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Scattering for Size and Mass Characterization

1 Introduction

Scattering of light and neutrons have long been used in the study of polymer structure and thermodynamics.
Here, we will use the term light scattering to refer to the use of generally visible wavelengths of light (ca. 400-
800 nm), x-ray scattering for the use of photons with wavelengths ranging from ca. 1-2 Å. In a scattering
experiment, a coherent beam of light is directed onto the sample. The interaction of the light with the
sample produces a scattering of the incident radiation, which is then detected at some distance away, and
at some varying angles with respect to the direction of the incident beam. We will consider light and x-ray
scattering here, and only elastic scattering, i.e. where there is no change in the energy of the photon due
to the scattering event. Scattering of light and x-rays occurs due to index of refraction and electron density
differences.

1.1 Units, Scattering Cross Section, Intensity

In a light/x-ray scattering experiment, we make some measure of the intensity of the scattered radiation as
a function of the angle with respect to the incident beam direction. This intensity is related to the flux of
radiation, J , which is proportional to the square of the amplitude of the oscillating field of the radiation, so
J = |A|2 = AA∗ where A∗ is the complex conjugate of A. For a plane wave, the flux is related to the energy
transmitted per unit area per unit time, and is independent of the distance from the source to the area over
which the detection is made. For a spherical wave, in order to make the flux independent of the distance, it
is measured as the energy transmitted per unit solid angle per unit time.

The sample is irradiated/illuminated with an incident beam of flux J0 and the flux of scattered radiation
J is recorded as a function of angle away from the incident direction. The ratio J0/J has units of area per
solid angle, and is formally known as the differential scattering cross section. Strictly speaking, the word
intensity (absolute) refers to this ratio, although in the x-ray community, intensity (arbitrary) is used to
refer to measurements of the flux J .

dσ

dΩ
≡ J

J0

The differential scattering cross section is the probability that a photon impinging on the sample is
scattered into a unit solid angle in the given direction [1], that is, the number of particles scattered into a
unit solid angle in a given direction per second divided by the flux of the incident beam. The integral of the
differential scattering cross section provides the total scattering cross section, σ with dimensions of [L2] or
area as

σtot =
∫ (

dσ

dΩ

)
dΩ =

∫ 2π

0

∫ π

0

dσ

dΩ
sin Θ dΘ dΦ

where Θ ≡ 2θ.

1



2 The Interference Construction

Consider the interaction of a plane wave with two scatterers in a sample, Figure 1. The amplitude of the
wave is represented conveniently in the complex notation (we need only the real part) as a function of time
and space variables as

A(x, t) = A ei2π(νt−x/λ)

where ν is the frequency, λ the wavelength and A is the modulus of absolute value of A(x, t).

Figure 1: Interference geometry

Scattering at locations j and k occur without a change of phase, producing an intensity at the detector
due to the combination of the scattered waves. The phase difference between the beams scattered at the two
points depends on the path length difference ~ak − ~jb. If the vector between the two points is denoted as ~r,
we see ~ak is just ~S0 · ~r and ~jb is ~S · ~r so that the phase difference is

∆φ =
2π
λ

(
~S0 · ~r − ~S · ~r

)
= −2π ~s · ~r

where ~s = (~S − ~S0)/λ and is referred to as the scattering vector. The magnitude of the scattering vector
is related to the scattering angle as

|~s| = s =
2 sin θ
λ

The spherical wave produced by the point scatterer at j is represented by Aj(x, t) = A0b e
i2π(νt−x/λ)

where A0 is the amplitude of the incident radiation and b is termed the scattering length - it expresses the
efficiency or ability of the object to scatter the incident radiation, and has dimensions of length (think about
the relationship between the intensity of a spherical wave as dependent on the square of the amplitude, and
that of the intensity of a plane wave). The scattered wave at k can be expressed as a phase shift of the
scattered wave from j (the two differ only in phase) so

