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The Biham-Middleton-Levine traffic model is perhaps the simplest system exhibiting phase transitions and
self-organization. Moreover, it is an underpinning to extensive modern studies of traffic flow. The general
belief is that the system exhibits a sharp phase transition from freely flowing to fully jammed, as a function of
initial density of cars. However, we discover intermediate stable phases, where jams and freely flowing traffic
coexist. The geometric structure of such phases is highly regular, with bands of free flowing traffic intersecting
at jammed wave fronts that propagate smoothly through the space. Instead of a phase transition as a function
of density, we see bifurcation points, where intermediate phases begin coexisting with the more conventionally
known phases. We show that the regular geometric structure is in part a consequence of the finite size and
aspect ratio of the underlying lattice, and that for certain aspect ratios the asymptotic intermediate phase is on
a periodic limit cyclesthe exact microscopic configuration recurs eacht time stepsd. Aside from describing
these intermediate states, which previously were overlooked, we derive simple equations to describe the
geometric constraints, and predict their asymptotic velocities.
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I. INTRODUCTION

Modeling vehicular and internet traffic, thereby gaining
an understanding of congestion patterns and jamming phe-
nomena, is an extremely relevant problem, with obvious
practical ramifications. One popular approach is the use of
simple discrete cellular automatonsCAd models, which cap-
ture aspects of the dynamics of discrete vehicles or packets.
One of the most cited examples of such a CA model is the
Biham, Middleton, and Levine modelsBML d of two-
dimensional traffic flowf1g. At the time of this writing, Ref.
f1g has received over 200 citations in the scientific literature,
and it serves as a theoretical underpinning for the physicists’
approach to modeling traffic. Note that using techniques
from physics to model traffic has been a fruitful research area
for more than a decade, and continues to be. For recent re-
views see Refs.f2–5g.

The BML model describes two species of “cars” moving
on a two-dimensional square lattice, with periodic boundary
conditions. The model is extremely simple, yet the behaviors
it displays are extraordinarily complex. The system shows
what appears to be a phase transition from having all cars
freely moving at all time steps, to complete gridlock, where
no car can ever move again. In addition, in all the phases, the
system becomes fully correlated, forming a range of interest-
ing stable self-organized patterns. It is perhaps the simplest
model where one can study both phase transitions and self
organization. This model has recently become increasingly
of interest to the combinatorial mathematics community, as it
continues to elude rigorous theoretical analysisf6g.

We implement the BML model and study its behaviors via
computer simulation. We discover stable intermediate states
that have never been reported before for the BML model,
with highly structured geometric patterns of wave fronts of

jams moving through otherwise freely flowing traffic. We
show the geometry of these patterns arise due to the finite
size and periodic boundary conditions of the underlying lat-
tice. We also show that the aspect ratio of the lattice imposes
geometric constraints which restrict the patterns, and derive
simple equations describing these geometric constraints
which allow us to calculate the asymptotic velocities. For
certain aspect ratios we can prove that the intermediate con-
figurations end up on a periodic limit cycle—the exact mi-
croscopic configurations recur eacht time steps—hence
these states are stable for all time. For the other aspect ratios,
we show the intermediate states are at least metastable, last-
ing as long as we could simulate them. By establishing the
existence of these intermediate states, we show that the con-
ventional beliefs about this model need to be reexamined.
Contrary to the evidence published elsewhere, only on
smaller spaces do we see evidence for a sharp transition from
freely flowing to fully jammed configurations as a function
of the initial density of cars,r. Instead we observe bifurca-
tions as a function ofr, where different phases can begin to
coexist. The bifurcation points, the range of the windows for
phase coexistence, and the number of coexisting phases de-
pend on the size and the aspect ratio of the underlying lattice.
Considering the amount of ongoing work on this model, and
its use in large scale, complex simulations of traffic, we be-
lieve it is important to understand these observations.

This article is organized as follows. In Sec. II we review
the BML model and relevant past work. In Sec. III we de-
scribe our simulations and empirical results. Section IV con-
tains a discussion of the kinetic pathways, geometric con-
straints, and derivation of the velocities for the intermediate
states. Finally, in Sec. V, we summarize and discuss open
questions and areas for further inquiry.

II. THE BML MODEL

Consider two species of particlessi.e., “cars”d, eastbound
and northbound swhich we also interchangeably call*Electronic address: raissa@alum.mit.edu
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“brown” and “black,” respectivelyd, which populate a two-
dimensional square lattice with periodic boundary condi-
tions. Each lattice site can be in one of three states: empty,
occupied by an eastbound car, or occupied by a northbound
car. The cars are initially distributed uniformly at random
along the lattice sites, with spatial densityr susually taken to
be the same for both north- and eastbound carsd. The discrete
time dynamics has two phases. On even steps, all eastbound
cars synchronously attempt to advance one lattice site toward
the east. If the site eastward of a car is currently empty, it
advances. Otherwise, it remains stationaryseven if the east-
ward site is to become empty during the current time stepd.
On odd time steps, the northbound cars follow the analogous
dynamics, only attempting to advance to the northward site.
The dynamics is fully deterministic. The only randomness is
in the initial condition. Furthermore, the dynamics conserves
cars, and does not allow for an eastbound car to change its
row, nor for a northbound car to change its column. So on an
L3L lattice, there are 2L conservation laws.

