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Abstract— In this paper we discuss issues related to the design
of clusterwheel inverted pendulum balancing machines, with a
particular focus on the choice of the number of wheels in the
cluster. This class of vehicles holds the promise of incorporating
the inherent compliance of a two-wheeled balancing vehicle,
the stability of a four-wheeled vehicle when desired, and the
capability of legs to overcome obstacles such as stairs and
indoor terrain. In order to arrive at a design compromise
that can retain the advantages of each mode while minimizing
disadvantages, we examine the dynamics and control of various
cluster geometries and give analytical arguments in support of a
three wheel cluster design while verifying our hypothesis using
simulations of various cluster architectures. We then present
the design and the construction of “Charlie,” a prototype
clusterwheel vehicle, and demonstrate basic stable obstacle
traversal.

I. INTRODUCTION

There are many parts of the human environment that are

daunting for robots. Objects of everyday interaction such as

stairs, doors, and curbs are often insurmountable obstacles. A

wide range of robots have been designed to address specific

challenges in human environments, however the versatility

and adaptability of human locomotion remains unmatched.

While wheeled vehicles have excellent energy efficiency and

can be designed to have fairly low mechanical complexity,

they fail to provide much adaptability to uneven ground with

obstacles greater than approximately quarter of the wheel

diameter difficult to surmount. Legged vehicles, on the other

hand, are able to pick up their ground contacts in order to

overcome obstacles, but require fairly complex mechanical

structures and typically many more actuators. Furthermore,

traditional vehicles of both kinds (wheeled and legged) tend

to be large, rigid, and of high-impedance, making their

movements around humans potentially unsafe.

One promising direction that has been actively investigated

in the past decade or so is wheeled balancing inverted

pendulum platforms [1]–[6], which have the efficiency of

wheeled vehicles, but have much greater mobility and smaller

footprint. However, they still lack the ability of legged

vehicles to overcome significant obstacles. In this paper, we

discuss issues related to a class of dynamically balancing

inverted pendulum (IP) robots with clusterwheels that allow

the platform to switch from balancing (on two wheels) to a

more stable four-wheeled configuration. The configuration
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Fig. 1. Charlie balancing on two wheels

allows the robot to negotiate curbs, stairs and walkways

commonly encountered in indoor and outdoor built-for-

human environments, as well as balance dynamically and

remain compliant in order to absorb collisions with humans

or other objects in the environment. We particularly examine

the effect of changing the number of wheels in the clusters

on the stability of the vehicle.

Clusterwheel balancing platforms were previously imple-

mented in the iBOT Mobility System [7]–[13], an advanced

powered wheelchair developed in part by co-author Morrell.

While the iBOT system demonstrated the feasibility and ben-

efits of the concept, there are still many aspects of the design

and control of these types of vehicles left unexplored. These

include optimal cluster geometries, actuator specifications

and dynamic control of the robot during transitions between

2-wheeled (balancing) and 4-wheeled modes. This paper

investigates a key issue in the design of these systems: how

the selection of cluster geometry affects the controllability

of the vehicle as well as the ability to overcome obstacles

such as stairs.

Besides balancing platforms, other work on multi-

functional locomotion designed for both movement and

terrain climbing can broadly be categorized into three archi-

tectures, legged, wheeled and treaded. A detailed taxonomy

of robot locomotion is surveyed by Whittaker et al. [14]. A

combination of leg-wheel hybrids have also been designed,

combining the efficiency of wheels with the terrain capability

of legs. The Whegs [15] platform is a prominent example of

the legs on wheels concept while the Scarab [14], Octopus

[16] are examples of wheels on legs. There also exists

a number of treaded robots designed to climb stairs and

other obstacles in human environments. S.Hirose et al. [17]

describe a tread mechanism with flaps attached to treads

and a tail that can successfully climb stairs, additionally

there exists other literature [18]–[20] on stair climbing on
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(a) (b) (c)

Fig. 2. Various intended modes of operation for Charlie. (a) Two Wheels
on Ground in Dynamically Balancing mode. (b) Four Wheels on Ground
in Statically Stable Mode. (c) Four Wheels on Ground in Statically Stable/
Climbing Mode.

treads. Spacecat [21] and Epi.q-TG [22] describe robot ar-

chitectures that use similar cluster wheels as in our proposed

design, however neither is designed to balance dynamically

on two wheels as their respective applications, lunar/mars

exploration and outdoor terrain do not call for this capability

which is valued in human environments.