Ak(x, t) = Aj(x, t)e i∆φ

The combination of the scattered waves Aj(x, t) and Ak(x, t) is

Ajk(x, t) = Aj(x, t) +Ak(x, t) = A0b e
i2π(νt−x/λ)

(
1 + e−i2π~s·~r

)
The flux is given by the square of the intensity so

J(~s) = Ajk(x, t)A∗jk(x, t)

= A2
0b

2
(
1 + e−i2π~s·~r

) (
1 + ei2π~s·~r

)
(1)
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We can ignore the x and t dependence and inspect only the scattering vector dependence. It is given
in individual, discrete summation and continuos integral forms in Equation 2 where n(~r) is the number of
scatterers within a volume element d~r around ~r and ~rj is the vector to the jth scatterer from an arbitrary
origin.

A(s) = A0b
(
1 + e−i2π~s·~r

)
A(s) = A0b

N∑
j=1

e−i2π~s·~rj

A(s) = A0b

∫
V

n(~r) e−i2π~s·~rjd~r (2)

From the integral form in Equation 2 we can recognize that the wave amplitude is proportional to the
three-dimensional Fourier transform of the local number density n(~r) of scatterers.

A more common notation is much of the x-ray literature is the use of the scattering vector, q given by
q = 2πs. The quantity is also defined with respect to wave vectors as

q ≡ k− k0

q is also referred to sometimes as the momentum transfer vector since momentum, from the de Broglie
equation is p = h/λ = ~k and

~q = hs = (h/λ)S− (h/λ)S0

2.1 Scattering from an Atom

We can consider the scattering from an atom as the independent contributions due to the scattering from
the distribution of electrons around the nucleus. The atomic scattering factor is measured in units of A0be
where be is the scattering length of a single electron, and is given by

f(s) =
∫
n(r) e−i2πsrdr

For a spherically symmetric n(r), f(mathbfs) is a function only of the magnitude of the scattering vector,
s. The atomic scattering factor is given by a 3D Fourier transform [1] as

f(s) =
∫ ∞

0

4πr2 n(r)
sin(2πsr)

2πsr
dr (3)

At zero angle (s=0), all scattered waves are in phase and sum to give the atomic number of the atom.
We shall see later on that in similar fashion, the zero angle scattered intensity in a light or x-ray scattering
experiment is directly related to the molecular weight of the polymer under investigation.

2.2 Scattering from a Collection of Atoms

If we now have a collection of atoms, we can describe the location of all electrons in the system with respect
to the atom to which they belong as rj = rk + rk,m where k denotes the atom number, and rk,m denotes
the mth electron of the k-atom. From Equation 2 we can write the scattered amplitude as

A(s) = A0be

Natoms∑
k=1

(
Z∑

m=1

e−i2πsrk,m

)
e−i2πsrk (4)
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A(s) = Aobe

Natoms∑
k=1

fk(s) e−i2πsrk (5)

A(s) = A0be f(s)
∫
natoms(r) e−i2πsr dr (6)

Here, we see that the scattered amplitude has a component that depends on the scattered amplitude from
one atom, and a component that depends on the distribution of atoms. So called contributions from form
and structure factors are ubiquitous in the treatment of scattering from discrete objects such as polymer
coils or colloidal particles in solution.

2.2.1 Scattering and the Autocorrelation Function

We can rewrite Equation 2 as

A(q) =
∫
V

ρ(r) e−iqr dr (7)

where ρ(r) = be n(r) is the scattering length density distribution. This says that the scattered amplitude
is related to the Fourier transform of ρ(r). Likewise, it can be shown [1] that the intensity, I(q) = |A(q)|2is
given by

I(q) =
∫

Γρ(r) e−iqr dr

where

Γρ(r) =
∫
ρ(u)ρ(u + r) du

is the autocorrelation function of the scattering length density distribution. So the scattered intensity is
related to the Fourier transform of this autocorrelation function where

