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Review of Lecture 1

The disjoining pressure is a jump in 
pressure at the boundary It does
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Review of Lecture 2
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is the excess adsorption due to disjoining 
pressure. Note that we do not know how 
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Review of Lecture 3
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F th h f f t t t t ti l Φ i t tFor the approach of surfaces at constant potential, Φ0 is constant.

For the approach of surfaces at constant surface charge density Φ0 is:
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P.N. Lebedev (1894) Light and forces( ) g

Hertz's interpretation of light oscillations as electromagnetic processes, 
hides another problem, the processes that take place in a molecular 
vibrator when it emits light energy into the surrounding space.

This problem leads us into the field of spectral analysis it brings us toThis problem leads us into the field of spectral analysis it brings us to, 
the field of molecular forces.

Having accepted the standpoint of the electromagnetic theory of light, we 
have to conclude that ponderomotive forces must exist between two 
light-emitting molecules as between two vibrators in which 
electromagnetic oscillations have been generated. 

A nonlinear force that a charged particle experiences in an 
inhomogeneous oscillating electromagnetic field. 
(e.wikipedia.org/wiki/Ponderomotive_force) Lebedev, P.N. Wiedemann
Ann 52 621 (1894) collected works Moscow (1913) p 56
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Ann., 52, 621 (1894); collected works, Moscow (1913), p. 56



Hamaker’s model (1937) ( )

The intermolecular attraction is due 
t L d (di i ) i

63U r −= − Λ 2

AGΔ =−to London (dispersion) energies: 11 112
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The physicsp y

Planck (1900) Energy levels of standing, oscillatory EM 
waves in a vacuous cavity with conductingwaves in a vacuous cavity with conducting 
walls. The temperature derivative gave heat 
capacity.

Casimir (1948) Energy levels of standing, oscillatory EM 
waves across a vacuum between two 
conducting flat plates. The distance 
derivative gave the force per unit area

Lifshitz (1954)

derivative gave the force per unit area.  

Energy levels of standing, oscillatory EM 
waves across any medium between anywaves across any medium between any 
two flat plates. The distance derivative 
gave the force per unit area.  
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Electromagnetic fluctuationsg

“Empty space” can be considered as a turmoil of electromagnetic waves of all 
f i d l thfrequencies and wavelengths. 

Absorption frequencies: those at which charges naturally dance or those 
where charge polarization quells the fluctuations and stills the spacewhere charge polarization quells the fluctuations and stills the space 
between the surfaces.

Retardation occurs when the time it takes for perturbations to be sensed 
b b th ti l b i t t
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The modern view – “fluctuation-dissipation”p

• Electromagnetic fluctuations abound – quantum and thermal

• Producing spontaneous, transient electric and magnetic fields

• Which have the strongest effects at absorption frequencies.

• Net forces are coordinated interactions averaged over time• Net forces are coordinated interactions, averaged over time.

• Calculate  “dispersion” forces from optical spectra.
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Data for dielectric functions

The absorption(or reflection) spectrumThe absorption(or reflection) spectrum 
is measured. Sometimes a single peak 
in the UV and an average IR is 
sufficient.

The dielectric spectrum is calculated 
from the absorption spectrum. The 
only additional information needed isonly additional information needed is 
the static dielectric constant.
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Model dielectric functions
( )niε ξ

Dielectric permittivity – how a material responds to an electric field
Imaginary frequency – field varies exponentially rather than sinusoidallyg y q y p y y
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Why imaginary frequencies – the functions are smooth. Dielectric constants 
vary wildly with real frequency (near peaks).

For a system of dipole and 
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Sample spectral parameters
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p p p

Polystyrene
Four‐term fit UV frequencies only

6.35 14.6 0.65

14.0 96.9 5.0

11.0 44.4 3.5

20.1 136.9 11.5

Gold
Four‐term fit To absorption data

‐ 9.7 3.21

Parsegian, 2006, pp 268
2.9 4.95 0.67

4.0 41.55 2.22

8.9 207.76 8.50

Four‐term fit To absorption data

‐ 40.11 ‐

3.87 59.61 2.62

8.37 122.55 6.41

23.46 1031.19 27.57

Four‐term fit To absorption data

‐ 53.0 1.8

3.0 5.0 0.8
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Lifshitz theory 123
123 212
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Sampling (Matsubara) frequenciesp g ( ) q

The zero frequency term is the static dielectric constant. 

2
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=

=

Frequencies are evenly spaced such that photon 
energies, from quantum mechanics, of each 
frequency is a multiple of thermal energy kT, from n =

( ) 142.41 10n room
radT n
s

ξ ≡ ×

thermodynamics. 

The first sampling frequency 
corresponds to an IR frequency

1
1

2 7.82c mπ
λ = = μ

ξ

corresponds to an IR frequency.

A few more through the IR and visible (excitations are thermal)

Most sampling frequencies are in the UV and x-ray regions (excitations 
are quantum mechanical)
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Lifshitz coefficients
4.05 roomkT zJ=
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The first results – Derjaguin et al

Derjaguin, B.V.; Churaev, N.V.; Muller, V.M. Surface forces; Consultants Bureau: New York; 1987.

j g

First instrument  direct 
measurements of molecular 
forces between macroscopic 
b di (1951)

Quartz-quartz interactions in 
vacuum and in air. Lines are 
for Lifshitz theory (1954)
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Calculation vs measurement

Force - separation for TiO at the PZC
Generally:

Force - separation for TiO2 at the PZC
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Larson, I.; et al
JACS, 1993, 115,11885-11890.
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Other geometriesg
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Archimedean bouyancyy y

For pair-wise interactions:

12 12 12 12 12
ab cc ac cbΣ = Σ +Σ −Σ −Σ

in modern notation, . . Hamaker constants:

acb ab cc ac cb

i e
A A A A A= + − −
when :

2aca aa cc ac

a b
A A A A

=
= + −

Derjaguin, B.  (with Obuchov, E.) Ultramicrometric analysis of solvate layers and 
elementary expansion effects. Acta Phys.-Chim., 1936, 5(1), 1-22.
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Hamaker geometries
Parsegian, V.A. van der Waals forces; Cambridge University Press: New York; 2006.
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