If initialized with a low enough density of cars, the sys-
tem eventually self-organizes into a configuration where all
cars can move at each time stepseach car has asymptotic
velocity equal to unityd. A typical such configuration is
shown in Fig. 1sad. If initialized at slightly higher density, the
cars are blocked by other cars, until eventually all cars end
up participating in one large global jam, where no car can
move sasymptotic velocity equal to zerod. A typical global
jam is shown in Fig. 1sbd. The transition between the two
behaviors has been thought of as sharp, showing character-
istics of a first order phase transition. Initialized at much
higher densities, small jams begin simultaneously throughout
the lattice and merge almost immediately with other small
jams, leaving all cars blockedswith all velocities equal to
zerod. In this high density phase, the system has no time to
self-organize, and instead of one global jam, we observe a
collection of small random jams. This latter type of jam has
been compared to traffic in a large city during “rush hour:” a
car might escape one jam, only to quickly join the tail of the

next. We expect that for an infinite size system, the fully
jammed state resembles this random type of jam.

Most of the understanding of the BML model has come
from numerical simulationsf1,7–13g. Theoretical analysis
has been limited to mean-field approachesf7,14–16g, and
attempts to start with continuum hydrodynamic equations
and formulate an equivalent discrete modelf17g. There are
general beliefs about this model, that the transition is first
order and that the critical densityrc decreases with increas-
ing system size, possibly reaching the valuerc=0 as the
system size approaches infinityf1g. The BML model has
been simulated extensively, but there are inconsistencies in
the literature and lack of detail of numerical implementations
ssuch as the size of the ensemble being averaged overd. De-
tails of numerical studies have been published only for small
systems, on the order ofL=10–50 f7,8g. Larger systems
have only been studied coarsely, or in the context of self-
organized versus random jamsf9,10g.

Despite extensive numerical simulation, the existence of
stable intermediate phasesswith 0,v,1d has not been ex-
plicitly reported previously. Fukui and Ishibashif8g do show
evidence of the existence of an intermediate phase in one
plot. They note that for intermediate values ofr, v “fluctu-
ates around a certain value for a long time.” The value shown
in their plot is extremely close to the values we observe
splotted in Sec. IIId. Aside from this comment, they do not
pursue the issue further. A careful study by Török and
Kertészf11g contains precise details of their numerical simu-
lations. They are studying a variant of BML with faster con-
vergence timesscalled the green wave modeld. Since it is not
possible to theoretically predict the convergence time, they
estimate it, and apply the following, very reasonable, empiri-
cal heuristic. If a realization has not reached a state, withv
<0 or v<1, within an allotted timestaken to be five times
the estimated convergence timed, that realization is dis-
carded. We can only assume some of the studies of the BML
model may have used a similar criteria of discarding “non-
converged” states. Note that for continuum models, interme-

FIG. 1. sColor onlined Typical configurations observed for the BML model on anL3L system of sizeL=256.sad The free flowing stage,
where all particles advance during each updatesv=1d. Note the ordered stripes of alternating east- and northbound cars. The width of the
stripes increases, on average, with densityr while in the low density phase.sbd A fully jammed configuration, consisting of one global jam.
Note the jam lengthÎ2L is larger than the system size.scd A high density, random jam configuration.
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diate phases of jammed wave fronts moving through other-
wise freely flowing traffic have been reported. See for
instance Ref.f18g.

Sensitivity of the BML model to boundary conditions has
been reported previously. Martínezet al. f12g study the dilute
limit sr→0d, and show that different results are obtained for
an “entangled” torus versus a conventional one. They raise
interesting questions about how to get at the bulk properties
using only finite size simulations, but do not quantify nor
pursue the effects further. Chau, Wan, and Yanf13g study the
BML model on the torus with random boundary conditions
sBCsd fmeaning that particles moving off the rightstopd edge
reappear at some randomly selected site on the leftsbottomd
edgeg. They claimv.0 wheneverr,1, and hence dismiss
such systems as being “not very interesting.” They also note
that the velocity and critical density depend sensitively on
the choice of BCs, but they also do not pursue the effects
further.

