walls. The dependence of the measured
diffusion coefficients on the configuration of the spheres are accurately fit by the
predictions of Stokeslet analysis with no free parameters. While the formulation
of Stokeslet analysis in confined geometries can be rather complex, it successfully
incorporates many-body effects ignored by the linear superposition approximation,
and can be systematically extended to describe weak hydrodynamic coupling of
larger many-particle systems.

We have shown that multiple optical tweezers can be created from a conventional
optical tweezer apparatus by inserting a hologram into its optical train. We have
described methods for designing holograms capable of creating arrays of optical
tweezers with any planar geometry. We have fabricated holograms using micro-
lithography and have specified useful design tolerances. Recent advances in spatial
light modulators will enable the creation of dynamic optical tweezer arrays capable

of adapting to the configuration and composition of the particles under study.
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APPENDIX A
CALIBRATING OPTICAL TWEEZERS WITH
REFLECTIVE CONFOCAL MICROSCOPY

The optical tweezer has become the instrument of choice for biologists measuring
forces exerted by biomolecules. In the simplest experiments, [44], one end of a
bio-polymer is attached to a micron-sized dielectric sphere and the other end is at-
tached to a fixed surface. An optical tweezer traps the sphere and slowly retracts it
from the surface. As the bio-polymer is stretched, it applies a force to the trapped
particle, displacing it in the optical tweezer. Assuming that the trapping potential
is harmonic, the particle’s displacement from the bottom of the well, Az, is pro-
portional to the force exerted by the bio-polymer, F' = kAz, where k is the trap’s
effective spring constant.

In principle, a tweezer’s stiffness, k, can be calculated from the optical properties
of the trap and the particle. However, existing theories [49,50] cannot reliably
describe the forces on a trapped particle in practical situations. In this regime,
where the particle size is comparable to the wavelength of light, trapping forces are
extremely sensitive to the geometry and composition of the trapped particle [52] and
the optical properties of the trap, all off which are difficult to control precisely. Since
experimental conditions are too variable to reliably predict the trapping potential,
several techniques have been developed to calibrate a trapped particle’s response to

an outside force.
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First, the trap’s stiffness, k, can be extracted by measuring a trapped particle’s
response to a known force. Typically, one applies a hydrodynamic drag force to the
particle by translating the trap at a constant speed, v, [41, 44, 105] and measures the
displacement, Az. Assuming the Stokes form for the hydrodynamic drag constant,
v = 67mna, one equates the trapping and hydrodynamic forces, to calculate the

tweezer’s spring constant:

_ bmmna

k Axv

(A.1)

The accuracy of this calibration is limited by the uncertainty in the sphere’s radius,
velocity, and displacement in the trap, as well as and the possibly inaccuracy of the
Stokes form of the hydrodynamic drag.

Second, one can measure the tweezer potential from the equilibrium statistical
mechanics of a trapped particle [61,106]. One measures the equilibrium proba-
bility distribution of sphere locations in the trap, P(z) « e AU(*). Assuming a

Boltzmann distribution, one obtains the tweezer potential:
U(z) = —kgT In[P(x)]. (A.2)

This technique requires no knowledge of the sphere’s size or hydrodynamics and
makes no assumptions about the shape of the tweezer’s potential, U(x). However,
this equilibrium calibration is difficult because the characteristic thermally-driven
displacements of the particle are too small to be reliably resolved with digital video

microscopy (DVM), which has a typical spatial resolution of about 20 nm.
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Third, one can extract useful information about both the particle and the tweezer
by observing the non-equilibrium statistical mechanics of a trapped particle [61, 81,
107]. As discussed in Chapter 1, the dynamics of a Brownian particle in a harmonic
well are easily described by a Langevin equation, Eq. 1.19. We found that the
particle loses memory of its previous locations with a characteristic time scale,
T = 7v/k. More specifically, the auto-correlation function of particle positions is,

according to Eq. 1.21
kT _—kito—t
(w(tr)a(tz)) = “2—e 71271 (A3)

Therefore, one can determine both the trap stiffness £ and the viscous drag pa-
rameter y by measuring the autocorrelation function [81] or its Fourier transform
[61,107] with temporal resolution finer than 7. However, 7 is typically much shorter
than the interval between video frames.

