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Abstract— This article is the second in a two-part series
analyzing human arm and hand motion during a wide range
of unstructured tasks. In this work, we track the hand of
healthy individuals as they perform a variety of activities of
daily living (ADLs) in three ways decoupled from hand orien-
tation: end-point locations of the hand trajectory, whole path
trajectories of the hand, and straight-line paths generated
using start and end points of the hand. These data are
examined by a clustering procedure to reduce the wide
range of hand use to a smaller representative set. Hand
orientations are subsequently analyzed for the end-point
location clustering results and subsets of orientations are
identified in three reference frames: global, torso, and fore-
arm. Data driven methods that are used include dynamic
time warping (DTW), DTW barycenter averaging (DBA), and
agglomerative hierarchical clustering with Ward’s linkage.
Analysis of the end-point locations, path trajectory, and
straight-line path trajectory identified 5, 5, and 7 ADL task
categories, respectively, while hand orientation analysis
identified up to 4 subsets of orientations for each task
location, discretized and classified to the facets of a rhom-
bicuboctahedron. Together these provide insight into our
hand usage in daily life and inform an implementation in
prosthetic or robotic devices using sequential control.

Index Terms— Hierarchical clustering, manipulation,
motion analysis, upper limb, prosthetics, robotics.

I. INTRODUCTION

HEALTHY upper-limb motion is a crucial tool in inde-
pendent living, indispensable in nearly all tasks under

activities of daily living (ADLs). Many efforts have therefore
been placed on preserving functional abilities and healthy arm
motions in the elderly, rehabilitating stroke victims, and aug-
menting amputee patients with prosthetic devices. In particu-
lar, upper-limb reaching has been the forefront subject of many
research endeavors including balance confidence in seniors [1],
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Fig. 1. A subject’s motion-captured hand and torso locations are
superimposed on a skeleton model performing an ADL task, reaching
overhead. Redundant markers enabled the prediction of occluded marker
locations. Other reaching targets are displayed as well; discretized
according to clustering results. Note the hand appears to reach to the
side in the torso reference frame.

influence of object presence on motion dynamics [2],
developing novel prosthesis control using joint synergies [3],
evaluating rehabilitation efforts [4], and ergonomics [5].

These past research efforts have examined specific reaching
movements separately. Instead, we investigate reaching motion
across a wide range of ADLs. And unlike developments in
classifying human motion [6], in which tasks are chosen
heuristically, using data driven methods to cluster upper-limb
functionality to obtain a representative set of motions related
to ADLs, as well as discretization of ADLs, has not yet been
done. Whether the research goal is to evaluate rehabilitation
outcomes across all tasks or analyze arm movement dynamics
for specific tasks, a hierarchical description of the hand
workspace can be leveraged to justify these efforts at every
subcategory of ADLs.

In this work we investigate decoupled healthy hand use and
discretize task locations, hand trajectories, and orientations.
Although in the past the hand has been considered to take
a straight-line path with a bell-shaped velocity profile that
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minimizes jerk [7], [8], it was later shown that this is only
the case under certain conditions [9], [10]. We suspect that
by analyzing the deviation of the actual hand trajectories
from the straight-line approximations, hereafter simply called
original paths and straight-line paths, respectively, we will
gain insight into why certain motions cluster together. For the
path analyses, we use a strictly non-dynamic kinematic model,
considering only the three-dimensional coordinate locations of
the hand.

Given the significance of hand orientation relative to the
forearm (commonly also referred to as wrist angles) in
completing ADLs [11] and avoiding compensatory move-
ments [12], we analyze unconstrained hand usage, particularly
orientation, during ADLs within a particular task space as
defined by clusters of task location. Previous research on wrist
orientations include investigating wrist synergies with elbow
and shoulder postures [13], [14] and reaching direction [15],
as well as obtaining a trajectory of wrist poses used in
ADLs [16].