III. SIMULATION RESULTS

We implement the BML model on square lattices of finite
sizeL3L8, for a range of sizes and varying aspect ratios. For
square aspect ratiossi.e., L=L8d, the lengths studied range
from L=64 to 512. We also study rectangular aspect ratios
where the widthL is an integer multiple of the heightL8, and
where L and L8 are relatively prime. On each lattice, we
implement a range of densitiesr, studying at least ten real-

izations for each density. All simulations are implemented on
a special purpose cellular automata machine, the CAM8
f19g. The CAM8 performs approximately 108 site updates
per second, comparable to a modern high-performance desk-
top computer. The main advantage of the CAM8 is that it
allows for excellent visualization of the system, with no
overhead in the rendering, giving us live video output of the
dynamics of the system. As discussed in Sec. IV, visualizing
the kinetic pathway gives crucial insight into the formation
of the intermediate states.

The main subtlety involved with simulating this model is
determining the convergence timesi.e., the time it takes to
reach the asymptotic behaviord. All realizations were simu-
lated until convergedsv=0, v=1, or the periodic limit cycle
was reachedd or for times out to at leastt=23106 time steps.
Of the realizations that had not yet converged, many were
simulated for orders of magnitude beyond. We find this a
reasonable compromise, since the compute power to simu-

FIG. 2. Plot of the average velocity for each individual realiza-
tion v versus the densityr for that realization, for anL3L lattice:
L=sad 64, sbd 128, scd 256, andsdd 512. Note the emergence of an
intermediate phase forL.64. The value ofv for the intermediate
state becomes more crisply defined with increasing system size, and
that the window of coexistence between the phases broadens. For
theL=512 system, the average value ofv in the intermediate phase
is kvsl=0.673±0.005. The dotted line shown insbd–sdd is the pre-
diction from Eq.s24d. FIG. 3. sColor onlined Examples of typical intermediate geom-

etry. sad A system with square aspect ratio whereL=512,vr =1/2,
andvb=2, wherevr andvb are winding numbers to be defined in
Sec. IV B. sbd A system with rectangular aspect ratio whereL
=377, L8=233, vr =1, andvb=3. Note that insad there are many
disordered, random cars in the space between the bands, yet insbd
all cars are ordered. We find this crisp order shown by the latter
example for all realizations studied on rectangular aspect ratios with
L and L8 relatively prime. If L and L8 are not relatively prime,
random disordered cars located between the bands persist. Note that
Fig. 9 below is a closeup of the region that has just shed from the
jams in sbd.
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late all samples to times greater than 108 is beyond our cur-
rent capacity. Throughout the remainder of the manuscript,
we refer interchangeably to the eastbound cars as “brown”
and the northbound as “black.”

A. Square aspect ratios

For small size systems we actually observe the predicted
behavior of a sharp transition from freely flowing to total
gridlock. Figure 2sad is for anL3L system withL=64. It is
a plot of the final average velocity observed for each realiza-
tion v versus the density for that particular realization. Note
that we are plotting the average velocity for each individual
realization, not an average over all realizations initialized
with the samer shence error bars are on the order of the size
of the plotting symbol usedd. Surprisingly, when we imple-
ment systems withL.64, we observe a bifurcation where
two phases start to coexist, as we go from low to intermedi-
ate values ofr. The second phase that emerges has average
velocity v,2/3, as shown in Fig. 2. In addition, these inter-
mediate states have a very well defined geometry, of bands
of brown stripes with slope one-half, criss-crossing bands of
black stripes with slope 2. An example of the geometry is
shown in Fig. 3. Jammed wave fronts are located at the in-
tersections of the bands, and, as the systems evolves in time,
move as solid structures uniformly down toward the south-
west with unit velocity. Particles are freed from the head of
each jam, but a like number of new jammed particles aggre-
gate at the tail. As discussed in detail below, the underlying
lattice imposes constraints on the allowed topologies of the

configurations. In Sec. IV, we derive a simple formulation of
the constraints.

All realizations contributing to Fig. 2 were simulated to at
leastt=23106 full updates of the entire space, with various
realizations simulated fort.108. We do occasionally ob-
serve a realization persist in thev,2/3 state for orders of
magnitude, then suddenly jump to eitherv=0 or v=1, with
the latter being more common. Regardless, the intermediate
state is at least metastable, persisting for longer than we
could simulate most realizations. Furthermore it is “univer-
sal” in the sense that the value ofv,2/3 is independent of
system size and density, and all systems that do not go to
v=0 or 1 go to the same intermediate statesi.e., the same
geometric structure and approximate value ofvd. The reason
we do not average over the individual realizations is that it
would obscure the behavior. Instead of displaying the three
distinct quantized states, averaging would produce a deceit-
fully smoothly decaying curve, as shown for instance in Fig.
4.

