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1 Viscosity Measurements

1.1 Viscosity Definitions

There are several different “types” of viscosities that one may encounter in fluid dynamics. First, we
differentiate between the kinematic and dynamic viscosities, referred to by symbols ν and µ or η. They
are related via the density of the medium, with ν = η/ρ. The units of dynamic viscosity are Poise or Pa.s
and the dimensions are [ML−1T−1]. Kinematic viscosity has dimensions of [L2T−1] and is thus sometimes
referred to as a momentum diffusivity. For a complex fluid in which a solvent viscosity ηs is modified to the
a concentration c of a second phase species resulting in an overall viscosity η, the following viscosities are
defined in Table 1.

Table 1: Definition of Viscosities

Name Expression
Relative Viscosity ηr = η/ηs
Specific Viscosity ηsp = ηr − 1
Reduced Viscosity ηred = ηsp/c
Inherent Viscosity limc→0(ηr/c)
Intrinsic Viscosity [η] = limc→0(ηsp/c)

1.2 Viscosity of Polymer Solutions

The viscosity of even dilute polymer solutions is usually far larger than just the viscosity of the background
solvent, due to the large differences in size between the polymer and solvent molecules. In the non-free drain-
ing limit, we consider the polymer chain to move as an equivalent impermeable particle with an associated
hydrodynamic volume that produces the same drag as the polymer chain. The friction coefficient is given
by Stokes law as

f = 6πηsRh

where Rh is the hydrodynamic volume. The hydrodynamic volume is related in some way to the physical
size of the chain, given by the mean square radius of gyration as
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f = K0ηη〈R2
g〉

1/2
0

where αη is the hydrodynamic coil expansion factor.

1.2.1 Intrinsic viscosity

We will derive the Mark-Houwink equation starting from a basic consideration of the viscosity of a dilute
suspension, as described by the Stokes equation for effective viscosity:

η = η2 (1 + (5/2)φ+ ...) (1)

where φ is the volume fraction of particles in the system, given by the hydrodynamic volume of the polymer
coils as

φ = (c/M)NAVh (2)

The specific viscosity and intrinsic viscosities, defined in Table 1 are readily derived from the Einstein
equation, 1, as

ηsp = (5/2)(c/M)NAVh
[η] = (5/2)NAVh/M (3)

The hydrodynamic volume is given by

Vh =
(
αη〈Rg〉1/20

)3

so the intrinsic viscosity is

[η] = Φ0α
3
η

(
〈R2

g〉
3/2
0 /M

)
Φ0 is a constant which depends on the distribution of segments within the coil. A value of 3.67x1024 /mol

is appropriate for non-draining Gaussian coils [5]. For Gaussian chains, the ratio of the mean square radius
of gyration to the molecular weight is a constant, so we have

[η] = Kθα
3
ηM

1/2 (4)

where
Kθ = Φ0

(
〈R2

g〉0/M
)3/2

Equation 4 is called the Flory-Fox equation.
The hydrodynamic coil expansion factor scales roughly with M1/10 so we further reduce this to

[η] = KMa (5)

where a is a constant between 0.5 and 0.8. Equation 5 is the Mark-Houwink equation. Calibration of the
constantsK and a for a particular polymer in a particular solvent at a given temperature allows determination
of the molecular weight by simple measurement of the concentration dependence of the viscosity to yield the
intrinsic viscosity. This is discussed in the next section.
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1.3 Intrinsic Viscosity Determination

We can either use the Huggins equation, which is derived from a virial expansion of the specific viscosity in
powers of the intrinsic viscosity, or the Kraemer equation, which results from an expansion of the inherent
viscosity, to determine the intrinsic viscosity.

1.3.1 Huggins Equation

The specific viscosity is related to the intrinsic viscosity by a power series of the form

ηsp = k0 [η] c+ k1 [η]2 c2 + k2 [η]3 c3 + ...

where k0, k1, k2... are dimensionless constants, and k0 = 1.
Dividing by concentration, and truncating to only the second term, we form the Huggins equation as

ηsp/c = [η] + kH [η]2 c (6)

The constant kH is termed the Huggins constant and has values ranging from 0.3 in good solvents to 0.5 in
poor solvents. It contains information about hydrodynamic and thermodynamic interactions between coils
in solution. A plot of the reduced viscosity, extrapolated to zero concentration yields the intrinsic viscosity.

1.3.2 Kraemer Equation

We may construct another expansion based on the relative viscosity, in dilute solutions where the specific
viscosity is much less than 1.

ln(ηr) = ln(1 + ηsp) ≈ ηsp − (1/2)η2
sp

Using the expression for the specific viscosity in the Huggins equation above, Eq. 6, provides Equation 7,
the Kraemer equation.

ln(ηr) = [η] c+ (kH − 1/2) [η]2 c2

ln(ηr)/c = [η] c+ kK [η]2 c (7)

A plot of the inherent viscosity, extrapolated to zero concentration, yields the intrinsic viscosity. Viscom-
etry yield a viscosity average molecular weight, M̄ν where

M̄ν =
(∑

niM
1+a
i∑

niMi

)1/a

where ni is the number density of chains of molar mass Mi.

2 Osmotic Pressure

Osmometry provides absolute measurements of molecular weight. It relies on Flory-Huggins lattice theory
for a connection between the chemical potential of a solution and the polymer-solvent interaction along with
the size of the polymer.

From thermodynamics, we know that the difference between the chemical potential of the solvent in the
solution and that in the pure state is given as

µ1 − µ◦1 = −ΠV̄1
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where the molar volume of the solvent, V̄1 is presumed to be independent of pressure. From F-H theory,

µ− µ◦ = −RTφ/N +RT (χ− 1/2)φ2

where N is the degree of polymerization, or the number of lattice sites occupied by the polymer and
χ is related to the Gibbs free energy difference for the formation of a solvent-monomer contact, ∆g12 =
g12 − (1/2)(g11 + g22) on a lattice of coordination z

χ = (z − 2)∆g12/kBT

This provides

Π = RT (n2/V ) +RT (1/2 − χ)N2V1(n2/V )2

where n1 and n2 are he number of solvent and polymer molecules respectively. The number density of
polymer molecules is related to the mass concentration and molecular weight as n2/V = (m/V )(n2/m) =
c/M̄n since the number average molecular weight is given as

M̄n =
∑
niMi∑
ni

= m/n2

We can now write:

Π/c =
(
RT/M̄n

)
+ (RT/V1) (1/2− χ) (NV1/m̄n)2 c

From the lattice theory, N = V2/V1 and so NV1/M̄n = V2/M̄n = 1/ρ2 so we arrive at Equation 8.

Π/c =
(
RT/M̄n

)
+
(
RT/V1ρ

2
2

)
(1/2− χ) c (8)

Under theta conditions, χ = 1/2 and so

(Π/c)θ = RT/M̄n

In general, we can evaluate RT/M̄n as the value of the reduced osmotic pressure in the zero concentration
limit, so

(Π/c)c→0 = RT/M̄n

The remaining term yields the second virial coefficient, providing information about the thermodynamics
of the system. The theta temperature can be evaluated by plotting the value of the second virial coefficient
and finding where it is equal to zero.

A2 = (1/2− χ) /V1ρ
2
2 (9)
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