Desired hand positions and trajectories could alternatively
be viewed as inputs to a control system, rather than joint
positions, as has been neurologically demonstrated [17], and
we leverage this to develop a biomechanical analysis of
human arm motion to inspire a range of technologies, such
rehabilitation programs for stroke patients [18], [19]. One
major application of discretization is in a semi-autonomous
sequential control of upper-limbs prosthetic devices or
wheelchair-mounted robotic arms [20], [21]. In these
cases, end-effector locations, trajectories, and orientations
can be individually selected from a list and executed
using conventional velocity control inputs, such as surface
electromyography (sEMG) placed on the residual limb of
the amputee [22]. While end-point locations of tasks can be
used to reliably discretize the 3-dimensional ADL workspace,
path trajectories can be used to recreate motions that appear
natural and predictable in prosthetic devices and robotic
applications. Trajectories could be implemented either instead
of or in addition to using task locations in controlling arm
devices whereby unique lists of trajectories are available to
a user depending on the current position of the end effector.
Hand orientations can subsequently be chosen from one of
the available options for the location. We use the term “hand
orientation” instead of “wrist angle” in this article given that
the wrist is analyzed in various reference frames.

In order to directly evaluate motions that are most likely
to be a common interaction for most individuals, our exper-
iment set up has participants performing simulated ADLs in
a laboratory environment equipped with a motion-capturing
system. The tasks selected for analysis are largely inspired by
those used in motion rehabilitation evaluations [23], [24] and
amputee surveys [25]–[27]; an example of the task reaching-
overhead is shown in Fig. 1, where the motion capture mark-
ers are included for reference. The chosen tasks span food
preparation, eating, hygiene, and object transferring, and are
crucial for independent living.

In the first paper of the series [28], we clustered 7 degree
of freedom (DOF) joint angle trajectories of the arm; 3 DOF
for the shoulder, 1 for the elbow, and 3 for the wrist.

TABLE I
TASKS AND CORRESPONDING MOTION SEGMENTS.

One major observation was that clusters seemingly depended
strongly on hand location, agreeing with the spatial control
hypothesis [8]. Thus, in this work, we aim to recreate and
expand on the analysis by decoupling the 7 DOF motion into
Cartesian coordinates of hand trajectories and orientations,
and explore alternative prosthesis or robotic arm controls.
Extensions include a comparison of the hand trajectory with
straight-line trajectories and end-point locations, using a data
driven approach to identify the number of clusters, and a
per-cluster analysis of the distribution of hand orientations.

II. EXPERIMENT PROTOCOL

A. Task Protocol
The protocol was completed by 12 healthy right-handed

subjects (6 male, 6 female; 67±3 inches in height) in a single
5 hour visit. Participants were chosen to span 24 to 71 years
of age. The set of motions that were analyzed in this study are
also the ones used in the first paper of this series [28], albeit
with a completely different set of parameters analyzed. These
motions are largely based on the functional measure AM-ULA
[23], and are listed in Table 1, with the setup described in more
detail in Fig. 2. Only the tasks that could be clearly segmented
into distinct sub-motions, i.e. clearly identifiable start and
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Fig. 2. Depictions of several selected protocol tasks: (a) a box object was to be moved from one specified shelf to another, and the object on the
top shelf is the location of the can during overhead reaching tasks, (b) the initial and final locations of the suitcase tasks, (c) simulated door opening
task, and (d) simulated door knob and key tasks. (e) The set up for the sitting tasks: the left and right hand start and end in HL and HR, a utensil
is placed next to HR, a bowl or plate are placed in P, a cup or mug is placed in C, and a container to collect the water during the pouring task is
placed in V. (f) The three target locations of the standing cup and mug tasks, during which the table is elevated to simulate a countertop, where C2
is 25 cm from C1 and C3 is 45 cm from C1. The task conditions for left handed participants are mirrored. Table height is 74 cm, and is elevated to
92 cm to simulate a counter top for the standing cup and mug tasks. The mug (9.5 cm height, 8 cm diameter), can (7.5 cm height, cm diameter),
box (21 × 37 × 19 cm), and suitcase (43 × 9 × 30 cm) weigh 0.36, 0.09, 0.23, and 1.36 kg respectively. The shelves are 80, 140, and 180 cm above
the floor. Door knob and handle are 90 cm above the floor, and the simulated door swivels with an 84 cm radius.