In the following sections we first introduce a lumped

parameter dynamic model for the evaluation of cluster wheel

vehicles. We then make geometric and control arguments

based on model analysis to select the appropriate cluster

geometry. Further we describe our simulation to estimate

the stability of two and three wheel clusters and present

the results from simulating cluster motion. Subsequently we

describe the mechanical construction and the control system

architecture of the robot detailing the sensor and actuator

locations. We also demonstrate basic stable obstacle traversal

and examples of simulation in a video (http://youtu.
be/hhfmD_FFyY4) that accompanies this paper. Note that

the controller design for obstacle climbing and traversal is

not the objective of this paper and we do not attempt to

describe the exact method of obstacle climbing as illustrated

in the video as this is part of ongoing research. Finally

we conclude by explaining challenges and future research

directions.

II. GEOMETRIC AND CONTROLLABILITY

ANALYSIS

In this section we explore various factors informing the

selection of cluster geometry. First we explain the three

anticipated modes of operation of the robot, we then explain

the lumped parameter model we use for our analysis. Finally

we explain analytical and simulation based reasoning behind

our decision to use three wheel clusters. Note that in this

section and subsequent sections we define a “cluster” as

consisting of the mechanical arrangement of the wheels with

associated mounting structures. We define “pendulum” as the

parts of the robot that do not belong to the cluster. To better

illustrate our design choices in context, we present the final

build of Charlie in Fig. 1.

Fig. 2 shows a simplified diagram of the robot in the three

anticipated modes of operation dynamically balancing with

two wheels on the ground, statically stable with four wheels

on the ground (two on either side) and a climbing mode that

is also statically stable with four wheels on the ground to

mount curbs and stairs. While controlling the robot in each

(a) (b)

Fig. 3. Figures illustrating the optimal and non-optimal packaging of
wheels. (a) Optimal inter-wheel distance. (c) Non-Optimal inter-wheel
distance

(a) (b) (c)

Fig. 4. Figure illustrating the dynamic model and parameters that transform
it into two and three wheel clusters. (a) Lumped parameter model for cluster
wheel (b) Two wheel cluster derived from the general model by setting H =
0, R = W (c) Three wheel cluster derived from the general model by setting
H = R× tan(π/6) , R = W

of these modes alone is simple, it is the transitions between

modes that present a design and controls challenge. As we

shall see in the analytical results, the transition between these

modes is not trivial and the geometry of the cluster plays a

significant role in determining the feasibility of transitions.

In Fig. 3(a) we show the dimensions for optimal spacing of

wheels. As Fig. 3(b) shows, a deviation from this rule can

result in the vehicle getting stuck on an obstacle. Keeping this

in mind, we design our cluster with an inter-wheel distance

of 2.1R where ‘R’ is the radius of the wheel.

A. Modelling and Controllability

To analyze the geometry of clusters that would be most

suitable for our design, we employ the lumped parameter

model shown in Fig. 4(a). Note the figure represents a

model of the robot when on the ground in the “four wheel”

mode. By appropriately setting initial conditions, this model

simulates the dynamics of the robot at the moment of ground

impact when transitioning between two and four wheels.

Note that we omit the wheels from this model, substituting

the dynamics of wheels by a dissipative damper. The intent

behind this approximation is to determine if the system can

be controlled by using the cluster joint alone. If indeed

possible, this will allow us to control the robot in place

without wheel movement on the ground which is potentially

hazardous while balancing on stairs. The model also allows

us simulate various cluster geometries by changing the

location of the center of mass M1. For example a two

wheel cluster is generated when H = 0, a three wheel cluster

when H = R× tan(π/6). This transformation is illustrated in

Fig. 4(b) and Fig. 4(c).