In principle, the calibration of an optical tweezer by the observation of the
statistical mechanics of a trapped particle provides more information than simple
force-response measurements, and requires fewer assumptions. In practice, faster
and more accurate particle tracking methods are needed to implement these tech-
niques. While many high-resolution tracking techniques have been developed, these
techniques all share one common feature: they do not record images of the particles
that they track. The simplest technique focuses a white-light image of the trapped
particle onto the center of a quadrant photodiode detector [105]. The position of
the particle can be determined to within 1 nm from the relative strength of signals
from the four photodiodes. While a CCD camera integrates light over its exposure

time, a photodiode generates a current signal that is essentially proportional to
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the instantaneous light intensity. Fast data acquisition systems can record parti-
cle positions at rates up to 125kHz. Other non-imaging techniques have similar
resolutions [61, 81,107-109].

In this appendix, we introduce an alternative fast tracking technique that im-
ages the trapped particle. This technique, reflective confocal microscopy, RCM,
records one dimensional images of particles at 400 Hz with a spatial resolution of
about 5nm. While this technique is neither as fast nor as sensitive as non-imaging
techniques, it can track multiple particles along a line and could be extended to

create high resolution three-dimensional images.

A.1 Reflective Confocal Microscopy

A.1.1 Setup

In DVM, the image of a typical dielectric colloidal sphere has low contrast, and the
pixellation of video signals further degrades the image quality, Fig. 2.2. The image
is formed by bright field microscopy, where the sample rests in the focal plane of
a microscope objective and a bright light source projects light into the microscope
objective through the sample, Fig. 2.1. Light bends as it travels through index of
refraction gradients, and is focused to form an image of the sample superimposed
over a bright background.

The contrast of these images can be dramatically improved if the image is formed
with reflected light. In RCM, a probe laser beam, focused to a diffraction limited
spot by a microscope objective lens, illuminates a small volume in the objective
lens’ focal plane. If no particle is found within the laser’s focal spot, the laser light

is transmitted through the sample. If a particle lies within the focus of the laser
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Figure A.1: Reflective Confocal Microscopy.

beam, a fraction of the laser light will be reflected [52] back through the objective
lens and collected by a photodiode. An image is formed by recording the intensity
of reflected light as the focused spot of laser light is scanned across the field of view.
A colloidal particle appears as a peak in the intensity of reflected light, Fig. A.2.
A schematic diagram of our RCM setup is shown in Fig. A.1. A helium-neon
laser (Uniphase HeNe 1107P, A = 633 nm), labelled HeNe, emits 4 mW of laser
light. After passing through a polarizing beam splitter, PBS, a half-wave plate,
HW rotates the beam’s polarization by 45°. A galvanometer-driven mirror, GDM,

deflects the beam, controlling the location of the laser’s focus. A simple Keplerian
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telescope, T, forms an image of the microscope objective’s back aperture on the
surface of the galvanometer-driven mirror. A microscope objective lens (Olympus
S-Plan Apochromatic, NA = 1.4, f = 1.62mm, 100x), MO, focuses the laser
beam to a diffraction-limited spot in its focal plane. If a particle lies in focal
point of the beam, it will reflect a small fraction of the incident laser light. The
reflected light follows its original path back towards the laser, but the second pass
through the halfwave plate rotates the polarization of the beam by an additional
45°. The polarization of the returning laser light has now been rotated a total
of 90° and is reflected by the polarizing beam splitter. The reflected light passes
through an aperture, AP, and is collected by a photodiode, PD. The signal from
the photodiode is amplified by a current pre-amplifier (Stanford Research SR570),
PA, stored in a digital oscilloscope (Hewlett Packard 35670A), DO, and transferred
to a personal computer, PC, over a GPIB interface, Fig. A.2. The galvanometer
driven mirror is controlled by the galvanometer driver (Cambridge Technology, 603X
Dual-Axis Mirror Positioning System), GD that positions the mirror according to
a signal provided by a function generator, FG. A dielectric capacitive sensor in the
galvanometer-driven mirror returns the position of the mirror to the galvanometer
driver for feedback. This signal is recorded by the digital oscilloscope and transferred
to the personal computer, to track the position of the laser’s focus, Fig. A.2. For
calibration, this signal can be compared to a trajectory of the laser focus measured
with DVM.

