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Using a Variable-Friction Robot Hand to Determine
Proprioceptive Features for Object Classification
During Within-Hand-Manipulation

Adam J. Spiers
Berk Calli

Abstract—Interactions with an object during within-hand
manipulation (WIHM) constitutes an assortment of gripping,
sliding, and pivoting actions. In addition to manipulation
benefits, the re-orientation and motion of the objects within-the-
hand also provides a rich array of additional haptic information
via the interactions to the sensory organs of the hand. In this
article, we utilize variable friction (VF) robotic fingers to execute
a rolling WIHM on a variety of objects, while recording
‘proprioceptive’ actuator data, which is then used for object
classification (i.e., without tactile sensors). Rather than hand-
picking a select group of features for this task, our approach
begins with 66 general features, which are computed from
actuator position and load profiles for each object-rolling
manipulation, based on gradient changes. An Extra Trees
classifier performs object classification while also ranking each
feature’s importance. Using only the six most-important ‘Key
Features’ from the general set, a classification accuracy of 86%
was achieved for distinguishing the six geometric objects
included in our data set. Comparatively, when all 66 features are
used, the accuracy is 89.8%.

Index Terms—Robotics, end effectors, manipulators, machine
learning, robot learning, robot sensing sytems, haptic sensing,
in-hand-manipulation, object identification, robot manipulation.

I. INTRODUCTION

T is easy to take for granted the wide range of manipulation
actions that people make use of in their daily lives. Some-
thing as simple as using a touch-screen smartphone one-
handed, or removing a credit card from a wallet and inserting
into an ATM, involves gripping, sliding and re-orientation
of objects. Central to this capability is the sensory facilities
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of the fingers. Reaching into a pocket and being able to dist-
inguish coins from keys involves complex sensing capabili-
ties tied to active hand and finger motions that enhance
perception. Exploratory Procedures (EPs) are the classic
embodiment of hand-based interactions that humans complete
to extract particular haptic properties from objects [1]. Over a
number of years many researchers have looked at the potential
of applying exploratory procedures to robotic systems, using a
variety of hardware platforms and tactile sensors [2]-[5]. For
example, in [6], a robot picked up and pushed objects to deter-
mine their weight and resistance to motion. Rather than such
large manipulation actions that require the motion of the
whole robotic arm, in our work we are more specifically inter-
ested in the haptic data that may be obtained via Within-
Hand-Manipulation (WIHM) of objects. WIHM, which is
also known as In-Hand-Manipulation, is defined in [7] as
producing motion of an object within the hand (i.e., in a grasp)
via parts of the hand moving with respect to a frame fixed
at the base of a hand. Such object motion is classified as
‘dexterous manipulation’ via the resulting rotational or trans-
lational object motions.

WIHM has proven to be a difficult task for robotic and pros-
thetic hands, with past attempts to achieve WIHM relying on
complex dynamic/quasi-static models [8]-[11] of the hand-
object system and/or high-DOF robotic hardware [12]-[16].
Recently we have developed novel variable friction (VF)
robotic fingers that are able to significantly change the effective
coefficient of friction of their contact surface (Fig. 1). Using the
VF fingers in a simple 2-DOF gripper configuration with a sim-
ple controller, we have demonstrated that the fingers can enable
selective gripping, rolling and sliding of an object maintained
in a stable grasp [17].

In this current paper we use the same platform to demon-
strate how these WIHM actions with the VF fingers can be used
to classify object geometries via machine-learning techniques.
We achieve this with minimum sensing requirements, i.e., uti-
lizing only the proprioceptive data from the robot actuators
(i.e., position and load), rather than any tactile or vision sensor
data. Furthermore, to negate the need for hand-selected fea-
tures, we implement a technique where 66 general features are
automatically computed from each manipulation action at pre-
defined events in the data, i.e., at or between sharp gradient
changes (‘elbows’) of position demand, position and torque.
These general features are then numerically rated with regard
to their contribution to classification performance. This process
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Fig. 1. The robot hand used in this work is composed on two single-link,
active variable friction (VF) fingers mounted on a modified Yale OpenHand
base. Proprioceptive (position and load) data are collected from the Dynamixel
actuators and form the basis of classification.

allows our machine learning system to determine the most
important ‘key features’ extracted from the WIHM actions to
enable efficient object classification.