From our data, it is difficult to determine the exact bifur-
cation point where the phases begin to coexist, and the point
where they cease to. We attempted to identify the factors that
distinguished realizations which converge tov=0 from
those, with the same density, that converge tov,2/3. We
first investigated connections to anisotropy, such as an im-
balance between the total number of eastbound versus north-
bound particles. But we found no correlation. The probability
a realization would jam or go to the intermediate state is
independent of this asymmetry. We also looked at a more
fine-grained measure: the line density of brown particles ver-
sus the black. Again we found no correlation between this
asymmetry and the likelihood of jamming.

In Sec. IV we discuss the kinetic mechanism observed,
which gives rise to the interleaved band structure exhibited
by the intermediate states. As mentioned above, the jam in-
terface moves ballistically, with unit speed, toward the south-
west. The width of the jam interface can fluctuate. It seems

FIG. 4. Comparison ofsad behavior of individual realizations to
sbd the behavior of the same realizations averaged together by den-
sity, for a square system ofL=512. Note that by averaging the
quantized nature of the final state for each realization is obscured.

FIG. 5. Median convergence times for the different square sys-
tem sizes simulated. These results are consistent with previous stud-
ies. Note that a value oft=23106 should be interpreted ast.2
3106.

RAISSA M. D’SOUZA PHYSICAL REVIEW E71, 066112s2005d

066112-4



for the L=64 system that the fluctuations are large enough
that eventually the head of one jam meets the tail of the
previous, continuing until eventually one global jam forms.
Figure 5 shows the median convergence times observed for
the systems with square aspect ratios. Note that the a value of
t=23106 really meanst.23106.

B. Rectangular aspect ratios

We also implement the BML model on systems with vary-
ing rectangular aspect ratios. In particular we study lattices
where the two lattice lengths are subsequent Fibonacci num-
bers. Figure 6sad is the plot analogous to those shown in Fig.
2, for a system withL=89 andL8=55. Note we see the same
intermediate velocity ofv,2/3, but we also see the emer-
gence of one more possible phase withv,2/5. All the con-
figurations withv,2/3 resemble the one shown in Fig. 6sbd,

with one brown band wrapping around thex̂ axis, and three
black bands. The jam points are at the intersections of the
bands. Note the crisp, regular geometry. Recall Fig. 3sbd
which is for an equivalent, but larger, system with the same
Fibonnaci aspect ratio but withL=377 andL8=233. This
figure more clearly illustrates the highly ordered geometry. It
also includes the definitions of several of the parameters used
in the analysis in the subsequent sections. All realizations
with v,2/5 resemble the one shown in Fig. 6scd, with one
brown band and approximately two black bandssthough the
latter are not so clearly definedd.

One of the most striking differences when comparing
these rectangular aspect ratios to the square, is that for the
rectangular, the intermediate configurations are exactly peri-
odic: the exact microscopic configuration of particles repeats
every t updates. We observe systems of sizeL=89 andL8
=55, settling into the periodic behavior typically in a time
less thant,100 000 updates, with a period on the order of
t,6000 updates. Figure 7 is a plot illustrating such typical
behavior. Another striking difference is that not one realiza-
tion has jammed fullysv=0d, despite the fact that the largest
density simulated isr=0.45. Note that for the square aspect
ratios, the bifurcation point where the phases cease to coexist
is at r<0.40. Another striking differences is the lack of dis-
order for the relatively prime systems with rectangular aspect
ratios. In Fig. 3sad there are isolated particless“dislocations”d

FIG. 6. sColor onlined sad The average velocity for each indi-
vidual realizationv versus the densityr for that realization, for an
L3L8 lattice, with L=89 andL8=55. Note the appearance of yet
another well defined intermediate state. Note also that the bifurca-
tion point, where phase coexistence ceases, has not yet been
reached, despite the range ofr.0.44. The dotted lines are the
predicted velocities from Eqs.s18d and s21d, vr1<0.7430 andvr2

<0.3707. The empirically determined average values are, respec-
tively, kvr1l=0.700±0.002 andkvr2l=0.364±0.004. The geometries
of the two types of intermediate states are distinct.sbd A typical
configuration withv,2/3. Interface slopes=1. scd A typical con-
figuration withv,2/5. Interface slopes<2/3. Note that the inter-
face is the surface where the jammed regions of different colors
meet.

FIG. 7. For simulations withL=89 andL8=55 andr=0.38, we
plot sad the time to reach the periodic limit cycle versus sample
number;sbd the period of the cyclet versus sample number. Eight
of the ten realizations simulated reach final configurations of type I,
as shown in Fig. 6sbd. They all have the shorter values oft. Sur-
prisingly six of these eight realizations have the same periodt
=5114, though their microscopic configurations differ. The other
two realizations, with significantly larger values oft, are of type II,
as shown in Fig. 6scd.
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moving in the area between the bands. However, for the
rectangular case, all the particles manage to join the ordered
bands.