end points, were analyzed, while cyclical tasks and tasks
that lacked distinct motion segments, such as dressing, were
excluded. The selected 24 tasks were completed 3 times to
capture and reduce the effects of natural variability occurring
in hand trajectories. No additional normalization of the data
or the tasks are made, including not adjusting object locations
according to participants’ heights, anticipating the results to
be more generalizable. This is similar to the motivation of
previous research done on reaching motion [12], [29]–[32].
The only given instructions were which ‘rest pose’ to assume,
i.e. standing with hands by their sides or sitting with palms
on a table surface, and which task to perform. Tasks and
experimental set-up were inverted for left-handed participants.

This study protocol was approved by Yale University Insti-
tutional Review Board, HSC# 1610018511.

B. Data Acquisition
All tasks were recorded with a Vicon Motion Capture

System (Oxford Metrics Limited, Oxford) using 12 infrared
‘Bonita’ model cameras, 1 video reference camera (synchro-
nized with the Vicon system), at a rate of 100 frames/second.
2 markers were placed on either side of the wrist, and the
mid-point served as the hand location. 5 markers on the back
of hand were used to compute hand orientation. 20 additional
markers were placed around the torso and arm to define
the body and forearm reference frames according to [33].
Synchronized video from the reference camera was used to
aid in marker identification in the Vicon Nexus software.

III. DATA ANALYSIS

The goal of this work is threefold: gain insight into reaching
motions, reduce the ADL hand motion space to representa-
tive groups, and identify subsets of hand orientations within
clusters using data driven approaches. The flowchart of the
analysis is summarized in Fig. 3. After task segmentation,

which yielded a total of 85 distinct motion segments per sub-
ject, representative end-point locations and trajectories were
obtained by averaging across subjects and repetitions. Using
the start and end points of each segment, a straight line was
generated using the same number of time steps as the original
path and likewise averaged. For generalizability, locations and
trajectories are all described using the subject’s torso as the
reference frame.

A divergence is computed between each pair of segments
followed by a clustering step. Cluster results obtained from
the three representations are then evaluated and compared.
Coordination between task location and hand orientations are
then analyzed. All analysis methods used on the trajectory
path data have been demonstrated to work well with similar
data and are described in detail in previous work by the
authors [28], and are therefore only briefly summarized.

A. Motion Segmentation
Hand motions during ADLs, whether reaching or manipu-

lating an object, can be seen as a composite of a series of
individual sub-motions through which generalized tasks, such
as drinking from a cup, are accomplished. Motion segments
were extracted manually each time the hand reached zero
velocity, which occurred when contact was made with an
object or a transfer task was accomplished. Although more
quantitative approaches to task segmentation exist, such as
using principle component analysis [34] or a Hidden Markov
Model [35], all rely on heuristic ground truths for verification.

B. Divergence Measure
Unlike end-point locations, hand trajectories vary in length

(both distance and time) and a divergence cannot be
directly computed. Therefore we use dynamic time warping
(DTW) [36], a lossless algorithm that better aligns epochs
between pairs of time-series data than linear resampling, and
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Fig. 3. Flowchart outlines the steps in the analysis. (a) Cartesian marker data is recorded and analyzed using either the trajectory or the end-point
location of the hand. Additional markers are presented for reference. (b) The recorded tasks are then segmented into sub-movements and averaged
across repetitions and individuals to obtain individual representations of each motion. (c) A distance matrix is obtained for each data representation,
using either DTW for the trajectory data (top) or a Euclidean distance (bottom) for the end-point locations, followed by (d) a clustering step using
agglomerative hierarchical clustering, in which the number of clusters is selected using the L method. (e) Hand orientations are classified to discrete
orientations using the categorization obtained from end-point location clustering. (f) Subsets of hand poses are extracted from the orientation
distributions. Steps (a)-(d) are repeated for each of the three motion representations, while (e)-(f) are repeated 3 times for each coordinate frame
for one of the motion representations, namely end-point location.