〈ρ(u)ρ(u
′
)〉 =

∫
ρ(u)ρ(u + r) du∫

du
=

Γρ(r)
V

At r = 0

Γρ(0) = 〈ρ2〉V

and at r→∞

Γρ(r→∞) = 〈ρ〉2V

3 Small Angle Scattering of Polymers and Colloids

Here we will consider scattering at small angles where the length scale probed is generally 10Å and greater
(sin θ = λ/2d) where d is the length scale. We restrict our coverage to dilute particulate systems, whether
of polymer coils in solution, or of colloidal objects of various shapes. Since we have the basic equation for
the scattered amplitude as a function of the location of the scatterers, we can develop exact expressions for
the expected dependence of the scattered amplitude(intensity) on scattering vector. For the polymer coil,
we use a Gaussian distribution of scatterers, for instance.

4



3.1 Spheres, Rods, Disks

Using Equation 7, we can determine the scattered intensity for a solid sphere of radius R with a uniform
density ρ0 for r ≤ R.

A(q) =
∫ ∞

0

ρ(r)4πr2 sin(qr)
qr

dr

A(q) =
ρ0

q

∫ R

0

4πr sin(qr) dr

A(q) = ρ0 v
3 (sin(qR)− qR cos(qR))

(qR)3

I(q) = ρ2
0v

2 9 (sin(qR)− qR cos(qR))2

(qR)6
(8)

Zeros of the function occur where qR = tan(qR) as shown in Figure 2

Figure 2: Scattering from an individual solid spherical particle of radius R

For a rod, the expression is given by

I(q) = ρ2
0v

2 2
qL

[
Si(qL)− 1− cos(qL)

qL

]
(9)

where

Si(x) ≡
∫ x

0

sin(u)
u

du

For a thin circular disk, the scattered intensity is given in Equation 10 where J1 is the first order Bessel
function.

I(q) = ρ2
0v

2 2
q2R2

[
1− J1(2qR)

qR

]
(10)
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Figure 3: Scattering from individual particles of different shape, as a function of the dimensionless product
qRg.

3.1.1 Scaling at high q

At high q, the intensity scales as I(q) ∼ q−α where α = 4 for spheres, 2 for thin disks and 1 for rods. At
small q, the intensities are independent of the shape of the particles, if plotted as a function of qRg, which
provides the basis for the Guinier law.

3.2 Scattering from a Gaussian Chain

The scattering from an independent polymer chain following Gaussian statistics was solved by Debye [7].
The derivation is based on an evaluation of the intensity as a double sum resulting from the square of the
expression for the amplitude of the scattered wave.

A(q) = ρ0vu

N+1∑
j=0

e−iqrj

I(q) = ρ2
0v

2
u

N+1∑
j=0

N+1∑
k=0

e−iqrjk

I(q) = ρ2
0v

2
u

∫
P (r) e−iqr dr (11)

where vu is the volume of a monomer, the polymer is made up of N+1 such monomers, and P (r) represents
the number of monomer pairs that are separated by 4. It is via this last term that the Gaussian distribution
enters, as P (r) is a function of the distribution in the square brackets below

P (r) = 2
N∑
K=0

(N + 1−K)

[(
3

2πKl2

)3/2

exp
(
− 3r2

2Kl2

)]

where there are (N + 1−K) pairs of monomers separated by K bonds, and the bond length is l.
The solution is

I(q) = ρ2
ov

2
uD(x)

D(x) =
2(e−x + x− 1)

x2
; x = q2R2

g (12)
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At small q, it can be approximated as

D(x) ∼= 1−
q2R2

g

3

3.2.1 Length Scales

The Gaussian distribution contains no inherent length scale - Gaussian (ideal) chains obey the statistics
down to and out to aphysical dimensions. In reality, we understand that there is a length scale below
which the polymer chain appears locally stiff due to the persistence of bond orientation for a finite monomer
sequence. We should thus expect a crossover from rod-like scattering to Gaussian like scattering at a
particular scattering vector, corresponding to the persistence length. This is in fact the case. At small
q, the scattering is shape independent and scales as exp(−q2). At slightly larger q, we observe the 1/q2

dependence of the Debye formulation, and at even larger q, a q−1 dependence of intensity, characteristic of
rod-like scattering. This is well illustrated on a Kratky plot of I(q).q2 vs q [1].

