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Abstract— This paper is the first in a two-part series
analyzing human arm and hand motion during a wide
range of unstructured tasks. The wide variety of motions
performed by the human arm during daily tasks makes
it desirable to find representative subsets to reduce the
dimensionality of these movements for a variety of appli-
cations, including the design and control of robotic and
prosthetic devices. This paper presents a novel method
and the results of an extensive human subjects study
to obtain representative arm joint angle trajectories that
span naturalistic motions during Activities of Daily Living
(ADLs). In particular, we seek to identify sets of useful
motion trajectories of the upper limb that are functions of a
single variable, allowing, for instance, an entire prosthetic
or robotic arm to be controlled with a single input from a
user, along with a means to select between motions for
different tasks. Data driven approaches are used to discover
clusters and representative motion averages for the wrist
3 degree of freedom (DOF), elbow-wrist 4 DOF, and full-arm
7 DOF motions. The proposed method makes use of well-
known techniques such as dynamic time warping (DTW) to
obtain a divergence measure between motion segments,
Ward’s distance criterion to build hierarchical trees, and
functional principal component analysis (fPCA) to evaluate
cluster variability. The emerging clusters associate various
recorded motions into primarily hand start and end location
for the full-arm system, motion direction for the wrist-only
system, and an intermediate between the two qualities for
the elbow-wrist system.

Index Terms— Hierarchical clustering, manipulation,
motion analysis, upper limb, prosthetics, robotics.

I. INTRODUCTION

THE human arm is a remarkable tool that enables us to
complete a wide range of complex manipulation tasks.
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Fig. 1. Subject performing an ADL task, drinking from a mug. The
subject’s motion capture ‘skeleton’ is superimposed in this image. Redun-
dant markers are included to enable the prediction of occluded marker
locations and maintain the ability to identify joint centers.

Unlike gait, the arm regularly performs seemingly complex
and varied motions [1], [2]. Despite that, there appears to be
some degree of regularity that does not impose much cognitive
burden [3], [4]. We therefore predict that the spectrum of arm
motions can be distilled to a small subset of motion models,
for example, by using unsupervised learning techniques. Data
driven clustering approaches are explored and implemented to
identify underlying groupings of 3 degree-of-freedom (DOF),
4 DOF, and 7 DOF joint angle trajectories of the wrist, elbow-
wrist, and shoulder-elbow wrist, respectively, of the upper limb
(hereafter simply referred to as “arm motions”) from healthy
individuals performing a selected set of activities of daily
living (ADL). Clustering is a knowledge discovery approach
that quantitatively builds a categorization model, as opposed to
training a classifier with pre-labeled data, and would therefore
be most appropriate at identifying motion categories that
could be quantitatively validated. We ultimately seek to find
relatively small sets of “useful” arm motion trajectories that
are functions of a single variable. This approach would, for
instance, allow an upper-limb amputee to control a multi-DOF
prosthetic arm using a single control input, such as from two-
site EMG, which is the current standard in clinical practice [5].
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Reduced dimensionality representation of upper-limb move-
ments can be useful in a variety of domains, including operat-
ing a semi-autonomous prosthetic device by combining series
of sub-motions to accomplish a larger set of tasks. Research
groups investigating control of active prosthetic wrists and
elbows have previously used joint synergies while primarily
focusing on a single sub-motion, namely reaching [6], [7].
Our methodology aims not to only validate reaching as a
unique motion category, but also stratify all sub-motions to a
hierarchical structure and formalize the sub-motion categories,
including manipulation. This work enables future efforts to
take advantage of and focus on demonstrable categories of
motion.

Due to the large variety of motions that the human arm
can achieve, it was important to focus our clustering efforts
on motions that are relevant to daily life, i.e. common tasks
related to ADLs (Fig. 1). The selected tasks that were included
in the present work were largely inspired by standardized
‘outcome measure’ assessment tools of arm function, such
as AM-ULA [8], and reports that surveyed motion-impaired
participants regarding which tasks they prioritize [9]–[11].
The identified tasks were crucial for independent living, and
included food preparation, hygiene, dressing, grooming, and
eating; none of which are considered physically challenging.