IV. GEOMETRIC CONSIDERATIONS

A. Kinetic pathways

By watching the dynamical evolution of the system, start-
ing from the initial configuration, the mechanism by which
the intermediate phases form can be observed. Often one
global jam initially begins to form, yet the head of the jam
just fails to meet up with the tail, leaving a few lattice sites
of distance between them. Particles shed from the head as
soon as allowed by the local environmentssince all particles
move whenever possibled, leaving with a well defined order.
See Ref.f20g, for video images of the dynamical evolution.

To understand the pattern formed by the shedding, con-
sider first one row of a solid isolated block of brown par-
ticles. Since the particles only advance provided the site they
wish to occupy is empty, a particle would leave the head of
the jam only every other time step. However, we can now
consider a diagonal interface formed by a triangular block of
brown particles in contact with a triangular block of black
particles. See Fig. 8. Note brownseastboundd particles are
represented by x and blacksnorthboundd particles by o. Each
subsequent time step illustrated corresponds to one complete
update of the spacesi.e., one north step followed by one east
stepd. Recall, all particles of the same species update syn-
chronously. Step 1: No o’s are able to move, but, during the
east phase of the time step, the first x moves away from the
jam, opening up a space. Step 2: The first o advances. This
blocks all other x’s in the original row, yet opens up a space
for an x, one site from the original x along the southwest
diagonal, to advance. The original x to move also continues
advancing. Step 3: That first o continues advancing and

opens up a space for an x in the original row to advance—
two time steps delayed from the first x to move in that row.
The o below this original o is currently blocked. However, an
o one site from the original along the southwest diagonal is
now free to advance. Note that this o blocks the x in its
newly occupied row from advancing, yet opens up a space
for the x one row southward to advance. Hence a pattern
emerges: a brown particle sheds from within the same row
only every third time step, yet from a site further southwest
every time step, yielding brown bands of densityrr =1/3
with slopesr =1/2. Likewise for the black particles, a black
particle sheds from within the same column only every third
time step, yet from a successive site along the southwest
every time step, yielding black bands of densityrb=1/3 with
slopesb=2. The jams occur at the intersections of the bands,
and the interface of a jam has slopes. Typically, s=1. In Fig.
8 one can see the order beginning to emerge, and the inter-
face withs=1 in the lower left hand corner.

More illuminating is to view a closeup near the jammed
regions. Figure 9 is a zoomed-in view of the region near one
of the jams shown in Fig. 3sbd. Note the order that exists in
the region above the jam interface, which has shed from the
jam in the manner described above. In this region there are
alternating diagonal stripes of black, brown, and empty. The
stripes have “phase locked”—on the next update the black
stripes move into the empty stripe regions, leaving room for
the brown stripes to move on the subsequent update, and so
on. Hence the system has organized itself into the highest
density packing that still allows all particles to move with
v=1.

B. Winding number

Since the system lives on a torus, the bands must wrap
seamlessly around it. Noting these facts, we can develop a

FIG. 8. Shedding from a jam.
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mathematical expression for the number of brown bandsvr
and the number of blackvb sreferred to, respectively, as the
“winding” number for brown and blackd that must be
present. Essentially, we can calculate the length of the re-
gions of slope 1/2, slopes, and slope 2 that must be present
for the bands to wrap around the torus.sThe slopes are re-
spectively those of the brown band, the interface, and the
black band.d Consider anL3L8 lattice, and a brown band
starting in the lower left hand corner. Moving out along thex̂
direction, there arek sites with slope 1/2 andk8 sites with
slopes. Similarly for a black band starting in the lower left
hand corner, there arem sites with slope 2 andm8 sites with
slopes. The constraints are

k + k8 = L, s1d

1

2
k + sk8 = vrL8, s2d

m+ m8 = L, s3d

2m+ sm8 = vbL8, s4d

k8 = m8, s5d

where, due to the lattice,hk,k8 ,m,m8j are positive integers,
and hvr ,vbj are either positive integers or equal to 1/g,
where g is a positive integerfe.g., for the configuration
shown in Fig. 3sad, vr =1/2g. The final equation, Eq.s5d,
expresses that the length of the jam interface must be the
same for the brown and black cars. Combining this system
sof five equations in seven unknownsd, we can solve some

combination of variables in terms of the others. Solving first
for k8;

k8 = s2vrL8 − Ld/s2s− 1d. s6d

Using this, we can solve forvb in terms ofvr, s, L, andL8,
and obtain

vb =
2L

L8
−

s2 − sd
s2s− 1d

S2vr −
L

L8
D . s7d

Knowing that the interface slopes,1, we can tabulate
the allowed values ofvr andvb in terms of the aspect ratio
of the space,L /L8. The allowed values for various aspect
ratios are listed in Table I. Note, the valuevr =1/2 means the
brown band has only reached heightL8 /2 in traversing dis-
tanceL fas in Fig. 3sadg. We implement systems with the
various aspect ratios shown in Table I, and find that the ex-
perimental configurations observed all match the predicted
behavior. See in addition to the previous figures, Fig. 10. The
final lines in Table I are for systems where we observe em-
pirically the values ofvr and vb, and using Eq.s7d can
predict the value ofs. Recall thatvr andvb must be integers.
The system seems to tune the value ofs to allow this. For
instance, ifL andL8 are successive Fibonacci numbersfi.e.,
L /L8=s1+Î5d /2g, a rearrangement of Eq.s7d predicts s
=1.17, which matches our empirical observations. Note in
Fig. 3sbd, the upper jam has small glitches wheres.1.