compute the average frame distance. Divergence was also
recalculated with one of the motions moving in reverse in
order to capture similarity between trajectories that happened
to move in opposite directions, with the smaller of the val-
ues two saved. Finally, divergence values are normalized by
the resulting time duration obtained during DTW, such that
they are comparable across both short and long segments.
Alternatives to length normalization were considered, such as
normalizing by the root of the time duration [37], but were
ultimately excluded due results remaining largely unchanged.

C. Averaging
While averaging end-point locations is done using a straight-

forward mean calculation, averaging of time-series data is per-
formed using DTW barycenter averaging (DBA) [38]. Unlike
linear resampling and averaging, DBA effectively aligns all
trajectories’ epochs, and thus computes a more representative
average. DBA uses the DTW alignment between all the
segments and a consensus segment and computes each frame
of the consensus segment to be the average of the associated
frames. This is iteratively performed until no new associations
are made. The consensus segment was initialized as the longest
trajectory in the group. While more complex algorithms exist
that attempt to deal with local minima identified in DBA [39],
we simply limited the amount of frames that can be warped
to the minimum amount possible when DTW is performed
between the shortest and longest trajectory pair in each group.

D. Agglomerative Hierarchical Clustering
Each data representation yielded a divergence matrix that

can be used to create clusters using any compatible clustering
algorithm [40]. Agglomerative hierarchical clustering [41]
with Ward’s linkage is chosen due to its ability to cre-
ate “spherical” clusters by minimizing variation within clus-
ters while maximizing the differences between clusters. The
agglomerative algorithm iteratively merges clusters based on
smallest Ward’s linkage until one cluster containing all mem-
bers is left, outputting a dendrogram of the data. Ward’s link-
age between a pair of clusters is calculated as the difference
between the sum of squares of each individual cluster and the
combine cluster.

A set number of clusters is obtained from the dendro-
gram using a straight-line cut. A data driven approach is

implemented to identify at which level to cut the dendro-
gram, namely the L method with the greedy evaluation
approach [42], by looking at the diminishing returns with
respect to within-cluster variance. Unlike other approaches that
evaluate local mergings, the L method considers the entire
merging data set to identify the transition between internally
homogenous and non-homogenous phases. Ward’s linkage
values at each merging are first plotted against number of
clusters and the transition between the internally homogenous
and non-homogenous cluster merging phases is then identified.
Each phase is linearly fit and the number of points that belong
to each phase is varied according to

RMSEtot = c − 1

b − 1
× RMSE (Lc) + b − c

b − 1
× RMSE (Rc) (1)

where c and b correspond to the partitions of the data
that belong to the non-homogenous and homogenous phases,
respectively, while Lc and Rc are the lines of best-fit, respec-
tively. The value of c corresponds to the “knee” of the plot
which minimizes RMSEtot .

Certain improvements to the L method have been suggested
in [42]. Including too many merging points in the evaluation
can skew the “knee” towards one end of the plot yielding
too many clusters. Limiting the analysis to 25 merging points
ensures the “knee” is located approximately in the range
of 3-20 clusters. Additionally, as recommended in [37],
merging points to the left of the largest merging distance
have been removed; in this case only the left most merging
point for each data representation has been removed.