II. RELATED WORK

In this section we examine haptic exploration and human
finger properties in the framework of within-hand-manipula-
tion (WIHM), which is also known as ‘in-hand-manipulation’.

A. Within Hand Manipulation

As explained in the previous section, WIHM enables
manipulation tasks to be completed without wrist/arm motion
or bi-lateral (two-handed) interactions [7]. Resultantly, tasks
may be performed faster, with less energy expenditure and in
more confined spaces.

Robotic efforts at WIHM have typically led to high-DOF
anthropomorphic mechanical systems [13], [14] and/or
model-dependent control approaches with in-depth pre-plan-
ning and object pose modelling and sensing [9], [10], [18].
Additional efforts have attempted to understand the mechanics
of object sliding/slip [19], [20] or rolling [21] to permit emula-
tion of such actions in robotic WIHM. This has led to model-
ling of frictional effects for dynamic and quasi-static cases
[22], [23] and frictional limit surfaces [24]-[26] for various
contact assumptions. Low DOF, non-model based approaches
to WIHM are also apparent. In [27] an anthropomorphic two-
finger gripper design was based on kinematic observations of
human hand motion during WIHM translation and re-orienta-
tion tasks. Non-anthropomorphic gripper designs to optimize
object re-orientation are also present in [28]. In [29] a simple
2 DOF manipulator was combined with an iterative learning
approach to establish object re-orientation control schemes.
Compared to these other designs, the hand with VF fingers
used in this work allows us to exploit various contact friction
configurations in much simpler way. This design aims to sim-
plify models required for WIHM, and enable dexterity by
adapting the gripper’s frictional properties according to
desired manipulation actions.

B. Haptic Exploration

Not only does WIHM potentially simplify many manipula-
tion actions, but WIHM actions facilitate the acquisition of rich
haptic sensory information via the process of active exploration
and ‘exploratory procedures’ [1]. Rather than the limited tactile
data information resulting from a light touch or single grasp
[30], [31], exploratory procedures involve dedicated patterns of
manipulation, such as squeezing objects to detect their stiffness,
or rubbing a surface to detect texture. These procedures are
often fluidly combined to extract multiple properties [32].

Exploratory procedures are often defined based on the pio-
neering work of Lederman and Klatzky, who illustrated eight
distinct EPs [1]. It is worth noting that six of the original Eps
show bi-manual object interaction, while WIHM tends to focus
on a single hand. In [32], study participants were observed
combining EPs into efficient compound motions when palpat-
ing unknown objects for feature extraction with a single hand.
Additionally, in [33] it was noted that adaptive grasping/mold-
ing of the human hand around objects facilitated better haptic
object identification.

The ability to determine haptic object properties without
vision is appealing in numerous scenarios involving occlusion or
poor lighting conditions. As such, various roboticists have
attempted to implement exploratory procedures, though these
processes often require time consuming palpatory motion
sequences and complex and expensive high-DOF manipulators
and/or tactile sensors (as summarized in [30]). With the design
of the VF fingers and gripper used in this work we aimed for sim-
ple hardware that may be re-created by anyone with access to a
research-grade 3D printer and approximately $600 for additional
components (including actuators, dowel pins and springs).

C. Biological Inspiration / Finger Properties

A variety of disciplines have identified that skin friction
plays a key role in human manipulation of objects [34]. In par-
ticular, the deformability of the finger pad leads to an increas-
ing contact area as normal force is applied. This contact area is
related to the effective co-efficient of friction, which saturates
after the application of ~IN of normal force [34]-[36]. By
modulating their grasp and force on objects, humans are there-
fore able to regulate whether objects are gripped by, or slide
over, the finger surfaces. This ability to selectively grip and
slide has been previously considered as beneficial for haptic
exploration [3]. We also believe this capability is central to the
highly-dexterous manipulation actions commonly observed in
our species. This natural gripping and sliding ability is greatly
aided by the anatomical structure of the human finger pad.