Evaluating the dynamic equations of the model described

in Fig. 4(a) we obtain an 8 state (table I) non-linear system
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TABLE I

STATE VARIABLES FOR MODEL IN FIG. 4(A)

Variable Description
β Angle between cluster and ground
θ Angle between pendulum and vertical

xM1 Horizontal location of M1
yM1 Vertical location of M1

•
β Angular velocity between cluster and ground
•
θ Angular velocity between pendulum and vertical
•

xM1 Horizontal velocity of M1
•

yM1 Vertical velocity of M1

(equations listed in Appendix). To evaluate the influence of

cluster torque over the system dynamics we compute the

controllability matrix of the linearized system in various

configurations. We pay particular attention to the instant at

which the cluster touches the ground as this determines if the

robot is controllable at ground impact. To do this we linearize

the system about the points listed in Eq. (1) and compute the

controllability matrix. Here xM1i,yM1i,
•

xM1i,
•

yM1i,
•
βi,

•
θi

refer to positions and velocities at impact. Eq. (1) describes

a condition where the cluster impacts the ground with a non-

zero velocity or ‘hard’ landing. Additionally we would like

the pendulum to be close to vertical to subsequently stabilize

the robot in a statically stable four wheel configuration. For

this we impose the conditions θ → 0,
•
θ → 0.

β → 0,θ → 0,xM1 → xM1i,yM1 → yM1i,
•
β →

•
βi,

•
θ → 0,

•
xM1 →

•
xM1i,

•
yM1 →

•
yM1i (1)

The controllability matrix evaluated at Eq. (1) is of the

form given by Eq. (2). The functions described by the ‘f’

and ‘g’ terms are complex functions of the impact velocities.

The location of the zeros in this matrix imply low control

authority of the cluster torque over the ‘bounce’ mode of

the robot. To illustrate this better we present Eqn. (3) to (5).

Eq. (3) represents a general LTI system and Eq. (4) displays

the fourth derivative of the state variable. Note the similarity

of terms between this expression and the expression for

the controllability matrix given by Eq. (5). Considering the

row for vertical bounce ‘yM1’ in Eq. (2) we see that the

first non-zero element in the row corresponds to the column

of the controllability matrix given by A3B. Correlating this

with Eq. (4), we can see that the input torque ‘τ’ will

ONLY influence the fourth derivative of ‘yM1’. While the

controllability matrix may appear full rank, in practice the

input has insufficient control authority at impact to prevent

the cluster from ‘bouncing’ unstable.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ
β

xM1

yM1
•
θ
•
dt
•

xM1
•

yM1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 f1 f2 f3 f4 f5 f6 f7

0 f8 f9 f10 f11 f12 f13 f14

0 f15 f16 f17 f18 f19 f20 f21

0 0 0 g1 g2 g3 g4 g5

f22 f23 f24 f25 f26 f27 f28 f29

f30 f31 f32 f33 f34 f35 f36 f37

f39 f39 f40 f41 f42 f43 f44 f45

0 0 g6 g7 g8 g9 g10 g11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

(a) (b)

Fig. 5. Cycloid traced by the mass positions (a) Two wheel cluster (b)
Three wheel cluster

(a) (b)

Fig. 6. Potential energy change on ground impact (a) Two wheel cluster
ΔPE = (M1+M2)gΔHa = (M1+M2)gR (b) Three wheel cluster ΔPE =
(M1+M2)gΔHb = 0.577(M1+M2)gR

•
X = AX +Bτ (3)

••••
X = A4X +A3Bτ +A2B

•
τ +AB

••
τ +B

•••
τ (4)

C =
[
B|AB|A2B...|An−1B

]
(5)

B. Selection of cluster geometry

As we have seen that the torque applied at the cluster joint

is unable to control the cluster bounce at impact, the only

method to ensure stable ground impact is to dissipate all

kinetic energy passively. While employing soft viscous tires

or damped suspensions are certainly an option to achieve

this, the cluster geometry also has a significant impact

on the passive dynamics of the cluster. Fig. 5 shows the

cycloid of the mass positions with an actuated two and

three wheel cluster. Note that for the two wheel cluster,

ALL of the kinetic energy at impact is directed into the

vertical uncontrollable (bounce) mode of the robot, whereas

in the three wheel cluster the kinetic energy is also directed

in the horizontal mode where appropriate wheel actuation

may be able to dissipate it. Additionally a simple measure

of the potential energy as shown in Fig. 6 between the two

and three wheel configurations suggests that the three wheel

cluster will have to dissipate less energy on impact when

compared to the two wheel cluster. These reasons suggest

that on ground impact it is easier to stabilize the three wheel

cluster compared to a two wheel cluster even at the cost of

small horizontal movements.

