In this letter we demonstrate an alternative method by which superlattices can be grown by molecular beam epitaxy (MBE) without mechanically shuttering the effusion sources. Shuttering techniques have numerous drawbacks including impurity generation problems and unreliability, particularly due to mechanical failure such as sticking which breaks the superlattice periodicity, obscures or destroys the desired transport property, and is not easily detected even after device fabrication. We show that a superlattice can be formed by an alternative method, i.e., by substrate rotation through the naturally asymmetric beam profiles in MBE growth chambers. The growth can be engineered to produce band discontinuities sufficient to cause conductance modulation even at room temperature.

In the growth of InGaAs the Ga and In beam profiles at the wafer surface are naturally symmetric. In rotating the substrate, a strained-layer superlattice (SL) is formed with a period equal to the layer thickness grown per substrate revolution. A rotation-induced superlattice is thereby created without mechanical shuttering.

The growth system used is a Riber-2300 with indium-free mounting (5-cm-diam substrates) using conventional thermal group III and As$_4$ sources. During growth, the center of the wafer is intentionally tilted away from the beam's focus-point by 5°. Typical substrate rotation speeds are between 2 and 5 rpm.

At constant growth rate the SL period is controlled by setting the substrate rotation speed. This is shown in Fig. 1 which is a transmission electron micrograph of a SL/RTD/SL structure where the rotation speed was doubled with the initiation of the RTD double-barrier growth. The doubling of the rotation speed results in a halving of the SL period which can be seen in Fig. 1.

FIG. 1. Transmission electron micrograph of an InGaAs SL showing the halving of the SL period with a doubling of the substrate rotation rate.

The SL is manifested electrically by a differential conductance oscillation in the RTD current-voltage (I-V) characteristic which is observable even at room temperature. A typical conductance oscillation prior to the resonant tunneling current peak is shown in the I-V and dI/dV-V characteristics of an InGaAs/AlAs RTD of Fig. 2. The In$_x$Ga$_{1-x}$As/In$_y$Ga$_{1-y}$As SL in this device is also strained about the lattice-matched In$_{0.53}$Ga$_{0.47}$As composition with a period as measured by x-ray diffraction of 5.7 nm. The complete structure consists of 0.5 nm (≈ 87 periods) InGaAs SL uniformly doped to 5×10^{18} cm$^{-3}$, 0.2 nm (≈ 35 periods) InGaAs SL doped to 1×10^{18} cm$^{-3}$, a 2/4.5/2 nm AlAs/InGaAs/AlAs resonant tun-
nelling double-barrier clad by 1.5 nm undoped InGaAs spacer layers, 0.2 μm InGaAs SL doped to \(1 \times 10^{18} \text{ cm}^{-3}\); and finally 0.2 μm InGaAs SL doped to \(5 \times 10^{18} \text{ cm}^{-3}\). For the electrical measurements, nonalloyed ohmic contacts were made to the emitter and collector ends of wet chemically etched mesa device structures.

In Fig. 2(a), the fundamental resonances through the first quantum well state are present at ±0.5 V; in agreement with our self-consistent calculations of the electrostatic band profile (described later). At roughly ±0.28 V, however, a decrease in the conductance of the device is observed which is particularly apparent for the negative bias polarity of Fig. 2(a). Measurements of the differential conductance, \(dI/dV\), for this device are shown in Fig. 2(b) for the voltage range prior to the onset of the fundamental RTD resonance. The conductance extremes near ±0.28 V are observed to strengthen with decreasing temperature which is consistent with a resonant tunneling phenomenon.

The electrical properties of the SL can be inferred from the \(I-V\) characteristics of the RTD. We modeled the device based on the known RTD layer structure: a 20 period square-well SL in the emitter and collector layers with a 5.7 nm SL period. The \(I-V\) characteristics of the RTD are shown in Fig. 2(b) for the voltage range prior to the onset of the fundamental RTD resonance. The conductance extremes near ±0.28 V are observed to strengthen with decreasing temperature which is consistent with a resonant tunneling phenomenon.

The calculation is obtained numerically by solution of a discretized Poisson–Thomas–Fermi equation with a mesh size of 0.15 nm. The quantum mechanical transmission resonances, Fig. 3(b), for this potential profile are then computed from a self-consistent solution of the Schrödinger equation in the envelope approximation. For energies beneath the emitter band edge, miniband states are detected as resonances in the phase of the reflection coefficient with the voltage at which the minigap in the collector is energetically aligned with the emitter electron distribution.