E. Cluster Quality
A clustering quality measure is computed by clustering all

of the end-point and trajectory data, prior to averaging and
using the same methods described above, and evaluating how
often repetitions are clustered together at every merging [28].
A quality score is increased by one for every pair of repetitions
that appear in the same cluster, and is computed for every
number of clusters for each representation method. The score
is then described as a percent of the maximum possible score.
The score starts at 100% with the largest single cluster, which
contains all data, and monotonically decreases with every
additional cluster. We primarily hoped to gain insight into
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Fig. 4. XH is normal to the palm and always faces the center of the
rhombicuboctahedron while the thumb, YH, indicates the orientation
around the palm axis; ZH is aligned with the direction of the fingers.
Example hand orientations are shown for some of the bins (highlighted).
The hedron is displayed in two orientations (a) and (b), such that all sides
can be visible. A dotted line and a circle are added to aid in visualizing
the rotation. (c) Reference coordinate axes, global, torso, forearm, and
hand, with respective subscripts, are all aligned such that the displayed
hand is classified to the same bin.

methods representing hand use during ADL, and subsequent
analysis is not contingent on these results.

F. Orientation Classification
After considering a number of possibilities, we decided to

represent the large distribution of hand orientations via a grid
of square faces on a rhombicuboctahedron (with eight trian-
gular and eighteen square faces, Fig. 4a and 4b): a spherical
like geometric object whose facets represent a classification
of hand orientations. Each of the 18 main square faces can be
thought of as a palm plane (i.e. the palm of the hand is placed
coplanar with the surface), and within each of those main
squares, the 8 smaller squares represent an orientation of the
hand in that plane (with the thumb aligning with that square,
with the central square of the 3 × 3 grid empty). This yields
18×8 (144) hand orientation “bins” all in 45◦ increments from
the three major hand orientation axes. The number of bins is
chosen by balancing coarseness and usefulness in control; too

few (such as the facets of a cube) and the bins might not be
useful, too many and the bins lose their intuition.

In human-robot collaboration, object manipulation and sens-
ing requires a careful consideration of a reference frame,
which may simplify computation and improve accuracy [43].
Therefore, we analyze and compare hand orientations in three
reference frames: global, torso, and forearm, with each being
useful in different applications. While the global reference
frame is fixed to the room, the torso and forearm reference
frames are defined according to [33]. In order for the clas-
sified distributions to be comparable across reference frames,
the axes are aligned such that the hand orientation is classified
to the same bin as seen in Fig. 4c. Although orientations
can be transformed between reference frames, each reference
frame representation encodes the data differently such that
each will yield a different number of hand orientation clus-
ters, thus we evaluate orientations in each reference frame
independently.

G. Obtaining a Subset of Hand Orientations
In order to identify a representative set of hand orientations

in each set of task locations we evaluate the dispersion of
hand orientations, divide the distribution into smaller sets
until a target dispersion is reached, and calculate an average
orientation for each set. Dispersion is calculated by averaging
the distances between pairs of orientations,

di j = 2 ∗ cos−1 (|�qi , qi �|) (2)

Dispersion =
∑n

i, j=1 di j

n
(3)

where di j is the distance between a pair of orientations, qi

is the quaternion representing a hand pose in an end-point
location, and n is the number of hand orientations in a loca-
tion cluster. The dispersion value is reduced by re-clustering
the set of orientations into smaller groups until a threshold
of 22.5◦ is achieved; such that the cluster average represents a
dispersion equivalent to a bin on the rhombicuboctahedron,
i.e. orientations that exceeded a distance of 22.5 degrees
would be classified to a different bin. Because calculating the
pairwise distance for every splitting permutation is computa-
tionally infeasible, divisive hierarchical clustering is performed
using k-means; k-means was rerun 1000 times to avoid local
minimums. Cluster averages are computed using a quater-
nion averaging algorithm developed in [44]. The algorithm
works by identifying an orientation that minimizes the total
rotation from all other orientations. Additionally, clustering
ensures that the obtained average hand orientations are as
distinct as possible. For brevity, analysis is performed on
end-point location clusters only. Orientation distribution of tra-
jectory clusters and orientation trajectories will be explored in
future work.