1) Simulation of cluster geometry: While the increased

stability of the three wheel cluster can be explained by the

analytical reasoning given above, in this section we present

simulation results that support our analytical conclusions.

For this we perform simulations of the cluster wheel system

under the following conditions:

We initialize both two and three wheel clusters in the

configuration shown in Figs. 7(a) and 7(b). Because of the

dimensionality of the system involving eight state variables

it becomes challenging to find initial conditions that do

not lend advantages to one cluster geometry over the other.

To control for this we simulate conditions that occur when
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(a) (b)

Fig. 7. Initial Conditions for two and three wheel simulations (a) Two
wheel cluster (b) Three wheel cluster

Fig. 8. Cluster controllers for various tire contact conditions: Left wheel
contact, right wheel contact, two wheel contact and no contact

the clusterwheel vehicle transitions from balancing straight

up to the statically stable pose. Additionally, to bias the

cluster toward falling to the right we offset the pendulum

mass (M2) 10◦ to the right. We also offset the left tire

spring into a compressed position that exactly balances the

weight to avoid any transients. Controllers for tire contact

conditions are shown in Fig. 8 illustrating the effect of

applied torques. We switch between two separate expressions

to generate the cluster torque (τ) required to transition from

the initial conditions to a statically stable four wheel pose.

Both the expressions for controller torques along with all

combinations of tire ground contact are shown in Fig. 8.

Note that this controller is by no means the only one that

we could implement. However it is our experience that

this controller adequately tests the ground impact of the

clusterwheel system. Specifically this controller stresses the

dissipative performance of the tire spring-dampers that is

crucial to maintaining stability We vary tire stiffness (K) and

damping (Bs) and monitor (a) If the clusterwheel system falls

over with the pendulum hitting the ground (b) If the system

does not fall over then we count the number of “bounces”

on the front and back tires before the system settles into a

statically stable pose. To do this we count the number of

transitions between no contact to contact conditions on the

left and right tires.

Note that the controller used in our simulations is by no

means the only one that we could implement. However it

has been our experience that this controller adequately tests

the fall down of the clusterwheel system. Specifically this

controller stresses the dissipative performance of the tire

spring-dampers that is crucial to maintaining stability.

Fig. 9 show the results of our simulation. The numbers

in the parenthesis indicate the number of No Contact to

Contact transitions for the left and right tires respectively.

In addition to this the letter F denotes a failed simulation

where the clusterwheel system has toppled over. Comparing

the results of the simulations, we see that the two wheel

cluster is more likely to be unstable. There are a number

of tire stiffness and damping values for which the system

has toppled over as the tire gets stiffer with low damping

values. In addition, comparing the number of bounces seen

on the three wheel cluster with the two wheel cluster, we

see that the number of bounces of the left tire is consistently

lower for the three wheel cluster. We can infer from these

results that our analytical hypothesis is well supported, the

two wheel cluster is at significantly greater risk of instability

when compared with the three wheel cluster.

2) Size of multiwheel clusters: Previously we have seen

that three wheel clusters are more stable compared to two

wheel clusters both by analytic reasoning as well as by

simulation. To extend this line of reasoning, the bounce

behavior of four and five wheel clusters at ground impact

can be more easily stabilized when compared to the three

wheel cluster. However as a matter of practical construction

of the clusterwheel system, we note that as more wheels are

added to a cluster, the size of the cluster (e.g. width and area

of the cluster) dramatically increases if we wish to keep the

maximum obstacle size that can be traversed constant. The

maximum obstacle size that can be traversed is related to the

radius of the wheel by x =
√

3R. The increase in cluster size

with increase in the number of wheels is shown in Figs. 10(c)

to 10(e). To quantify this numerically, we define the length

Rc shown in Fig. 10(b) as representative of cluster size. For

various other cluster geometries Rc =
R

cos( π
2 − π

n )
, where ‘n’

is the number of wheels. If we plot the cluster size relative

to the maximum obstacle size we see that the size of the

cluster increases with the number of wheels as shown in

Fig. 10(f). We can see from the above analysis that the

number of wheels in a cluster is a tradeoff between cluster

size/complexity and stability. Therefore, as a compromise

between stability at impact and cluster size we use the

triangular cluster geometry for our robot Charlie

III. EXPERIMENTAL SYSTEM

In the following section we describe the electromechanical

design and construction of Charlie. We first describe the de-

sign of the two drive chains in the robot, we then describe the

control system architecture followed by the sensor locations

and finally explain the target pitch estimation from cluster

angle and the dynamically balancing controller.