Previous research efforts on upper limb motion have
spanned various disciplines and techniques aimed at gaining
insight into how humans make use of and control their upper
limbs. Research methods have included neural networks, non-
linear control, and musculoskeletal modelling [12]. Some
investigations have attempted to control upper-limb prosthetic
devices by identifying and making use of underlying healthy
motion patterns [13], [14]. These include performing pattern
recognition of simultaneous motion primitives [15] or using
artificial neural networks to discriminate or predict upper-
limb functions [7], [16] in healthy participants. Other groups
extracted subsets of arm motion primitives from healthy partic-
ipants using functional principal component analysis (fPCA)
[17]–[19]. Instead of using a linear combination of movement
primitives to perform a complete task, a more straightfor-
ward approach to controlling an upper-limb device could
instead be made up of a sequence of individual sub-motions,
as is proposed in this paper. Hierarchical description and on-
line motion recognition of non-ADL motion segments have
been performed in [20]. However, efforts were on creating
non deterministic automatic motion recognition technology
of whole body motions rather than on sequential motion
segments. Other relevant fields, including rehabilitation, have
analyzed the ranges of joint angles as a measure of healthy
motion patterns [2], [21], [22]. Although efforts have been
made to extract underlying motion patterns [7], [17], [20],
none have deterministically stratified arm motions related to
ADLs.

This paper is an extension of a previous conference paper
by the authors [23], and expands and extends it in a number of
ways. The changes are as follows: (a) 3 (wrist) and 4 (elbow-
wrist) DOF cases are analyzed in addition to 7 DOF for appli-
cation in technologies assisting patients with different degrees
of arm disability or amputation, (b) 4 DOF (shoulder-elbow)

TABLE I
TASKS AND CORRESPONDING MOTION SEGMENTS

trajectories are examined to verify the location-dominant clus-
ter characteristics of the 7 DOF model found in the previous
work, (c) an increased number of subjects (from 5 to 12),
(d) a set of motion modalities are established for each DOF
model, (e) variabilities of motion within each of the clusters
are identified using fPCA, and (f) results are demonstrated
using accompanying animations visually reassuring their use
in real-world applications.

II. EXPERIMENT PROTOCOL

A. Task Protocol

In this study we asked healthy participants to perform set of
tasks related to daily life. Standard function measure AM-ULA
[8], was used to identify the set of tasks, which are listed in
Table 1 along with task specifications in Fig. 2. Only a subset
of AM-ULA tasks were included that had identifiable start and
end points, such that complex motions that occurred during
a task could be segmented into distinct motion segments.
For example, the drinking task involves distinct sub-motions
such as reaching, drinking, and returning the cup to the table.
Tasks that lacked distinct motion segments were omitted and
include folding a towel or donning a shirt. Omitted tasks also
include small amplitude cyclical tasks, such as stirring with a
spoon or cutting with a knife.
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Fig. 2. Depictions of several selected protocol tasks: (a) a box object was to be moved from one specified shelf to another. The object on the top
shelf is the location of the can during overhead reaching tasks. (b) The initial and final locations of the suitcase tasks, (c) simulated door opening
task, and (d) simulated door knob and key tasks. (e) The set up for the sitting tasks: the left and right hand start and end in HL and HR, a utensil
is placed next to HR, a bowl or plate are placed in P, a cup or mug is placed in C, and a container to collect the water during the pouring task is
placed in V. (f) The three target locations of the standing cup and mug tasks, during which the table is elevated to simulate a countertop, where
C2 is 25 cm from C1 and C3 is 45 cm from C1. The task conditions for left handed participants are mirrored. Table height is 74 cm, and is elevated
to 92 cm to simulate a counter top for the standing cup and mug tasks. The mug (9.5 cm height, 8 cm diameter), can (7.5 cm height, cm diameter),
box (21x37x19 cm), and suitcase (43x9x30 cm) weigh 0.36, 0.09, 0.23, and 1.36 kg respectively. The shelves are 80, 140, and 180 cm above the
floor. Door knob and handle are 90 cm above the floor, and the simulated door swivels with an 84 cm radius.

Fig. 3. General framework of the data processing and analysis. (a) Cartesian coordinates of markers tracking human motion are converted to arm
joint angles, creating a set of feature variables generalizable across subjects. (b) Repetitions of different motions and subjects are segmented and
averaged. (c) The motions are compared using DTW and clustered using agglomerative hierarchical clustering with Ward’s linkage distance. (d) The
L method is used to select the number of clusters from the dendrogram. (e) Each cluster is averaged and (f) within cluster variations are calculated
using fPCA. Steps (b-f) are repeated for each of the three DOF arm models. Steps (b-d) are repeated once more for the 4 DOF shoulder-elbow
model.