These conductance oscillations are not related to the formation of a two-dimensional (2d) gas accumulation layer at the emitter side of the resonant tunneling double barrier. Multiple resonances would then occur between 2d states in the accumulation layer and 2d states in the quantum well. The 1.5 nm spacer layers and heavily doped emitter layer do not result in a sufficiently deep triangular potential well in the emitter accumulation region to support this mechanism. In addition, the conductance oscillation does not shift with magnetic field (9 T, applied in the direction of current flow) as would be expected if the oscillation were due to an accumulation region resonance.

The SL band structure and its dependence on composition and well shape were obtained from solutions of Schrödinger's equation in one dimension with a continuously varying effective mass,\(^{3}\)

\[
-\frac{\hbar^2}{2} \frac{d^2}{dz^2} \left(\frac{1}{M(z)} \frac{d\psi}{dz} \right) + V(z)\psi(z) = E\psi(z),
\]

satisfying the Bloch condition \(\psi(z + a) = e^{ika}\psi(z)\), where \(a\) is the periodicity of the potential and the effective conductance minimum. For this bias, 0.25 V, the resonant transmission through the structure is suppressed due to the energetic alignment of the collector minigap with the electrons in the first miniband in the emitter. The computed value of 0.25 V is in reasonable agreement with the experimental value (Fig. 2) of roughly 0.35 V. In Fig. 3(b), the \(n=1\) and \(n=2\) transmission resonances are apparent at approximately 0.01 and 0.59 eV, respectively. A second minigap is observed in the energy range between 0.14 and 0.25 eV, respectively, which corresponds to the first minigap in the emitter. Analogous density-of-states tunneling effects have been previously observed in SL/single-barrier structures.\(^{4,5}\)

![FIG. 2. Transport characteristics of an InGaAs/AlAs resonant tunneling diode: (a) room-temperature current-voltage measurement and (b) temperature dependence of the differential conductance, \(dI/dV\).](image)

![FIG. 3. (a) Calculated energy band diagram and (b) transmission coefficient for the InGaAs/AlAs rotation-induced SL RTD of Fig. 2, with a 20 layer, 5.7 nm period SL of In\(_{0.43}\)Ga\(_{0.57}\)As/In\(_{0.63}\)Ga\(_{0.37}\)As in the emitter and collector regions of the RTD at a bias of 0.25 V. The dashed lines indicate the quasi Fermi level positions in the emitter and collector. The transmission coefficient is computed for energies exceeding the conduction-band edge in the emitter; below this energy resonances are detected by plotting the change in phase of the reflection coefficient with energy.](image)
Junction.' The room-temperature energy band gap as a compromise between the measured value of 62% for the alloy mismatch. The zero in energy is taken as the bulk conduction-band minimum for the InGaAs layer. Following the discussion of the last section we expect the onset of the first miniband. From this calculation, the position of the lower energy edge of the first miniband is only weakly dependent on the alloy mismatch, and thus the voltage at which the conductance oscillation is observed should not be strongly dependent on the SL composition. The miniband increases with alloy composition so the strength of the conductance modulation should depend on the alloy mismatch. The miniband structure is most strongly dependent on the SL period as can be seen in Fig. 4(b) where the first two minigaps are computed for an alloy mismatch of 10%.

Also shown in Figs. 4(a) and 4(b) are the miniband structures computed for cosinusoidal potential oscillations (dashed lines) and their dependence on alloy mismatch and SL period. As can be seen, the cosinusoidal potential barrier produces only small variations in the miniband structure relative to the square well potential. This is not surprising since the first Fourier component of the square well potential is a cosine function. The square well potential (Fig. 3) captures the essential physics of this system, and precise knowledge of the well shape introduces only a second-order correction.

In conclusion, a method for forming superlattices by MBE without mechanical shuttering is proposed and demonstrated. Superlattice were formed by substrate rotation through the naturally asymmetric beam profiles of MBE with sufficient band discontinuities to be observable at room temperature in device characteristics. Since these superlattices are a natural consequence of MBE growth of ternary and quaternary alloy, this work reveals an unintentional artifact which may be observed in hot electron and quantum devices formed by MBE.

The authors express appreciation for the excellent technical assistance of P. Stickney, R. Thomason, B. Garmon, and R. Aldert. This work was supported in part by ONR/DARPA contract No. N00014-87-C-0363 and WL contract No. F33615-89-C-1074.