A. Electromechanical Design

Fig. 11(a) shows the wheel drivetrain which consists

entirely of timing belts drives. Belt drives have certain

advantages over gears, belts are less prone to backlash when

compared to gears and are more tolerant of misalignment.

However disadvantages of belts include large packaging

volume and additional tensioning devices. The reason for

our decision to use belts over gears was primarily driven

by a desire to avoid backlash. In a balancing machine the

effects of backlash can range from benign chattering to
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(a) (b)

Fig. 9. Results of two and three wheel “falldown” simulations (a) Figure showing the number of left tire and right tire bounces for a TWO wheel cluster
(b) Figure showing the number of left tire and right tire bounces for a THREE wheel cluster. Key: Data in parenthesis to be interpreted as (Left Wheel
Transitions, Right Wheel transitions)

(a) (b)

(c) (d) (e)
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Fig. 10. (a) Figure illustrating the maximum obstacle size that can be
negotiated by a cluster, here the obstacle size x =

√
3R (b) Figure showing

the metric used to evaluate cluster size, Rc =
R

cos( π
2 − π

n )
, where ‘n’ is the

number of wheels (c)-(e) Various cluster geometries relative to obstacle size
(f) Cluster size relative to maximum obstacle size Rc√

3R

(a) (b) (c)

Fig. 11. Figures showing the construction of Charlie. (a) Exploded view
of the drivetrain for wheels, note the tensioner on the motor and in the
cluster. (b) Drivetrain for the Cluster. Note the concentric driveshafts, there
exists mild frictional coupling between the cluster and wheel drivetrains. (c)
Laser cut plywood housing - The motor control boards are attached to the
sides,the PIC board on top with the IMU underneath the aluminum plate.
The batteries, shown in red are housed above the motors.

instability. Anecdotal evidence during testing suggests that

large backlash created by loose set-screws on D-shafts result

in instabilities that are difficult to compensate for and lead to

a failure of the balancing system. There are two tensioners

in this drive system for the two belts. The belt on the motor

is tensioned by mounting the motor off-center on a disc and

rotating the disc until the belt is taught. The belt in the cluster

is tensioned via an idler pulley on an arm that swings into

the belt. The arm is adjusted with a threaded screw outside

the cluster. Also note that Charlie has a single driveshaft

connecting the wheels as we are interested in studying the

planar dynamics of the robot.

The cluster drivetrain is designed differently from the

the wheel drivetrain. The torque at the cluster has to be

sufficiently large to be able to move the upper body of

the robot, this requirement places restrictions on the type

of gearing that can be employed. We choose a worm gear

to achieve large torques at this joint, however because of

this choice we trade off speed. The use of worm gears also

introduces some backlash into the cluster joint, however in

our experience this backlash has not seriously affected our

ability to balance. Table II in the Appendix indicates the

numerical value of backlash. Fig. 11(b) shows the cluster

drivetrain. Also note, the cluster drivetrain is part of a larger

structure enveloping the robot that lends structural rigidity,

minimizing compliance. Until now we have described the

two drivetrains as separate from each other. Note, however,

that the drive trains pass through each other in concentric

shafts and it is not surprising to find mild frictional cou-

pling between the wheel and cluster motion. This coupling

however, can be ignored as position/balance control loops

wrapped around actuator motions minimize their effect.

The control architecture of Charlie is shown in Fig. 13(a).

Charlie is controlled via a tether, which is suspended from the

ceiling to minimize external disturbance forces. A Versalogic

SBC running QNX forms the control unit, the QNX system

communicates with Charlie over an RS232 link. Charlie

carries on-board, J.R.Kerr motor control modules and a PIC

board that reads from an accelerometer (L3G4200D) and

rate-gyro (LSM303DLM) over an I2C link. The QNX system
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(a) (b) (c) (d) (e) (f)

Fig. 12. Snapshots illustrating simple obstacle climbing (a)-(b),(e)-(f)
Dynamically balancing two wheel mode,(c)-(d) Four Wheels on Ground
in Statically Stable/ Climbing Mode

(a) (b)

Fig. 13. (a) System Architecture, (b) Sensor Positions on Charlie. (1)
Accelerometer and Rate-Gyro (2) Hall effect cluster encoders, mounted on
motor (3) Wheel position optical encoder

transmits data over an UDP link to a PC running Matlab,

the PC can also issue supervisory commands to the QNX

system. All electronic components and motors are fixed into

a plywood housing made of laser-cut plywood.