The protocol was completed by 12 (6 male, 6 female)
healthy participants, chosen to uniformly span the age groups
of 20-70 so as to make the motion analysis results as gen-
eralizable as possible (also for prosthesis application); this
resulted in a final age range of 24 to 71, mean of 43, and
standard deviation of 15. Participants performed 24 individual
tasks over the course of a single 5 hour visit. Although many
breaks were included throughout the experiment to further
avoid physical and mental fatigue, such as between tasks,
participants were given as many additional breaks as they
requested; most opted out, but some took one or two additional
5 minute breaks. Each task was repeated 3 times, providing
a way to average and smooth the motions as well as account
for outliers during analysis. The 24 tasks were segmented to
2 to 6 motion segments, yielding 85 distinct motion segments
per participant. Participants were instructed to begin and end
each task in predefined ‘rest poses’; hands by the side of the
body for standing tasks and with the palms on the table for
sitting tasks. Minimal instruction was given on how the tasks
should be completed. Experimental set-up was inverted for
left-handed participants.

This study protocol was approved by Yale University Insti-
tutional Review Board, HSC# 1610018511.

B. Data Acquisition

Arm motions were recorded with Vicon Motion Capture
System (Oxford Metrics Limited, Oxford) using 12 infrared
‘Bonita’ model cameras (100 frames/second), 1 video refer-
ence camera, and 55 reflective markers placed on the body.
The video camera was synchronized with the motion capture
cameras and was used to help with marker identification within
the Nexus software.

III. DATA ANALYSIS

The goal is to identify how upper-limb motions related to
ADL cluster and obtain a subset of representative motions
using data driven approaches. The data processing and analysis
pipeline is illustrated in Fig. 3. The motion data is first
converted to joint angle trajectories and manually segmented
into sequential reaching and manipulation movements. Each
sub-movement is then averaged across repetitions. A distance
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matrix is created and used for clustering. Clusters are eval-
uated twice: first to decide on the number of clusters, then
against alternative algorithms. Finally, representative motions
are obtained from each cluster and their respective variances
are computed. Since the 4 DOF shoulder-elbow system was
included solely to compare against the 7 DOF system, this
portion of the analysis is limited to only obtaining the clusters.

A. Motion Representation

Recorded human arm motion data can be represented in
different ways, such as joint angles of the shoulder, elbow,
and wrist, or Cartesian coordinates of the arm segments.
Although the joint angle method suffers from the unequal
impact that different joints have on the end effector trajectory,
fewer variables are required to reconstruct the upper-limb than
Cartesian coordinates. A lower dimensional representation of
arm motion is an important factor for calculating similarities
while joint angle trajectories are easily interpretable and
implementable prosthetic devices. The simplicity of the joint-
angle system was therefore used through the rest the paper.

The analyzed upper-limb joint angle systems are based on
3 DOF wrist, 4 DOF elbow-wrist, and 7 DOF shoulder-elbow-
wrist definitions according to [24], hereby referred to simply
as 3 DOF, 4 DOF, and 7 DOF models, respectively. Additional
analysis is performed on the 4 DOF shoulder-elbow as well.
The shoulder angles consist of plane of elevation, angle of
elevation [25], and internal axial rotation, using the second
option for the humerus coordinate system in [24] as is detailed
in Fig. 4. The elbow angle is formed using the forearm and
humerus, while wrist angles include supination, wrist flexion,
and ulnar deviation. For left-handed participants, the joint
angles were inverted so that they are congruous to right-handed
participants.

B. Motion Segmentation

ADL tasks can be seen as composites of individual motion
segments. Many quantitative approaches exist to human
motion segmentation and are often based on analyzing various
features of motion or use statistical and machine learning
tools [26]–[29]. Ultimately, verification of segmentation is
performed heuristically by comparing results to predefined
ground truth. Therefore, instead of implementing an automatic
segmentation technique, we manually defined the start and end
points of each motion segment by identifying when the end
effector reached zero velocity, when a food item was acquired
(analogous to [30]), completed a transfer or task, or returned
the object to the table or the hand to its ‘rest pose’ (Table 1).