The finger pad consists of soft internal fatty tissue, which is
contained within a more rigid layer of epidermal skin. The
skin layer allows sliding over surfaces with light touch, sup-
porting objects without securing them and enabling active
exploration motions used for surface discrimination (i.e.,
stroking/rubbing) [1], [37]-[39]. Beneath the skin, the soft
subcutaneous tissue is able to conform around object geome-
try, gripping features firmly for pivoting or stabilization when
sufficient normal force overcomes the limit of compressibility
[21], [40]. This deformation also contributes to haptic identifi-
cation of object contours and hardness [1].
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Fig. 2. The variable friction (VF) fingers are composed of a low-friction sur-
face that protrudes through cavities in a high-friction surface. The low-
friction surface is suspended with springs and retracts when high-force is
applied. A servo motor may also be used to retract the low-friction surface, as
in the right image.

Soft, deformable robotic fingers are often implemented in
robotic systems and have been shown to be beneficial to estab-
lishing grasps, in comparison to rigid systems [21], [41], [42].
Unlike human fingers however, robotic finger pads tend to
consist of homogenous rubbers that do not provide the same
variety of interaction characteristics as the layered skin and fat
of glabrous (smooth & hairless) tissue [41]. Though Chorley
et al. investigated bio-mimetic multi-material assemblies from
cast human fingers, the authors did not implement those fin-
gers in object manipulation [37].

Variable Friction (VF) fingers are a recent development from
our lab that use a simple mechanism to achieve a functional anal-
ogy to the gripping/sliding behavior of the human finger [17]. In
past work we have shown that selectively switching between
high and low friction while performing side to side motions of
the fingers enables controlled sliding and rolling of objects
against the finger surfaces (as illustrated in Fig. 3). The VF fin-
gers will be described in more details in the following section.

III. SYSTEM DESCRIPTION
A. Mechanical Components

This work makes use of a simple 2DOF robot gripper con-
structed from a Yale OpenHand base (which has been modified
to accommodate two Dynamixel XM430-W350-R actuators)
and 2 VF fingers (Fig. 1). These are robot fingers that are able
to modify their coefficient of friction using either a passive
mechanism (in which an increase in normal force causes an
increase in friction) or a mini-servo actuator mounted on each
finger, which can convert the fingers from passive VF mode to
a constant high-friction mode.

The VF fingers consist of a high-friction deformable finger
surface (molded from ‘Vytaflex 30 Urethane Rubber) and a low
friction, rigid finger surface (made of smooth 3D-printed ABS).
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Fig. 3. Variable friction (VF) fingers enable controlled within-hand rotation
and translation of objects, despite limited finger dexterity and simple control
approach. Here an open-loop control sequence moves an object to a target
pose with 180 degree rotation but no translation.

The low friction surface is suspended behind the high-friction
surface by means of four elastic dental bands (1/4” ‘heavy’ vari-
ety, manufactured by Essix). This arrangement enables the low
friction element’s contact surface to protrude through cavities in
the high-friction elements contact surface (Fig. 2).

When the VF fingers exert low (<1.2N) normal contact
forces on objects, the low friction surface remains exposed,
enabling the finger to behave as if it was made of smooth plas-
tic. Once the normal force exceeds that of the elastic elements,
the low-friction element is pushed into the cavity of the high-
friction element (Fig. 1), exposing the soft and textured high-
friction surface. This variation in surface properties allows the
contacting finger surface to either slide over objects or grip
and pivot them, as in the human finger [27].

The coefficient of static friction for the low and high friction
finger surfaces are 0.32 and 0.69 in contact with aluminum and
0.13 and 0.69 in contact with ABS. Modifying the friction sur-
face therefore changes the coefficient by a factor of 2.2
(against aluminum) and 5.5 (against ABS).