3.2.2 Guinier’s Law

Guinier’s law results from an expansion of the exponential dependence of the scattering intensity in Equation
7

A(q) =
∫
ρ(r)e−iqrdr

A(q) =
∫
ρ(r) dr − i

∫
qr ρ(r) dr − 1

2!

∫
(qr)2ρ(r) dr + ... (13)

Given that (qr)2 = (qxx+ qyy + qzz)2, the expression ultimately yields

I(q) = ρ2
0v

2

(
1− 1

3
q2R2

g + ...

)
I(q) ∼= ρ2

0v
2 exp

(
−
q2R2

g

3

)
(14)

A plot of ln I(q) vs. q2 has a slope of −R2
g/3. Guinier’s law is applicable in the regime where qRg ≤ 1.3 and

can only be applied in dilute solution scattering where there are no positional correlations between individual
polymer chains. The radius of gyration is shape independent. An extrapolation of the scattered intensity
in absolute units back to q = 0 makes it possible to determine the value of (ρ0v)2 if the concentration of
particles is known, since I(q) is the scattered intensity per particle. Knowledge of the volume per particle and
the radius of gyration gives some information about the shape of the particle (polymer chain). Additionally,
molecular weight can be determined, as will be discussed in a later section.

3.3 Fractal Scattering

Here we consider the functional form of the scattering from mass and surface fractals.
The mass of a fractal object of dimension d scales as M(r) ∼ rd. For a surface fractal, the surface area

scales as S(r) ∼ r2−ds where ds is between 2 and 3 for a surface fractal in three-dimensional space. It is
equal to 2 for a perfectly smooth surface, and approaches 3 for a highly folded/convoluted surface.

3.3.1 Mass Fractal

Scattering from a mass fractal is considered from the 3D Fourier transform of the scattering length distri-
bution function, which now scales as
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I(q) ∼ 1
q

∫ ∞
0

rd−2 sin(qr) dr

This yield a scaling of

I(q) ∼ q−d

The slope of a log-log plot of intensity vs wave vector thus yields the fractal dimension of the object under
study at a particular length scale. At very high q, we get a scaling of q−4 which is characteristic of sharp
interfaces, as described by Porod’s law [1].

3.3.2 Surface Fractal

The scattered intensity due to surface fractal scattering scales as

I(q) ∼ q−(6−ds)

3.3.3 Polymer Chains at Different Length Scales

If we examine the scattering of a polymer chain across a wide q-range, we can see that at very low q,
as discussed prior, we are in a regime where we are probing correlations between polymer chains. In a
dilute solution, there are no correlations and so the scattered intensity is constant, independent of q and
proportional to the concentration of the system. At higher q, we start to probe scattering due to correlations
of monomers on a single polymer chain, yielding information about the radius of gyration. At slightly higher
q, > 1/Rg, we become sensitive to the fractal nature of the polymer and the intensity here scales as q−d

where the fractal dimension is related to the polymer scaling exponent ν in R ∼ bNν encountered earlier. For
ideal (Gaussian) chains, ν = 1/2 and so d = 2, the Debye result. At very high q, we start to probe scattering
from individual monomers, which, since they are presumed to have sharp smooth interfaces, produce the
Porod scaling of q−4. Figure 4 schematically illustrates the transition among length scales in typical SAXS
data [3].

Figure 4: Schematic illustration of the transition from inter-chain to intra-chain and finally monomeric
scattering
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