C. Divergence Measure

One challenge with comparing time-series data is the differ-
ence in duration. Linear resampling of the data fails at properly
aligning the epochs, and divergences between motions would
appear larger than they should. Modeling the data on the
other hand, for example with polynomials, leads to a loss of
information. Dynamic time warping (DTW) [31] works by

Fig. 4. Humeral elevation and plane of elevation are depicted using
the globe system described in [22]. The elbow is positioned below the
shoulder in the image to depict humeral axial rotation.

resampling the time-series to equal in length while simultane-
ously minimizing the sum of square Euclidean distances, and
given that the interest is in the kinematics of the arm and not
the time component, this was an appropriate option. It works
according to the following equation,

D (i, j) = min

⎧⎨
⎩

D (i − 1, j) + d (i, j)
D (i − 1, j − 1) + d (i, j)
D (i, j − 1) + d (i, j)

⎫⎬
⎭ ,

D (1, 1) = d (1, 1) (1)

where d(i,j) corresponds to the Euclidean distance between
the DOF of frame i of one motion segment and the DOF of
frame j of the second motion segment. The optimal path is
then calculated through matrix D(i,j) by starting at the last
frames of each of the motions and moving backwards through
the smallest distance values.

Because similar motions may be moving in opposite direc-
tions, such as bringing the cup to the mouth and returning it to
the table, it was necessary to calculate DTW twice, once with
the original data and once with one of the motions moving in
reverse; saving the smaller of the two calculations. Divergence
values are normalized by dividing by the new time duration
obtained during DTW. This is done so that the DTW com-
parison made between longer and shorter motions segments
are comparable, and we refer to it as normalized-DTW. While
this approach may bias longer segment comparisons, provided
that the arm motion segments are on the same time scale this
error is minimized. Although more robust DTW normalization
methods exist, such as normalizing by the square root of the
length [32], they did not significantly alter the results, and are
therefore excluded from the analysis.

D. Averaging Motions

Averaging of motions was performed during two separate
phases throughout the analysis. The first time it was to
average repetitions to obtain a single representative motion
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across participants; each final motion segment was an average
of 36 motions (three from each participant). The second use
of averaging was to identify a representative motion for each
cluster. There are a variety of ways to computing a time-series
average, the simplest one entails a linear resampling followed
by a frame by frame averaging. DTW barycenter averaging
(DBA) algorithm [33] is used instead, as it better handles phase
shifts in the motions and epoch alignment.

One precaution that had to be made during DBA is that it is
prone to local minimums, where the consensus segment will
accentuate the amplitude of certain frames to minimize the
DTW distance [33]. Although more complex algorithms exist
that attempt to deal with such issues, such as [34], we simply
limited the amount of frames that can be warped to the
minimum amount possible when performing DTW between
the shortest and the longest motion segment pair in each group.

E. Agglomerative Hierarchical Clustering

In the present study we sought a clustering algorithm that
effectively minimizes variation within clusters, maximizing
the difference between clusters, while depicting the under-
lying structure of the data. In order to further distinguish
arm motions, the algorithm would ideally result in clusters
that are “spherical” rather than interconnected. Agglomerative
hierarchical clustering [35], [36] with Ward’s linkage crite-
rion, or simply distance, accomplishes this while presenting
the data in an easily interpretable dendrogram illustrating
the distance relationship between the motion segments. The
algorithm works by successively merging clusters based on a
distance criterion until all but one cluster containing all of the
data remains. Ward’s linkage criterion, unlike complete link-
age (furthest-neighbor) or single linkage (nearest-neighbor),
creates distinct “spherical” clusters by accounting for both the
within and cumulative cluster variances according to

W = SS12 − (SS1 + SS2) (2)

where W is the calculated Ward’s distance value, SS12 is the
sum of squares of the combined cluster, and SS1 and SS2 are
the sum of squares of each of the members of the cluster to
its respective centroid. Although this method does not make
adjustments to the clustering once a merge decision has been
made, proper outlier and noise handling will mitigate this
issue; we do so by averaging repetitions, outlined in Section D.