FIG. 9. sColor onlined A zoomed in view of a jam shown in Fig.
3sbd. The interface of the jam is shown in the lower left hand corner.
It is the region where the jams of different colors meet. Note the
slopes=1.

TABLE I. Allowed winding numbersvr andvb for lattices with
different aspect ratiosL /L8 and interface slopes. The values ofv
which include error bars are from our numerical simulations.

L /L8 s vr vb v

1 1 1/2 2 0.673±0.005

1 1 1 1 0

2 1 1 4 ,2/3

2 1 2 2 0

5/3 1 1 3 ,2/3

3 1 2 5 ,2/3

s1+Î5d /2 1.17 1 3 0.700±0.002

s1+Î5d /2 7/10 1 2 0.364±0.004

FIG. 10. sColor onlined A typical realization withL=769 and
L8=256si.e., L=3L8+1, where the additional lattice site is to make
the lengths relatively primed. Note that as predicted in Table I, the
configuration is consistent withs=1, vr =2, andvb=5. Realizations
with L=768 andL8=256 si.e., L=3L8d have a similar structure, but
surprisingly lack the crisp order, and instead have disordered cars at
random locations between the bands. For images of the latter, see
Ref. f20g.
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C. Average velocity

Figure 3 illustrates the typical geometry for realizations
with v,2/3. In this example,vr =1 andvb=3. We label on
the figure the lengthsa, b, c, andd, denoting, respectively,
the width of the brown band, the black band, the black jam,
and the brown jam. We define two discontinuous functions
which will simplify notation later on:

Qrsvrd = H1 if vr ù 1,

1/vr if vr , 1,
J s8d

Qbsvbd = Hvb if vb ù 1,

1 if vb , 1.
J s9d

In other words,Qr is the number of independent brown
bands in one column of the lattice.Qb is the number of
independent black bands in one row of the lattice. If we
denote the density of the brown band asra, we can express
the average number of brown particles in a column of the
space:

Qrsvrdraa = rL8/2. s10d

Likewise, the average number of black particles in a row is

Qbsvbdrbb = rL/2. s11d

Recall that r is the overall particle densitysbrown plus
blackd. Empirically we determined thatra=rb=1/3,which is
a consequence of the dynamics described in Sec. IV A. Us-
ing the basic equations described in Sec. IV B and knowl-
edge of the “typical” geometry, we can solve for the velocity
of the intermediate state. Unfortunately, we have to consider
the square and rectangular aspect ratios independently, and
do not have one equation that describes all cases. The as-
sumptions described above are valid for the rectangular as-
pect ratios, but fail to capture the full behavior of the square
ones.

1. Rectangular aspect ratios type I

Configurations such as the one shown in Fig. 3 have a
regular, highly structured, geometry that is well described by
the formalism in Sec. IV B. We find that the values ofk8
predicted by Eq.s6d exactly match those obtained via nu-
merical simulation. Typically there arenj jams, with the par-
ticles equally divided amongst them. The interface width per
jam is ki8=k8 /nk, wherenk is the total number of jams one
brown band is involved in, as it wraps once around thex̂
axis. See Fig. 3sad, for example, wherenk<2 andnj =3.

The structure of the jams and the relevant geometric fac-
tors are shown in Fig. 11sad. The jams form trapezoidal
shapes of widthd. From simple geometric considerations, we
can show thatd=ki8 sinsu−fd;kki8. The jam width per line,
d, and per column,c is

c = d =
d

cosj
=

sinsu − fd
cosj

ki8 ; Gki8. s12d

However, note this is only true provided that there are
enough particles available in each column and in each row.
Otherwise,

d = dmax= rL/2vrQrsvrd and c = cmax= rL8Qbsvbd/2vb.

s13d

From similar geometric considerations we can show that
the length of the black jam,lb, is approximately

lb < bHcosf +
sinf

tanss − fdJ ; bg. s14d

Similarly, the length of the brown jam,l r, is approximately

l r < aHcosj +
sinj

tanss − fdJ ; aw. s15d

The total number of particles involved in the jams,J, is the
number of jams multiplied by the width and length:

FIG. 11. Typical jam configurations. For type I jams, shown in
sad, c=d=Gk8. For type II jams, shown insbd, d=dmax and c
=cmax. Knowing the slopes of the lines insad, s=1, sr =2, andsb

=1/2, we candetermine all of the anglesf=tan−1s1/2d, u=p /4,
s=tan−1 2, andj=sp /2−tan−1 2d.
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J < njdslb + l rd = s2vrL8 − LdkFS3

2
rL/QbsvbdDg

+ S3

2
rL8/QrsvrdDwG nj

nk
. s16d

For the data plotted in Fig. 6,L8 and L are two successive
Fibonacci numbers, henceL /L8=s1+Î5d /2;F. In agree-
ment with expected values shown in Table I,vr =1 fthus
Qrsvrd=1g and vb=3 fthus Qbsvbd=3g. For this geometry,
nj =nk=2. Plugging in these values into Eq.s16d,

J = s2 −FdkF1

2
g +

3

2FwGrLL8 < 0.2570rLL8. s17d

Solving for the velocity, noting that the overall number of
particlesN=rLL8,

vr1 = 1 −
J

N
< 0.7430. s18d

Note, this is independent ofr and independent ofL andL8.
This predicted value forvr1 is included in the plot of the
experimentally determined velocities, shown in Fig. 6. Note
that the calculated value slightly underestimates the number
of particles involved in the jamshence slightly overestimates
vr1d.

2. Rectangular aspect ratios type II

As mentioned, rectangular lattices are well described by
the formalism in Sec. IV. We observe the “rich” jam de-
scribed above, but also a second type of “depleted” jamsnot
enough particlesd. Empirically, all observations of this type
haves<2/3, and one large jam. See for instance Fig. 6scd.
The per row and per column widths of the jams are the
maximum,dmax and cmax, respectively, sinceGk8 is greater
than the number of particles available in a row or column. A
jam interface of lengthk8 and slopes swith s.1d involvesk8
columns, but onlysk8 rows. Hence the total number of par-
ticles involved in the jams,

J = k8ssdmax+ cmaxd = fs2vrL8 − Ld/s2s− 1dgfsrL/2vrQrsvrd

+ rL8Qbsvbd/2vbg. s19d

For the realizations contributing to the plot in Fig. 6,L /L8
=s1+Î5d /2;F, vr =1 fthus Qrsvrd=1g, vb=2 fthus
Qbsvbd=2g, and s=2/3 swhich is empirically determinedd.
Plugging these values in we find

J =
5

2
S 2

F − 1DS 7

20
F +

1

2
DrLL8 < 0.6293rLL8. s20d

Thus the average velocity

vr2 = 1 −
J

N
< 0.3707. s21d

We include this predicted value in the plot of Fig. 6. Note the
agreement with the experimental data.

3. Square aspect ratios

The typical geometry of an intermediate state for a square
lattice is shown in Fig. 3sad. The interfaces and especially the
edges of the bands are disordered and jagged. The slope
assumptions only hold approximately:sr <1/2 andsb<2.
Furthermore, there are several particles moving freely in the
low density regions, unlike for the rectangular lattices, where
all particles eventually order into the bands and jams. Also
unlike for the rectangular latticesfsee for instance Fig. 3sbdg,
the brown and black bands cross through each other without
the pronounced shifting upward.

We cannot use the formalism developed above in Sec.
IV B for this situation, since that formalism is based solely
on geometric constraints of winding seamlessly around the
lattice. A configuration on a square lattice withsr =1/2, sb
=2, s=1, would havewr =1/2.Plugging into Eq.s6d we find
the required length of the overall interface,k8=0. Instead,
empirically we find the black jams form a trapezoidal shape
of approximate lengthb and heighta/4. Likewise the brown
jams form a trapezoid of approximate lengtha and width
b/4. Each jam has this shape and there arenj =3 jams alto-
gether si.e., three distinct intersections of the bandsd. The
number of particles involved in jams,J, is

J < njsab/4 + ab/4d = 3a2/2. s22d

Using Eq. s10d to solve fora and the fact that the overall
number of particlesN=rLL8, we can solve for the fraction of
particles in the jammed state:

J

N
<

3

2
S3

4
rLD2 1

rL2 =
27

32
r. s23d

Hence the velocity

vs < 1 −
J

N
= 1 −

27

32
r. s24d

This predicted valuevs is included in the plots of Fig. 2. It
captures the features of the experimental data, including the
slight decrease invs with increasingr.