Particle trajectories extracted from RCM images have enough spatial and tem-
poral resolution to study the dynamics of a particle trapped in an optical tweezer.
RCM images of colloidal spheres have better contrast and less pixellation than im-

ages formed with DVM, Fig. A.3. The pixellation of the image is limited by the
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Figure A.2: Raw RCM Data. (top) The trajectory of the laser focus, as detected
by a dielectric capacitive sensor in the galvanometer-driven mirror. (bottom) The
intensity of reflected light, as recorded by the photodiode. The multiple peaks are
consecutive images of one sphere, separated by 1/400 sec.
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sample rate of our digital oscilloscope. At a 22 kHz sample rate, the RCM image
of a 1 um sphere contains about 50 pixels, while a one-dimensional slice of a DVM
image of the same sphere has only about 13 pixels. The particle location is iden-
tified as the maximum of each peak. We determine the maximum of each peak to
sub-pixel accuracy by fitting the pixels near the peak of the image to a parabola.
While DVM has a typical spatial resolution of about 20 nm, [33], this technique
reliably locates particles to within dz = 5nm. RCM’s temporal resolution is deter-
mined by the scan rate of the probe laser, which was limited by the galvanometer to
200 Hz. While DVM updates particle locations at 60 Hz, our RCM setup updates
the particle location at 400 Hz. Indeed, RCM can resolve the motions of a particle

in an optical tweezer, Fig. A.4.

A.2 Equilibrium Measurement of Tweezer Potential

We now apply RCM to measure the potential felt by a particle trapped in an
optical tweezer. A frequency-doubled Nd:YVO laser (Coherent Verdi, A = 532 nm,
P =25mW) forms an optical tweezer in the focal plane of a microscope objective.
The tweezer confines a one micron diameter silica sphere ( @ = (0.495 £ 0.025) um,
Duke Scientific, Cat. No. 8100) to a small volume just beyond the microscope
objective’s focal plane, Fig. A.5. The divergence of the scanned probe laser is
adjusted to displace the focal point of the probe so that it passes through the
center of the trapping volume, maximizing the reflected light signal. The trajectory
of the sphere in the tweezer is recorded for 27 sec, and extracted using the techniques

described above, Fig. A.4.
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Objective Lens
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Trapped Particle

Figure A.5: Probing tweezer dynamics. An optical tweezer traps a dielectric particle
just beyond the focal plane of the microscope objective. A probe laser scans through
the center of the particle, recording the particle location. The probe is shown in
time averaged form as a blurred line through the particle.

The observed particle positions are compiled to calculate to the probability dis-
tribution of sphere locations, P(z), Fig. A.6. Assuming a Boltzmann distribution,
the potential experienced by the particle in the optical tweezer is extracted using

Eq. A.2 and is plotted in Fig. A.7. As expected, this potential is well-approximated

by a harmonic potential:

1. 9

Ux) = §k$ . (A.4)

Optical tweezer potentials are typically much deeper than a few kT, and a
trapped particle buffeted by thermal fluctuations only wanders within a few kg7
of its potential minimum. Therefore, it is no surprise that a particle trapped
in an optical tweezer feels a harmonic potential. A fit to this form yields,

_ -4 kT N
k= (3.00 % 0.04) x 1074 ZE about 1 £,
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Figure A.6: Probability distribution of particle locations in a 25 mW optical tweezer.
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Figure A.7: The potential of a particle trapped in an optical tweezer made with
25 mW of laser light. The solid curve is a fit to a harmonic potential, Eq. A.4.
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We can determine the effective force resolution of this technique. Identifying
the force resolution, 0 F', as the force experienced by the sphere at its minimum
resolvable displacement, 6 = kdz, we find that 0F = 0.0014 kgT/nm = 6 fN.
This force resolution is typical of optical tweezer measurements [23, 105].

We can estimate the depth of the optical trap. Since the trapping laser is focused
to a diffraction limited spot, the width of the trap is about the wavelength of light,
A. Assuming that the trap is harmonic over this range, the depth of the trap, U,,

is approximately:

In this case, A = 532 nm, and the trap is about 10 k71" deep.