A set number of clusters can be extracted from the den-
drograms in a variety of ways. While heuristics can be used
to select a seemingly reasonable number of clusters for the
7 DOF model, the 4 DOF and 3 DOF models do not lend
themselves to an easy interpretation. Therefore we use a
data driven approach called the L method [37] to identify
an “optimal” number of clusters. The method is used with
a greedy evaluation approach, as recommended in [37], and
only considers the Ward’s distance (2) value between the
two clusters being merged. Unlike other approaches that only
evaluate the data locally or are sensitive to noise, the L method
makes use of the entire set of distance values between each
merging pair to determine the point of transition, the “knee”,
between the internally homogenous and non-homogenous

Fig. 5. Left plot depicts the suggested windowing of the merge distance
data, as suggested in [37]. The right plot depicts an application of the L
method; identifying the “knee” of the graph.

Fig. 6. Flowchart depicting the within cluster variation analysis pipeline.
Top left panel represents the recorded motion segments belonging
to a single cluster for one of the DOF, represented using joint angle
trajectories.

cluster merging phases (Fig. 5). It works by linearly fitting
each phase while varying the sequence of points that belong
to each and calculating the total error, RMSEtot , according to

RM SEtot = c − 1

b − 1
× RM SE (Lc) + b − c

b − 1
× RM SE (Rc)

(3)

where c and b correspond to the partitions of the distance
data belonging to the left and right side, respectively, and
Lc and Rc are the lines of best-fit, respectively. Lc and Rc

must have at least two points, and c and b always add up to
the total number of points. A value of c which minimizes
RMSEtot corresponds to the “optimal” number of clusters.
Certain improvements to the L method were additionally
recommended by the authors [37], and are implemented in
the results. These include adjusting the number of mergings
that are being evaluated and removing the set of data left of
the point corresponding to the largest distance.

F. Cluster Quality

By re-computing the hierarchical clustering dendrogram
using individual motions, rather than the average of each
motion type, we can compute an evaluation score that captures
how consistently repetitions cluster,

The quality score is at its maximum for a single cluster
containing all of the motion segments and decreases monoton-
ically as the number of clusters increase. The evaluation
score could theoretically remain at 100% up to 1020 clusters;
85 unique motions from 12 participants. Common clustering
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Algorithm 1 Compute Clustering Quality
Input: vector of cluster membership ID of each motion

segment
Output: evaluation score as a %

1: Let max_score equal to 3060 // 12 subj.∗85 motion
segments ∗3 repetitions

2: Initialize score to 0
3: for each cluster do
4: for each pair of cluster members do
5: if cluster members are repetitions then add 1 to

score
6: end
7: end
8: return score / max_score ∗ 100

methods are additionally evaluated to validate the selection of
the primary methodology: K-medoids clustering and Euclid-
ean distance between motions represented using coefficients
belonging to cubic Bézier fits.

K-medoids clustering is tested using DTW divergences, sim-
ilar to [38]. Unlike K-means, K-medoids identifies a median
motion segment instead of calculating a centroid. At each
iteration, distances between representative cluster medians and
the motion segments are calculated, cluster membership is
reassigned, and new medians are computed. Ten repetitions of
this algorithm were performed to account for local minimums.

An alternative divergence measure was tested; cubic Bézier
curves were fit to each joint angle trajectory using least
squares, yielding a set of Bézier control points that represented
each motion segment. Cubic Béziers have been shown to
accurately represent human motion during data compression
[39] and hand trajectories [40]. One benefit to using Bézier
curves over traditional polynomials is that the first and last
control points correspond to the start and end locations of a
trajectory. Cubic Bézier curves yielded feature vectors of 12,
16, and 28 elements long for the 3 DOF, 4 DOF, and 7 DOF
models, respectively, corresponding to 4 control points. Euclid-
ean distances between the feature vectors were calculated and
Hierarchical clustering with Ward’s linkage criterion was then
used for clustering.

G. Within Cluster Average and Variation

In order to obtain variation within each cluster, an average
was first found, motions were resampled to be equal in
duration, and fPCA [41] was used to extract the principal
components (Fig. 6). Each set of the first n principal compo-
nents then explains some amount of variation. Greater motion
variability will require more principal components to describe
the same amount of variation than clusters with homogenous
segments.