H. Orientation Distribution Comparison
In order to identify similarity between different distributions

of hand orientation, we use a histogram distance calcula-
tion [45]. A distance matrix is created by calculating the
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Fig. 5. Visual representations of the end-point locations (top) and the averages (bottom). The end-point locations of the un-averaged repetitions
are classified according to average results. Centroids (red) are included in the top results. The origin is located halfway between markers placed on
the C8 spinal segment and at the top of the sternum.

summed absolute difference between classifications normal-
ized by the size of the distribution,

Si =
∑n

a=1
Aia (4)

Dij =
∑n

a=1

∣∣∣∣
Aia

Si
− A ja

S j

∣∣∣∣ (5)

where A is a vector representing the results of the classifi-
cation, i and j are the distributions being compared, and n
is the number of bins. Although a statistical significance is
not associated with this distance, a sense of relative similarity
between distributions can nonetheless be obtained.

IV. RESULTS

Cluster results and accompanying descriptions for each rep-
resentation method is shown in Fig. 5 and Fig. 6 correspond-
ing to end-point locations and trajectory data, respectively.
Scatter plot of the un-averaged end-points, grouped according
to the clustering performed on the averages, are shown in
the Fig. 5 as well. An additional third-person view for the
averaged locations is shown in Fig. 1. Un-averaged trajecto-
ries were not visually informative and were thus excluded.
Skeleton models were created using an online animation tool,
KineMan (http://www.kineman.com), and inserted into the
figures for reference.

The L method identified 5 clusters for the end-points of
motion segments, 5 clusters for the original-path trajectories,
and 7 clusters for the straight-line path trajectories (Fig. 7).
Detailed results depicting the results of hierarchical clustering
are shown in Fig. 11 in the Appendix.

Evaluation of the clustering quality of each representation
method is shown in Fig. 8. The number of clusters is var-
ied from 1, containing all data, to 25 clusters. Evaluation
could theoretically go on up until all data points belong
to their own cluster, but results are less informative at that
range. Original-path trajectory clustering outperformed the
other methods while end-point locations performed the worst
at almost every number of clusters.

Distribution of hand orientations are presented in Fig. 9
using the rhombicuboctahedron representation shown in the
global, torso, and forearm coordinate frames for each of the
5 end-point location clusters for a total of 15 distributions.
The initial dispersion, based on the average pairwise distance
between orientations, is displayed at the top right of each
distribution. Sets of hand orientations are additionally shown
below each distribution that represent the average hand poses
for the sub-clusters that reduced dispersion below 22.5◦. Note
that for three of the of forearm locations, the subsets are
identical, suggesting that distribution differences were not
significantly different.
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Fig. 6. Visual representations of the original-path trajectories (top) and straight-path trajectories (bottom). Clusters are identified with unique line
patterns and colors. Cluster labels are additionally included. The origin is located halfway between markers placed on the C8 spinal segment and
at the top of the sternum.

Fig. 7. L method results for each data representation. An example of
the identified “knee” for end-point locations is included in the top right.

A distance half matrix is shown in Fig. 10, highlighting
the relative similarity between distributions. The range is
normalized from 0, assigned to identical distributions, to 1,
as identified by the most dissimilar pair of distributions.
Note that the global and torso reference frames are more
similar across than between clusters, indicated by the light
diagonal.

Fig. 8. Evaluation of clustering for each of the representation methods
across a range of number of clusters. Scoring assessed how frequently
repetitions clustered together.

V. DISCUSSION

End-point locations, path trajectories of the hand, and
generated straight-line paths of the hand performing a battery
of ADL tasks were used to discretize the ADL workspace
using data driven approaches. End-point representation iden-
tified the following discretization: in-front-low, in-front-mid,
overhead, mouth and axilla, and hand-by-side and pocket.
The original-path trajectory on the other hand identified
the following discretization: reach-to-pocket, reach-to-front,
motions-in-front, drink-utensil-to-mouth, and reach-overhead.
Straight-line path clusters further differentiated some motions

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 24,2021 at 01:04:20 UTC from IEEE Xplore.  Restrictions apply. 