V. DISCUSSION

The BML traffic model is a simple model of a jamming
transition with self-organization. In our study, instead of
agreement with conventional beliefs, we find stable interme-
diate configurations with phase coexistence of jammed and
free flowing traffic. Such configurations have not been pre-
viously reported in the literature, despite the extensive
amount of past work on the BML model. Furthermore, these
intermediate configurations have interesting geometric and
topological properties, with different behaviors resulting as a
consequence of different aspect ratios of the underlying lat-
tice. We develop a formalism, based on geometric constraints
imposed by the lattice, to predict the asymptotic velocities of
the coexisting phases. Visualizing the kinetic pathways of the
evolving configurations was a key element in uncovering the
existence of the intermediate phases and, moreover, their pe-
riodic nature on lattices with relatively prime aspect ratios.
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The observations described in this manuscript open up a
range of new questions about the BML model.

As mentioned, instead of a phase transition as a function
of density, we observe a bifurcation point where the interme-
diate states first begin appearing, and a second bifurcation
point, where they completely cease to appear. Perhaps more
interesting than predicting the asymptotic velocities, would
be to calculate the locations of the bifurcation points. From
our experimental data, the exact location of the bifurcation
points are difficult to determine, and moreover, also depend
on the aspect ratio of the underlying lattice.

It is possible that there is a sharp phase transition. How-
ever, in such a case, the densityr would not be the appro-
priate control parameter. Perhaps a more appropriate control
parameter would be an interaction energy between north-
bound and eastbound particles. Note that when in the free
flowing state, the north and east particles have moved onto
noninteracting lattices. It may be possible that one can define
an initial energy based on the overlap or interaction between
two lattices, and use that as a control parameter.

A complication which makes theoretical treatment of the
BML model difficult is that it is not strictly monotonic. Add-

ing particles to a configuration that is known to jamsi.e.,
increasingrd can actually change the sequence of particle
interactions and result in that configuration going to free
flowing instead of jamming. Furthermore, it is known that
certain discrete models with the same property as BML—
namely, that the randomness is in the initial condition, yet the
dynamics fully deterministic—can be notoriously difficult to
deal with analytically. Examples include bootstrap percola-
tion f21g and the Lorentz lattice gasf22g. We modified the
BML model to include a small probability for particles to flip
species types at each update. Our preliminary studies, adding
this small amount of randomness to the dynamics, suggest
that the model with randomness has extremely different geo-
metric properties from the original BML model. In addition,
for the model with randomness, we did not observe the in-
termediate configurations described herein.

ACKNOWLEDGMENTS

This work has benefited greatly from discussions with
László Lovász, Alexander Holroyd, and Roman Kotecky.

f1g O. Biham, A. A. Middleton, and D. Levine, Phys. Rev. A46,
R6124s1992d.

f2g T. Nagatani, Rep. Prog. Phys.65, 1331s2002d.
f3g A. Schadschneider, Physica A313, 153 s2002d.
f4g D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep.

329, 199 s2000d.
f5g K. Nagel, Phys. Rev. E53, 4655s1996d.
f6g P. Winkler, Y. Peres, E. Friedgut, and L. Lovaszsprivate com-

municationd.
f7g T. Nagatani, J. Phys. Soc. Jpn.62, 2656s1993d.
f8g M. Fukui and Y. Ishibashi, J. Phys. Soc. Jpn.62, 3841s1993d.
f9g S. Tadaki and M. Kikuchi, Phys. Rev. E50, 4564s1994d.

f10g S. Tadaki and M. Kikuchi, J. Phys. Soc. Jpn.64, 4504s1995d.
f11g J. Török and J. Kertész, Physica A231, 515 s1996d.
f12g F. C. Martínez, J. A. Cuesta, J. M. Molera, and R. Brito, Phys.

Rev. E 51, R835s1995d.
f13g H. F. Chau, K. Y. Wan, and K. K. Yan, Physica A254, 117

s1998d.
f14g Y. Ishibashi and M. Fukui, J. Phys. Soc. Jpn.63, 2882s1994d.
f15g J. M. Molera, F. C. Martínez, J. A. Cuesta, and R. Brito, Phys.

Rev. E 51, 175 s1995d.
f16g B. H. Wang, Y. F. Woo, and P. M. Hui, J. Phys. A29, L31

s1996d.
f17g T. Nagatani, Phys. Rev. E59, 4857s1999d.
f18g T. S. Komatsu and S. Sasa, Phys. Rev. E52, 5574s1995d.
f19g N. H. Margolus, inPattern Formation and Lattice-Gas Au-

tomata, edited by A. Lawniczak and R. KapralsAmerican
Mathematical Society, Providence, RI, 1996d.

f20g http://research.microsoft.com/users/raissa/bml.htm
f21g A. E. Holroyd, Probab. Theory Relat. Fields125, 195 s2003d.
f22g G. R. Grimmett, inRandom Walks and Discrete Potential

Theory, edited by M. Picardello and W. WoesssCambridge
University Press, Cambridge, U.K., 1999d, pp. 205–213.

RAISSA M. D’SOUZA PHYSICAL REVIEW E71, 066112s2005d

066112-10