As described in section II. A., each motion within a cluster
is an average of 36 individual motion segments, therefore a
cluster with 2 motions can also be analyzed as a set of 72 indi-
vidual motion segments. All of the individual motions that
occur while replacing the object or returning the hand are
first reversed. Then, as in section III. D., DBA is used to

identify the average of each cluster, initializing it to have the
same number of frames as the longest motion. The individual
motions are then resampled to equal in length using batch-
DTW [42]. Unlike linear resampling, batch-DTW is better
suited for this application by aligning epochs independently for
each motion, thus better capturing motion variability. Batch-
DTW is an asymmetric DTW algorithm which simultaneously
aligns multiple time-series data and retains a non-increasing
time-duration, something that is impossible to achieve using
standard DTW. It works by first selecting a reference time-
series segment, in our case it is the average motion of a cluster,
and performing DTW with each of the other time-series data.
Each set of frames that are repeated for the reference segment,
the other segment has those frames averaged instead. An
example would be if the optimal warping path included (i-
1,j), (i,j), (i+1,j), where the (i-1)th, i th , and (i+1)th frames
of motion Mi is aligned with the j th frame of the reference
motion M j . Batch-DTW would take the following average of
the three frames

(Mi (i − 1, :) + Mi (i, :) + Mi (i + 1, :)) /3

Three 3rd order B-Spline [43] elements were fit to each
of the newly aligned motion segments (using least squares).
The coefficients of the curves are used as feature variables
when calculating the principal components [41]. Since the
motion alignment considers only the positions of the joint
angles, velocity and acceleration information is lost, therefore
instead of a 5th order fit as recommended in [44], 3rd order
was chosen instead. Three equally spaced B-spline elements
were primarily used to better capture the start, middle, and
end phases of the joint angle trajectories.

IV. RESULTS

Fig. 7 displays dendrograms obtained for the joint angle
7 DOF full-arm model, 4 DOF elbow-wrist model, 3 DOF
wrist-only model, and the 4 DOF shoulder-elbow model. A
horizontal cut is used to segment each of the dendrograms to
obtain a subset of clusters according to the L method described
in [37] using the greedy approach, whose results accompany
the dendrograms in Fig. 8. The L method identified the
following set of clusters: 5 clusters for the 3 DOF model,
and 11 clusters for the rest. The shoulder-elbow trajectory
dendrogram is nearly identical to the 7-DOF model barring
two motions being placed in difference clusters, st-2 (transfer
suitcase to table) and fr-2 (use fork).

One of the L method adjustments recommended by the
authors [37] was to dynamically adjust the number of mergings
being evaluated down to a minimum of 20 points. In our case,
the identified “knee” for 25 merging points was equivalent
and we therefore left the additional 5 points in. The largest
merging distance for each DOF model was the first merging
and therefore the data being evaluated started with the merging
distance between 2 and 3 clusters.

Evaluation of the chosen methodology is shown against an
alternative divergence measure and clustering algorithm while
varying the number of clusters from 1 to 25 (Fig. 9). This was
done for each DOF model. The chosen clustering methodology
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Fig. 7. Dendrograms for the 3, 4, and 7 DOF models. Location of the horizontal cut (dashed line) was chosen using results of the L method.
An appropriate cluster name accompanies each of the clusters: major axes of wrist rotation for the 3 DOF model and generalized description of the
motions for the 4 and 7 DOF models. Cluster colors are auto-generated and are unrelated between dendrograms.

consistently outperforms the other methods for almost every
number of clusters.

Due to practical limitations in representing multi-DOF
motion with images or complex equations, we include all
of the resulting average motions and the first two principal
components of each cluster in the multi-media accompanying
this paper. An example average motion representing the 8th

cluster of the 7 DOF model, reach-to-front-far, is shown in
Fig. 10, in which the start, middle, and end poses of the arm

are displayed. The location of the end effector is also traced
out throughout the motion. The stick model is created using
forward kinematics of the average motion’s DOF in MATLAB
(MathWorks, US) according to [24], and the accompanying
skeleton model was created using an online skeletal animation
tool, KineMan (http://www.kineman.com). The first principal
component for each DOF of the motion is also included in the
figure. Start and end locations of the average of the 4th cluster
from the wrist model, supination + flexion, are additionally
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Fig. 8. L method results for each of the models. An example of the
identified “knee” for the Wrist model is included at the top row.