Fig. 13(b) shows the location of various sensors on Char-

lie. The rate-gyro and the accelerometer are mounted on the

aluminum structure that is part of the cluster drivetrain to

minimize compliance. The wheel optical encoder is mounted

on the shaft driving the wheels. It has been our experience

that mounting this encoder at the motor results in reduced

stability margins (lower max gains) possibly due to the

compliance in the timing belt between the motor and shaft.

The cluster encoder is however mounted on the motors

directly as a time delay in the control of the cluster joint

is less critical given its slower actuation speed.

B. Pitch Angle Estimation & Balancing controller

Fig. 14 shows the pitch angles corresponding to the various

cluster angles. While obtaining the desired pitch from the

kinematic relationships is relatively simple, we use values

determined by measuring the pitch angle at zero moment

points for various cluster angles. The pitch angles obtained

in this way control for deviation from theoretical values due

to any offset masses in the structure of the robot.

While balancing dynamically on two wheels, the robot is

stabilized using a full-state controller. The controller is of

the form

Vuc = kpφ (φ −φdes)+ kdφ φ̇ + kpθ (θ −θdes)+ kdθ θ̇ (6)

V = Vuc +Vf csign(Vuc) (7)

Fig. 14. Plot of θdes determined by measuring the pitch angle at zero
moment points

where kpφ , kdφ , kpθ , kdθ are the gains associated with wheel

position, wheel angular velocity, pendulum angular position

(tilt), pendulum angular velocity (rate of tilt) respectively

and the value of θdes is given by Eq. (7). Vf c is a variable

friction compensation term that is determined by a limit cycle

compensation algorithm [23] and ‘V’ is the PWM modulated

voltage that is applied to the motors.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we describe the effect of cluster geometry

on the dynamics of a clusterwheel balancing robots. We first

propose a dynamic lumped model for cluster wheel archi-

tectures. Using this model we then present analytic results

based on controllability and energy dissipation arguments.

Our results indicate that as the number of wheels in a cluster

increase, it becomes easier to stabilize the system on impact

with the ground. Next we simulate two and three wheel

cluster geometries with a variety of tire parameters to test

and verify our energy dissipation hypothesis. We then discuss

practical implications of increasing the number of wheels in

a cluster, pointing out that this will lead to an increase in

cluster size and mechanical complexity. We then conclude

that a three wheel cluster is ideally suited for our application.

Subsequently we describe the electromechanical design and

construction of our cluster wheel robot “Charlie”, including

design measures to minimize compliance and backlash.

A. Video of balancing robot

Finally we also submit a video demonstration (http://
youtu.be/hhfmD_FFyY4) of teleoperated object traver-

sal using the robot. Additionally, for reasons of clarity

we also include clips from our simulation of clusterwheel

architectures.

This paper outlines the beginnings of our investigation

into clusterwheel robots. Ongoing investigations explore the

development of controllers for switching between two and

three wheel modes as well as obstacle traversal. Our long

term objective is to develop a stable control system to allow

dynamic balancing while negotiating planar obstacles like

curbs and stairs.
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APPENDIX
Equations representing the dynamics of a general cluster-

wheel Eqn. (8) to (11) robot as shown in Fig. 4(a).Table III
lists the various parameters of the model in addition to the
state variables described in table I.

− Bm
•
β

IM2+L2M2
+

Bm
•
θ

IM2+L2M2
− gLM2sin(θ)

IM2+L2M2
+
••
θ +

τ
IM2+L2M2

= 0 (8)

••
β +

2BfHyM1
•
β cos(β )

IM1
+

2BfyM1
•

xM1

IM1
+

Bm
•
β

IM1
− Bm

•
θ

IM1
+

2BsH2
•
β sin2(β )

IM1
+

2BsH sin(β )
•

yM1

IM1

+
2BsW2

•
β cos2(β )

IM1
− H2K sin(2β )

IM1
− 2HKy0sin(β )

IM1
+

2HKyM1sin(β )
IM1

+
KW2 sin(2β )

