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Non-Ideal Chains: Size, Statistics,
Free-Energy

1 Interactions Between Monomers

Just as the ideal gas equation of state PV = nRT assumes no interactions between the constituent atoms or
molecules of a gas, so to have we assumed no energetic interactions between the monomers of our polymer.
The Van der Waals equation of state results from correction terms to the ideal gas EOS based on physical
excluded volume and energetic interactions which decrease (or increase) the pressure of the gas relative to
the ideal state. Here, we will treat real polymer chains via consideration of excluded volume, derived by
comparison with the non-interacting or ideal case. The Mayer f-function f(r) describes the probability of
locating a monomer at r, relative to the non interacting system where U(r) = 0:

f(r) = exp (−U(r)/kT )− 1 (1)

The excluded volume, v, is defined as

v = −
∫

4πr2f(r) dr (2)

The excluded volume v is negative for systems with net attractive interactions, and positive for those with
net repulsive interactions.

1.1 Excluded Volume and Solvency

Excluded volume scales as v ≈ b2d where b is the Kuhn monomer size (length) and d is the diameter (Kuhn
segments are rod-like).

• Athermal Solvents Here, v is independent of temperature. The system only features hard core
repulsion and v ≈ b2d. Monomer-monomer contact is energetically indistinguishable from monomer-
solvent contact, for example.

• Good solvents Excluded volume is reduced due to monomer-monomer attraction. The effect of this
attraction is greater at lower temperatures, causing a reduction in the excluded volume. 0 < v < b2d

• Theta solvent The (positive) contribution to excluded volume from hard core repulsion is exactly
balanced by that (negative) due to attractions and so v = 0. The chains thus have nearly ideal
conformations. This occurs at a temperature called the theta temperature, Θ, which is analogous to
the Boyle temperature in thermodynamics.
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• Poor solvents Excluded volume is negative due to large attractive interactions between the monomers,
which prefer monomer-monomer contact strongly over monomer-solvent contact. Chain dimensions are
reduced relative to ideal. −b2d < v < 0.

• Non-solvents Here, v ≈ −b2d and the polymer collapses into a very compact structure that excludes
all solvent.

2 Flory Theory

Flory treated the question of equilibrium conformation of real chains using a mean field approach. The
equilibrium size is set by a balance between excluded volume which tends to expand the chain size, and
a restoring force due to loss of conformational entropy due to swelling. The energetic contribution due to
excluded volume is given by the number of excluded volume interactions within a coil and the cost of each
exclusion, kT . The number of excluded volume interactions is just the probability of finding a monomer
within the excluded volume of another. If we assume a mean density of monomers in the coil, N/R3, then
the number of excluded volume interactions per monomer is vN/R3 and for N monomers in the coil, the
energetic contribution is

Fexcl ≈ kTv
N2

R3
(3)

The entropic energy due to expansion of the coil is given as

Fentropic ≈ kT
R2

Nb2

The equilibrium coil size is determined as the minimum in the total energy function FT (R) = Fexcl(R) +
Fentropic(R). For positive v we have

FT ≈ kT

(
v
N2

R3
+

R2

Nb2

)
∂F/∂R = 0

RF ≈ v1/5b2/5N3/5 (4)

Comparison of RF with N1/2b provides a quantity known as the chain interaction parameter, z where

RF
bN1/2

≈
( v
b3
N1/2

)1/5
≈ z1/5 (5)

2.1 Problems with Flory Theory

The simple approach taken by Flory provides surprisingly good results - more modern theories/calculations
provide R ∼ N0.588. However, the success of the Flory theory is due to a cancelation of errors. The
excluded volume contributions are overestimated as correlations between monomers (which decrease the
probability of overlap) are not considered. At the same time, the entropic restoring force is also overestimated.
Nevertheless, such approaches based on a mean field approximation of density combined with ideal chain
conformation-derived entropy can provide quite useful results, for example in the case of an adsorbed chain.

The treatment of the case for v < 0 in the preceding simple manner leads to an aphysical result for the
coil size that minimizes the total free energy. Stabilizing terms need to be considered [2].
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3 Thermal Blobs, The Thermic Length Scale

We can conceive of a blob that is associated with the balance between thermal energy and the energetic
contribution due to excluded volume interactions. On length scales below ξT , the polymer is ideal whereas
above ξT , excluded volume interactions dominate and the system executes a self-avoiding random walk.

The blob is ideal, so ξ2T ≈ gT b
2. As above, using a mean field number density of monomers inside the

blob, the excluded volume interaction energy is

kTv
g2T
ξ2T

This energy is just balanced by the thermal energy, kT so that the thermal blob size is given by ξT ≈ b4/v
and the number of monomers in a blob as gT ≈ b6/v2. Comparison to Equation 5 shows that the number of
monomers in the thermal blob is related to the chain interaction parameter by

gT ≈ N/z2

If we now consider the conformation of the chain above the blob length scale, for excluded volume repulsion,
the blobs follow a self-avoiding random walk, so

R ≈ ξT (N/gT )ν ≈ b(v/b3)2ν−1Nν

where ν ≈ 3/5 as provided by the Flory argument. For excluded volume attraction, the blobs condense
onto themselves, and form a compact globule. The size of the globule is given assuming a fractal dimension
of 3, that is

R ≈ ξT (N/gT )1/3

4 Temperature Dependence of Coil Dimensions

The temperature dependence of coil dimensions is considered via the modification of the excluded volume
provided via the Mayer f-function. The contributions from hard-sphere overlap and weak attraction are
separated so that

f(r) ∼= −1; r < b

f(r) ∼= U(r)/kT ; r > b

v = = 4π

∫ b

0

(1)r2 dr + 4π/kT

∫ ∞
b

U(r)r2 dr

v ≈
(

1− Θ

T

)
b3 (6)

where

Θ ≈ −1

kb3

∫ ∞
b

U(r)r2 dr

The theta temperature Θ is thus explicitly linked to the chain interaction parameter and the thermal blob
size via

z ≈ T −Θ

T
N1/2

gT ≈
(

T

T −Θ

)2

(7)
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5 Chain Statistics: End-End Distances

We can now return to the question of real chain statistics. Before, we derived the Gaussian distribution for
idea chains and used it to arrive at an expression for the free energy of an ideal polymer chain as a function
of its end-end distance. Now, for real polymer chains, we have a free energy that is a function of the scaling
exponent ν (R ≈ bNν) where

F (R) ≈ kT
(
R/〈R2〉1/2

)δ
with δ = 1/(1− ν).

The probability distribution function for end-end distances is given by the Boltzmann factor using the free
energy F (R)

P (N,R) ∼ exp(−F (R)/kT )

This probability is further modified by the decreased likelihood of finding chain ends within a certain
distance of each other that scales as Rg. If we define

x ≡ R/〈R2〉1/2

then

P (x) ∼= 0.278x0.28 exp(−1.206xδ) (8)

For real chains, δ ∼= 2.43. The distribution of end-end distances is markedly lower at small distances than
ideal chains.
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