Fig. 9. Quality of clustering for different divergence measures and
clustering algorithms across a range of number of clusters. Scoring
metric assessed how frequently repetitions from the same individuals
clustered together.

shown in Fig. 11. The motions for the wrist and elbow-wrist
models were depicted using only the KineMan tool.

Variation of the motions within each cluster is captured
using fPCA. The percent of the variability explained by each
set of principal components, i.e. the first n number of princi-
pal components, is summarized in Fig. 12. For each cluster
the average pair-wise divergence between cluster members
is additionally included, calculated using normalized-DTW.
The analysis indicated that while some clusters needed only
3 principal components to describe 80% of the variation, others
needed as many as 8.

V. DISCUSSION

Although the hierarchical tree does not output a specific
number of clusters, clustered groups can be obtained by

Fig. 10. Forward kinematics are used to display the average motion of
the 8th cluster for the 7 DOF model, reach-to-front-far. Three reference
frames are displayed with X, Y, and Z axis using subscripts S, E, W,
and H for shoulder, elbow, wrist, and hand, respectively. The shoulder
coordinate frame is fixed throughout the motion. Humerus, forearm, and
hand lengths correspond to an average adult. DOF angle correspond,
respectively, to humeral elevation, plane of elevation, internal rotation,
elbow flexion, wrist supination, wrist flexion, and wrist deviation. Indi-
vidual joint angle trajectories are displayed along with the first principal
component. α was set to equal the proportion of total variation explained
by that component.

Fig. 11. Start and end poses of the 4th cluster for the 3 DOF model,
supination + flexion, are shown on the left along with the joint angle
trajectories and the first principal component on the right. The three joint
angles in order correspond to supination, flexion, and deviation. α was
set to equal the proportion of total variation explained by the principal
component. Red arrows indicate the general direction of motion for each
of the DOF.

transecting the dendrogram at a desired value. The most
straightforward method is using a straight line cut as is seen
in Fig. 7. The location of this cut was chosen using a data
driven approach called the L method with greedy evaluation,
chosen over global primarily due to greater reliability when
selecting the number of clusters [37]. Global evaluations have
shown only minor deviations and were not considered in the
analysis.
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Fig. 12. The variation explained by each set of principal components for each joint angle system’s averages are displayed. Note that clusters requiring
more principal components to explain the same amount of variation is generally consistent with a greater amount of motions they represent. Average
pair-wise divergence is included at the top of each bar.

According to the L method, unlike for the 4 DOF elbow-
wrist model, 7 DOF and 3 DOF models have a clear RMSE
minimum suggesting 11 and 5 clusters, respectively. Clusters
obtained for the 7 DOF model, similar to results found in
our previous work [23] and consistent with the spatial control
hypothesis [45], can be estimated using hand start and end
locations while smaller groupings within each cluster are based
on other movement characteristics. This suggests that either
the wrist motion is synergistic with the shoulder and elbow
joints along the motion path [7], [46], or that its range of
motion was not significant enough to influence clustering.
Depending on the set of motions being studied, it is likely that
both are factors. To test this we analyzed the shoulder-elbow
trajectories, which identified nearly identical clusters to the
7 DOF model, further suggesting that arm motions primarily
clustered according to task location. Therefore when designing
a 7 DOF prosthetic device control scheme, priority should be
given to the location of the end effector. The 3 DOF model
too created clusters primarily based on starts and ends of the
wrist joint angle trajectories.

Although the global minimum is located at 11 clusters,
the 4 DOF elbow-wrist model has an additional RMSE
minimum at 6 clusters, indicating the possibility of a sec-
ond plausible interpretation: clustering result for the 4 DOF
model is not a gradual transition between the 7 DOF and
3 DOF models, but rather it exhibits both of their minimums
simultaneously. We therefore suspect that 11 and 6 cluster
minimums correspond to hand location and wrist orientation,
respectively. Although the dendrogram structure for the 4 DOF
model is more difficult to interpret, given that 11 clusters
were ultimately identified despite the absence of shoulder
angles, it would appear that task location information is largely
maintained in the elbow trajectory, consistent with the efforts
in [7].