IM1
− τ

IM1
= 0 (9)

2BfH
•
β cos(β )

M1+M2
+

2Bf
•

xM1

M1+M2
− BmLM2

•
β cos(θ)

(M1+M2)
(

IM2+L2M2
) +

BmLM2
•
θ cos(θ)

(M1+M2)
(

IM2+L2M2
)

− gL2M22 sin(θ)cos(θ)

(M1+M2)
(

IM2+L2M2
) +

LM2τ cos(θ)

(M1+M2)
(

IM2+L2M2
) +

LM2
•
θ

2
sin(θ)

M1+M2
+

••
xM1 = 0 (10)

− BmLM2
•
β sin(θ)

(M1+M2)
(

IM2+L2M2
) +

BmLM2
•
θ sin(θ)

(M1+M2)
(

IM2+L2M2
) +

2BsH
•
β sin(β )

M1+M2
+

2Bs
•

yM1

M1+M2

− gL2M22 sin2(θ)

(M1+M2)
(

IM2+L2M2
) +

gM1

M1+M2
+

gM2

M1+M2
− 2HK cos(β )

M1+M2

+
LM2τ sin(θ)

(M1+M2)
(

IM2+L2M2
) − 2Ky0

M1+M2
+

2KyM1

M1+M2
− LM2

•
θ

2
cos(θ)

M1+M2
+

••
yM1 = 0 (11)

TABLE II

NUMERICAL VALUES FOR PARAMETERS

Parameter Value

Wheel Drivetrain Gearing Ratio 73.10

Cluster Drivetrain Gearing Ratio 494

Backlash in Cluster Joint 2.21◦
Motor Max Torque

(Cluster and Wheel) 52.03mNm

Wheel Max Speed (no load) 264.56 rpm

Cluster Max Speed (no load) 27.85 rpm

Motor Driving Voltage 20V

L3G4200D Accelerometer Fullrange:250◦s−1,

Sensitivity:8.75◦ ×10−3s−1

LSM303DLM rate-gyro Fullrange:±2g,

Resolution: 12 bits

Wheel Optical Encoder 2000cpr

Cluster Hall effect Encoder 64cpr

Center of Gravity 19.5×10−2m above axle

Natural frequency 1.128Hz
Sampling Frequency 100Hz

TABLE III

VARIABLES IN LUMPED PARAMETER MODEL

Variable Decription

M1, IM1 Mass and Inertia of Pendulum

M2, IM2 Mass and Inertia of Cluster

Bs,Bf,Bm Damping at tires, horizontal damper

and the cluster-pendulum joint

K Spring constant of tires

L Length of pendulum

H Location of center of mass of cluster from

the midpoint of the line connecting two wheels

R Radius of tire

REFERENCES

[1] F. Grasser, A. D”Arrigo, S. Colombi, and A. Rufer, “Joe: a mobile,
inverted pendulum,” Industrial Electronics, IEEE Transactions on,
vol. 49, no. 1, pp. 107–114, Feb.

[2] H. G. Nguyen, A. J. Morrell, B. K. Mullens, A. A. Burmeister,
S. Miles, C. N. Farrington, A. K. Thomas, and D. W. G. E, “Segway
robotic mobility platform,” in SPIE Mobile Robots XVII, 2004.

[3] http://www.segway.com/, uRL http://www.segway.com/.
[4] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamically stable

single-wheeled mobile robot with inverse mouse-ball drive,” in Proc.
of 2006 IEEE International Conference on Robotics and Automation,
May 15-19, 2006, Pages:2884, 2006, p. 2889.

[5] R. Nakajima, T. Tsubouchi, S. Yuta, and E. Koyanagi, “A development
of a new mechanism of an autonomous unicycle,” in Intelligent Robots
and Systems, 1997. IROS ’97., Proceedings of the 1997 IEEE/RSJ
International Conference on, vol. 2, 1997, pp. 906–912 vol.2.

[6] Y. Ha and S. Yuta, “Trajectory tracking control for navigation of
self-contained mobile inverse pendulum,” in Intelligent Robots and
Systems ’94. ’Advanced Robotic Systems and the Real World’, IROS
’94. Proceedings of the IEEE/RSJ/GI International Conference on,
vol. 3, 1994, pp. 1875–1882 vol.3.

