Spring 2015 - CENG315: Transport Phenomena

Professor	Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu		
Description	Treatment of momentum, energy, and chemical species transport includ- ing conservation laws, flux relations, and boundary conditions. Focus is mostly on energy and chemical species transport for audiences that have already taken fluid mechanics (eg. MENG361a). Topics include convective and diffusive transport and interfacial transport phenomena. Emphasis on problem analysis and mathematical modeling, including problem formulation, scaling arguments, analytical methods, approxi- mation techniques, and numerical solutions. Name: Yekaterina Rokhlenko, Office: ML222, Email: yekate- rina.rokhlenko@yale.edu.		
Prerequisite	Office hours - TBA ENAS 194 (Partial Differential Equations) or instructor's p	permission	
Class	Mondays and Wednesdays, 1:00p-2:15p, HLH17 113		
Office Hours	Tuesdays and Thursdays, 12:00p-1:00p or TBD		
Textbook	"Fundamentals of Momentum Heat and Mass Transfer" 5^{th} ed. by J. R. Welty, C. E. Wicks, R. E. Wilson and G. Rorrer		
Exams	There will be two preliminary exams during the semester and a final exam at the end. Prelims will be in the lecture room at HLH17 113 with dates as noted on the schedule. The final is currently scheduled for $09:00$ on W $05/06/2015$.		
Homework	There will be periodic homework assignments throughout the semester $(\approx 6-8)$ which should be submitted at the start of class on their due date. Students are permitted to work cooperatively on assignments, but <i>each</i> person must submit his or her own individually prepared results.		
Grading	Quizzes and in-class discussions Exam I Exam II Final Exam Graded Homework Total Letter grades will be assigned according to the scale below 850 points 700 points 450 points	50 points 200 points 200 points 200 points 350 points 1000 points A- or better B- or better C- or better	

Lecture #	Date	Lecture Topic	Chapter(s)
1	M Jan 12	Introduction, review of fluid mechanics	$3,\!4,\!5,\!6$
2	W Jan 14	Fundamental transport equations and control volumes	$4,\!5,\!6$
3	F Jan 16	Conduction - rate equation	15
	M Jan 19	No class - MLK	
4	W Jan 21	Conduction - Heat Diffusion; Boundaries	$15,\!16$
5	M Jan 26	One-dimensional conduction	$16,\!17$
6	W Jan 28	One-dimensional conduction	17
7	M Feb 02	Two-dimensional conduction	17
8	W Feb 04	Transient conduction	18
9	M Feb 09	Transient conduction	18
	W Feb 11	Exam I	
10	M Feb 16	Convective heat transfer	$19,\!20$
11	W Feb 18	Convective heat transfer	19,20
12	M Feb 23	Forced and free heat convection	19,20
13	W Feb 25	Forced and free heat convection	19,20
	M Mar 02	No class	
	W Mar 04	No class	
	M Mar 09	Spring recess	
	W Mar 11	Spring recess	
	M Mar 16	Spring recess	
	W Mar 18	Spring recess	
14	M Mar 23	Convective mass transfer	28
15	W Mar 25	Convective mass transfer	28
16	M Mar 30	Diffusive mass transfer - Fundamentals	$24,\!25$
17	W Apr 01	Diffusive mass transfer - Steady state $(1D, 2D)$	$25,\!26$
18	M Apr 06	Diffusive mass transfer - Steady state $(1D, 2D)$	$25,\!26$
	W Apr 08	Exam II	
19	M Apr 13	Diffusive mass transfer - Transient	27
	W Apr 15	No class	
20	M Apr 20 $$	Diffusive mass transfer - Transient	27
21	W Apr 22	Inter-phase convective mass transfer	29
	W May 06	Final Exam	