3 DOF clusters are summarized as motions types, such
as supination or deviation, referring to the most significant
degree(s) of freedom. The dart-throwing motion (DTM),
a hybrid of flexion and ulnar deviation, which has been
described as a more stable and controllable axis of rotation
[47], is re-discovered in our analysis as the average of the
2nd cluster. Since dendrogram interpretation is limited without
animation, and while cluster descriptions for all three models
are generalized in Fig. 7, readers are urged to view the average
motions in the multi-media that accompanies this paper.

The chosen divergence measure and clustering algorithm
outperformed Bézier and K-medoids methods at almost every
number of clusters, reassuring its selection. The performance
of K-medoids did not monotonically decrease with added
clusters due to the algorithm reaching local minimums despite
multiple iterations. Using Bézier coefficients to measure simi-
larities between motions performed worse than DTW likely
due to Bézier coefficients merely approximating the data
whereas DTW takes the full joint angle trajectories into
account and thus calculates a more representative divergence
value.

Average pair-wise divergence and fPCA analysis capture
the spread of a cluster and the directions of that spread,
respectively. Although some clusters require as many as
8 fPC’s to describe 80% of the variation, if the average pair-
wise divergence is small, this does not necessarily mean that
all of those fPC’s are required to accurately reconstruct the
motions for practical use in a prosthetic device. The torso
could potentially compensate for the variation as well.

The demonstrated cluster average in Fig. 10 and Fig. 11 can
be directly implemented in a semi-autonomous robotic or pros-
thetic upper-limb model. The accompanying principal compo-
nents in the same figures indicate how these motions vary,
but can also be used to inform how to dynamically tune
the trajectory to compensate for the motion variation within
the cluster. This may be an indispensable aspect of control
when, for example, reaching locations occur in continuous
space. Future work should take advantage of fPCA findings in
implementation of motion control and online adjustments.

If a common set of feature variables is identified, com-
parison may potentially be made with cyclical motions as
well. One challenge is that cyclical motions do not have
well defined start and end points, and therefore rely on
alternative representation methods such as wavelet or discrete
Fourier transform [48]. However, these methods would not be
appropriate for the non-cyclical type of data considered thus
far in this study.

The decision to use joint angle data as the feature vec-
tor largely relied on the ability of recorded motions to be
easily interpreted across individuals and its low dimensional
representation. However, this choice suffers from giving each
joint angle an equal weight when calculating the divergence
between motions, while it may have been less of an issue for
Cartesian coordinates of the upper-limb segments. Addition-

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 24,2021 at 01:04:05 UTC from IEEE Xplore.  Restrictions apply. 



GLOUMAKOV et al.: DIMENSIONALITY REDUCTION AND MOTION CLUSTERING DURING ACTIVITIES OF DAILY LIVING 2835

ally, proximity to the discontinuities in two of the shoulder
joint angles may cause them to have a larger impact when
measuring motion similarity since the angle range is likely
to be greater than for the other joint angles. Alternative arm
features have been proposed in the literature, such as the arm
triangle [49], or defining a new angle eliminating one of the
discontinuities [50], either of which could be used in future
iterations. Finally, although the decision to analyze the 3, 4,
and 7 DOF arm models is relevant in a variety of applications,
the methodology can be extended to alternative systems, such
as to a full body kinematic chain.

VI. CONCLUSION AND FUTURE WORK

This paper described a method that categorizes human
arm motion during the performance of ADL tasks. Using
data driven techniques to measure similarity between motions,
average, and cluster, 11 motion categories were identified for
the 7 DOF arm and 4 DOF elbow-wrist models and 5 motion
categories for the 3 DOF wrist model. These clusters can be
distinguished primarily based on start and end configurations
of motions, further differentiated by specific types of manip-
ulation.

The results align with intuition as well, making the proposed
method a good candidate to describe other DOF time-series
systems. The application of this work is not task specific and is
not exhaustive of the full set and complexity of motions within
each task category, but instead provides a general framework
that may be either applied in its current form for general use,
improved on using fPCA, or could further be adapted to task
specific scenarios to increase motion specificity. An example
includes obtaining a partial hierarchy of motions exclusively
for feeding [30]. The proposed approach could also be applied
to a subset of the presented data, such as decoupling the reach-
ing location from the wrist orientation. Future developments
include testing and verifying the identified average motions,
implementation of a dynamic control of the average motions
according to fPCA results, and identifying the role the torso
plays during similar ADL tasks at different locations with
respect to a fixed body frame.
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