A.3 Non-equilibrium Measurement of Tweezer Stiffness

and Hydrodynamic Drag

Let us now reanalyze the same data, considering the trapped sphere’s approach
toward equilibrium. Fig. A.8 shows the decay of the auto-correlation function. Fits
to Eq. A.3 yield a tweezer stiffness, £k = (3.14+0.1) x 10~% %, and a hydrodynamic
drag constant, v = (2.9 4 0.1) x 1076 %. The tweezer strength agrees well with
the equilibrium result, but the viscous drag term is higher than predicted from the
Stokes form, y = 6mna = 2.4 x 1076 %. In this case, the increased drag is the

result of hydrodynamic coupling of the sphere to a wall. As we saw in Chapter 3,



118

4000 C T T T T T T T T L L L I B B B B B 7]
B 4000 Fr T L R L B
,: 3000; é E
3000 F g i
= o 2000[- = *
— T S 1]
N B — £ —
< L = E -
IS L 2 1000 E i
|E| L r -
A 2000~ —
154 : = = ]
S r g ]
X L = ] _
v B A000F . .o ] ]
L 0.0 0.5 1.0 t[J;gC] 2.0 25 3.0 _
1000 — —
0 L Il Il Il Il Il Il Il Il Il ‘ Il Il Il Il Il Il Il Il Il ‘ Il Il Il Il Il Il Il Il Il T Il Il Il Il \:[ Il I I il

0 10 20 30 40 50

t[ms]
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the viscous drag on a particle of radius a a distance h above a wall is

v(h) 9 a a?
=14+ —— — |- A.
6mna * 16 h +0 <h3 (A-6)

In this experiment, the ball was trapped h = (2.5 £ 1.0) um above a wall, so that

Eq. A.6 gives v(h) = (2.7+0.2) x 1076 ljﬁg;‘s, which agrees well with the measured
value. This highlights a previously noted [107,110] but never before demonstrated
potential pitfall of calibrating optical tweezers with hydrodynamic drag forces. If
the appropriate hydrodynamics are not employed in drag force measurements, one
can substantially underestimate the strength of the optical tweezer. Therefore,
measurements based on the statistical mechanics of particles trapped in an tweezer
yield more reliable values of trap stiffness than force/response measurements that

assume a form for the hydrodynamic drag on a trapped particle.

A.4 Tweezer Stiffness vs. Laser Intensity

In Section A.3, we described an equilibrium measurement of the potential felt by
a one micron diameter silica sphere in an optical trap. This measurement was
repeated to extract tweezer potentials for several different laser intensities, from
25 to 250mW, Fig. A.9. The potentials were fit to a harmonic form to find the
tweezer stiffness, k, as a function of the intensity of the trapping laser, Fig. A.10.
As expected, higher laser intensities produce stiffer optical tweezers.

Since the size of the trapped particle is comparable to the wavelength of light and
we do not have a precise description of the intensity profile of our optical tweezer,
we cannot rigorously compare the tweezer’s absolute stiffness to any theory. The

laser intensity was measured with a power meter (Coherent Lasermate 10W) at the
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Figure A.9: Comparison of tweezer potentials at 25 mW and 250 mW . Fits to

a harmonic potential yield: for 25 mW, k = (3.00 & 0.04) x 10_4 kp 121, Trms =
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output of the laser head. Mirrors, lenses and filters absorb, scatter and reflect well
over fifty percent of the laser light as it travels from the laser head to the focal
plane of the microscope objective. Since we do not know the precise fraction of the
light that reaches the final tweezer, we simply report the intensity measured by the
power meter.

However, we can compare the intensity dependence of the trapping force to
Harada and Asakura’s derivation of optical gradient forces in the Rayleigh limit. If

the sphere is dominated by the gradient force then Eq. 2.4 implies that

—

F(7) = aVI(7) = al,V f(F), (A.7)

where o describes the optical and geometrical properties of the trapped particle, I,
is the laser intensity and f(7) describes the geometrical profile of the beam. The

spring constant of the laser in the x-direction is therefore
ky = 0p Fy(F)|7, = alod2f(7)|7, = Blo, (A.8)

where 7, is the location of the trap’s potential minimum. Fitting the mea-

sured tweezer stiffness’ dependence on laser intensity to Eq. A.8, we find

kpT
nmZmW’

We can estimate the overall depth of the optical trap as a function of laser

B=(9.840.1)x 1076 Fig. A.10.

intensity. Combining Eqs. A.5 and A.8,

1. /2?2 2\ 2
it () =0 ()1 a9
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For our particular setup

Io
[mW]

Uy~ 0.7 ( ) kpT. (A.10)

Therefore, for each milliwatt of laser light emitted from our laser, the depth of the

optical trap increases by about 1kgT'
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