2962 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 28, NO. 12, DECEMBER 2020

Fig. 9. Distributions of the hand orientations are shown in each of the three reference frames (right column), as well as within each end-point
location cluster. Subsets of the distribution, found by re-clustering, are shown below each respective distribution. Some subsets are identical across
distributions, as is seen for three of the clusters in the forearm reference frame. Dispersion values are displayed at the top right of each distribution.

and merged others into the following groups: reach-to-body,
reach-to-front, reach-overhead, far-to-mouth, close-to-mouth,
motions-in-front, and move-box.

Differences between original-path and the straight-line path
clusters includes a merging of reach-to-pocket with reaching
to axilla motions, and differentiation of the drink-utensil-to-
mouth cluster into motions that began closer to or further
from the body. Unlike straight-line path clusters, original paths
that pass by the mouth, such as transferring the box from the
bottom to the middle shelf and transferring the suitcase, clus-
tered with drinking and eating motion segments. Original-path

clusters also grouped reach-overhead with transferring a box
task. These observations are largely impacted by a significant
overlap that is not present when considering the straight-line
path. This suggests that ADL tasks are not as distinguishable
as they appear and that finer task segmentation could be more
appropriate, for example, by splitting a transferring motion
around the mid-point when the object is closest to the body.

Although many tasks included an object that was centered
and placed in front of the subject, the end-point locations
of the hand were primarily situated to one side of the body.
This suggests that reaching motions were coordinated with the
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Fig. 10. Relative similarity between hand orientation distributions across
clusters and reference frames. Reference frames are indicated by G, T,
and F, for global, torso, and forearm respectively. Cluster indices 1-5 refer
to clusters in-front-low, in-front-mid, overhead, mouth/axilla, and hand-
by-side and pocket, respectively.

motion of the torso such that the arm did not move directly
in front of the body; this was even the case for the door
opening task when the hand was expected to come across
the body when reaching for the door handle. An example
of this can additionally be seen in Fig. 1. Trajectory plots
further verified this observation by demonstrating that the
paths seldom traversed in front of the torso. Although it
may seem trivial, many experiments and evaluations have
consistently centered the testing platforms with respect to the
center of the subjects’ bodies. If we accept that in the body
reference frame the arm indeed predominately appears to reach
to one side, then results of those tests fail to account for
the significance of body compensation due to the torso and
potentially misevaluate upper-limb prosthesis or rehabilitation
outcomes.

When evaluating the quality scores, we observe that end-
point location clustering performs worse than path clustering
for every number of clusters. This could be due to trajectories
having more degrees of freedom than individual points in
Cartesian space, and therefore contain sparser data. This is
consistent with the original-path clustering also outperforming
the generated straight-line paths at every number of clusters.
Additionally, straight-line paths fail to capture characteris-
tic hand motions and could therefore be the reason for its
lower clustering quality. We also observe that path trajectories
are more uniform between individuals and repetitions than
end-point locations alone. Differences between methods are
generally negligible for a few number of clusters, and selection
of the representation is therefore highly application dependent.
We proceed with analyzing the hand orientations within the
end-point location clusters as they generalize to either of the
trajectory representations while enabling an intuitive control
interface as is discussed below.

A semi-autonomous control application of this work would
enable users to operate multiple DOF without the associated
increase in cognitive burden. For example, a 7 DOF (shoulder-
elbow-wrist) prosthetic device could be first controlled by
selecting one of the 5 desired locations followed by a selection
of hand orientations; automatically selected when there is one
associated orientation. Switching from one location to another

or moving within the same location would then correspond
to which trajectories are available; e.g. starting with hand-by-
side, there are 3 possibilities, reach-to-front, reach-overhead,
and reach-pocket. This particular implementation could take
advantage of already existing myoelectric interfaces on the
market and simultaneously operate multiple DOF rather than
just one at a time. With capable location sensing, a prosthetic
wrist device could likewise reorient itself from one 3 DOF
hand orientation directly to another by providing users a suc-
cinct list of orientations to pick from. The user control process
could be streamlined for locations that had an orientation
dispersion value below 22.5◦, such as hand by side/pocket,
by coupling the location to a single hand orientation. Various
other permutations of location and trajectory sequential control
are possible, and can be explored in future iterations.