[7] [Online]. Available: http://www.dekaresearch.com/ibot.shtml

[8] [Online]. Available: http://www.ibotnow.com/
[9] B. N. Dean L. Kamen, M. N. Robert R. Ambrogi, M. N. John

D. Heinzmann, F. N. Richard Kurt Heinzmann, C. N. David Herr,
and M. N. John B. Morrell, “Control of a balancing personal vehicle,”
US Patent US 6 799 649, 10 05, 2004.

[10] M. N. John B. Morrell, W. M. John M. Kerwin, B. N. Dean L. Kamen,
M. N. Robert R. Ambrogi, S. N. Robert J. Duggan, F. N. Richard
K. Heinzmann, and P. N. Brian R. Key, “System and method for stair
climbing in a cluster-wheel vehicle,” US Patent US 6 311 794, 11 06,
2001.

[11] M. N. John B. Morrell and M. N. John M. Kerwin, “Methods for stair
climbing in a cluster-wheel vehicle,” US Patent US 6 443 251, 09 03,
2002.

[12] M. N. John B Morrell and M. N. John M. Kerwin, “Operating modes
for stair climbing in a cluster-wheel vehicle,” US Patent US 6 343 664,
02 05, 2002.

[13] M. N. John B. Morrell and M. N. John M Kerwin, “Mechanism for
stair climbing in a cluster-wheel vehicle,” US Patent US 6 615 938, 09
09, 2003.

[14] P. Bartlett, D. Wettergreen, and W. R. L. Whittaker, “Design of
the scarab rover for mobility and drilling in the lunar cold traps,”
in International Symposium on Artificial Intelligence, Robotics and
Automation in Space, February 2008.

[15] R. Quinn, J. Offi, D. Kingsley, and R. E. Ritzmann, “Improved
mobility through abstracted biological principles,” in Intelligent Robots
and Systems, 2002. IEEE/RSJ International Conference on, vol. 3, pp.
2652–2657 vol.3.

[16] M. Lauria, Y. Piguet, and R. Siegwart, “Octopus - an autonomous
wheeled climbing robot,” in In Proceedings of the Fifth International
Conference on Climbing and Walking Robots, Published by Profes-
sional Engineering Publishing Limited, Bury St Edmunds and, 2002.

[17] M. Guarnieri, P. Debenest, T. Inoh, K. Takita, H. Masuda, R. Ku-
razume, E. Fukushima, and S. Hirose, “Helios carrier: Tail-like
mechanism and control algorithm for stable motion in unknown
environments,” in Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, may 2009, pp. 1851 –1856.

[18] D. Helmick, S. Roumeliotis, M. McHenry, and L. Matthies, “Multi-
sensor, high speed autonomous stair climbing,” in Intelligent Robots
and Systems, 2002. IEEE/RSJ International Conference on, vol. 1, pp.
733–742 vol.1.

[19] C. Marques, J. Cristovao, P. Lima, J. Frazao, I. Ribeiro, and R. Ventura,
“Raposa: Semi-autonomous robot for rescue operations,” in Intelligent
Robots and Systems, 2006 IEEE/RSJ International Conference on,
Oct., pp. 3988–3993.

[20] W. Lee, S. Kang, M. Kim, and K. Shin, “Rough terrain negotiable mo-
bile platform with passively adaptive double-tracks and its application
to rescue missions,” in Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference on, April, pp.
1591–1596.

[21] M. Lauria, F. Conti, P.-A. Musli, M. van Winnendael, R. Bertrand, and
R. Siegwart, “Design and Control of an Innovative Micro-Rover,” in
None, 1998. [Online]. Available: http://www.estec.esa.nl/conferences/
astra98

[22] L. Bruzzone, R. Oderio, G. Quaglia, and R. Razzoli, “Experimental
assessment and evolution perspectives of the epi.q mobile robot
architecture,” in XX Congresso dell’Associazione Italiana di
Meccanica Teorica e Applicata AIMETA 2011, 2011. [Online].
Available: http://porto.polito.it/2487001/

[23] H. Vasudevan, A. M.Dollar, and J. B.Morrell, “Energy-based limit
cycle compensation for dynamically balancing wheeled inverted pen-
dulum machines,” in Dynamic Systems and Control Conference, 2013.
DSCC ’2013. Proceedings. ASME 2013, 2013.

1951