Relative distances demonstrated that the distribution of hand
orientations is more similar across global and torso frames
than between clusters. While this may not be surprising, this
reaffirms the potential interchangeability of the two reference
frames; an important feature in modeling the world space in
mobile robots and prosthetics. One application is the imple-
mentation of an IMU in a prosthetic device [46] to orient it
either with respect to gravity or the torso, which may include
other hardware considerations.

While similar, the two references still have certain notewor-
thy differences that do not make them completely interchange-
able, so while a robotic arm is generally fixed to a base normal
to the ground, a prosthetic arm could either be assumed to
be on a moving base in some scenarios and not in others.
Given that the global reference frame places no restrictions
on hand orientation, we suspected that it would always have a
more dispersed distribution than the torso or forearm reference
frame, however, the opposite was the case for the two clusters.
This suggests that the distribution of hand orientations of some
objects or locations is more consistent in the global reference
frame. One way to exploit this is to use the more compact
reference frame that includes the fewest representative hand
orientations for different tasks.

The forearm reference frame orientation distribution is the
most compact of the three, and would likely be the best
control option for transradial amputees looking to use a wrist
prosthesis device. Most bins are anatomically impossible to
reach, and the vast majority of orientations appear to lie
within a narrow range along the pronation-supination axis of
rotation; this may explain why the first three location clusters
have the same set of representative hand orientations. One
implementation may include interpolating the current orien-
tation and the desired final orientation, rotating as the hand
traverses its trajectory. However, it might not be appropriate in
prosthetic devices for transhumeral and shoulder disarticulate
amputees since positioning of the end effector would highly
depend on device capability. Specifically, setting the position
and orientation of the forearm would have to be a precursor to
positioning of the hand, which is not a challenge for transradial
devices. Additionally, since the global and torso reference
frame distributions are generalizable, these are likely to be
more useful for non-anthropomorphic robotic arms that may
have an unconventional forearm or forearm control [47]. For
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Fig. 11. Hierarchical clustering is displayed and a sets of clusters are numbered and colored and are extracted using horizontal cuts according to
the L method.

example, while reaching for an object, it may be necessary for
a robotic arm to position the forearm in extreme orientations
in order to avoid an obstacle, or in the case of hyper-redundant
manipulators that lack a well-defined forearm altogether.

The focus of this work is on positioning the end effector,
therefore motions that involve ongoing coordination of joints
throughout the trajectory would require a separate controller,
such as the drinking mode in the JACO arm [21], and are
analyzed in the first paper of this series. In the future, the effi-
cacy of a decoupled sequential control in upper-limb devices
will need to be tested. Initial tests would demonstrate whether
torso compensation could account for the variability within a
location and orientation. In wheelchair-mounted applications
the cluster locations will most likely need to be dynamically
adaptive to account for the variance, which could come in
the form of a second input or computer vision. While the
choice of references frames was based on the perspective
of a prosthesis user, various other custom reference frames
considerations [48] should be made depending on the appli-
cation. The results of this article are also dependent on the
selected task list, which by no means is exhaustive, hence
the framework could be extended to other applications by the
inclusion of relevant tasks.

VI. APPENDIX

Hierarchical clustering results for each of the representation
methods is displayed in Fig. 11. Number of clusters for each
method was selected using the L methods and demonstrated in
the plots using a horizontal cut. Tasks segments and end-point
locations are listed according to Table 1.
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