The high-friction finger pads are 30 mm wide 95 mm long.
The low friction inserts consist of two rectangular sections
(5.5 mm wide and 80 mm long) with a separation of 7.5 mm,
joined by a common base. These protrude 1.25 mm beyond
the ridges of the high-friction surface when no normal force is
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Fig. 4. The hybrid position and torque controlled nature of the end effector
enables a stable grasp on objects during WIHM. As such, the torque controlled
finger (which switches from the left to right digit depending on direction of
object motion) generates different position and load trajectories for each
object in relation to the relatively consistent driving motion of the position
controlled finger.

applied. Full details of the VF finger fabrication may be found
in [17]. The design of these fingers is open source and CAD
files for 3d-printing may be downloaded from www.eng.yale.
edu/grablab/openhand, which also hosts links to associated
videos of the urethane molding process.

B. Proprioceptive Sensing

Proprioception is the ability of the body to know its configu-
ration based on internal sensing of the musculoskeletal sys-
tem. In this work, the robot’s main drive actuators (Fig. 4)
provide proprioception in terms of position encoder and load
(current) values. These are standard measurable parameters in
Dynamixel XM actuators. Video data is also recorded syn-
chronously, but only for debugging purposes; it is not proc-
essed by the controller or learning algorithm. All control is
performed open-loop, in the sense that we only provide joint
position commands as ramp functions (as will be described in
the next section) and do not measure object pose.

C. Control Approach

Our control approach makes use of the inherent torque (cur-
rent) and position control modes of the Dynamixel Model-X
actuators, which may be switched between at run-time. This
enables the hand to maintain a stable grasp on the object as
manipulation actions (such as rolling a square object between
the fingers) are being executed, while also allowing the capabil-
ity to adjust normal force application. This capability is benefi-
cial to feature generation, as the same manipulation action by
the position controlled finger tends to generate different position
and load outputs from the torque controlled finger, when differ-
ent objects are being manipulated. Please note that the control-
ler is fully described in [17], but will be summarized here.

During object motion with our controller, the finger that is
moving fowards the object is placed in torque control mode,
with a reference torque I'g. The other finger is placed in posi-
tion control mode and leads the motion with a varying position
reference (a ramp function). More explicitly, if both fingers are
moving clockwise then the left finger (which is moving towards
the object) will be in torque mode, as illustrated in Fig. 5. When
the fingers move anti-clockwise, the roles will reverse. Note

ks
£ .
/ﬁi@/g{r{ﬁﬁmlmhnﬂﬁmlvh

Fig. 5. The six manipulation objects, ordered by size. They are also described
in Table I.

that a similar concept was applied to velocity and torque con-
trol of simple robot fingers for object manipulation in [29].

As the position controlled finger moves, the torque con-
trolled finger attempts to maintain the constant torque refer-
ence I'p. This causes the fingers to sustain contact with the
grasped object during motion, while also attempting to apply a
constant normal force. The reference, I'z, may either be set as
low (0.25 Nm) or high (1 Nm). This magnitude determines the
normal force on the grasped object and therefore compression
of the suspended low-friction surface, (Figs. 2 & 3). When a
low-torque reference is provided, the low-friction surface of
the VF finger will remain exposed during manipulation,
enabling object sliding (Fig. 2 top right). If a high-torque ref-
erence is provided, the high resulting normal force will push
the low-friction surface behind the high-friction surface, caus-
ing the VF finger to grip and/or roll the object.

IV. METHODS

The goal of this study was to determine if proprioceptive
actuator data from VF finger manipulations could be used to
distinguish a variety of objects of different sizes and shapes,
when automatically parsed without any prior associations by a
machine learning based classifier.

For example, it is clear that variations in grasp aperture (the
distance between fingers) during within-hand object manipula-
tion should be able to allow discrimination between circular
objects (which roll) and rectangular objects (which pivot and
rotate). However, we provide the classifier with no kinematic cal-
culations that converts raw actuator position to finger position, or
associates the two actuator position variables together in a way
that would lead to grasp aperture determination. This also applies
to features related to actuator load, position error and associated
time derivatives (as will be discussed in Section IV.B).

We therefore define the following task for the machine
learning approach: given a large set of arbitrary, general and
pre-defined proprioceptive features, select those which are
most relevant to object classification.

A. Objects

The objects used for the test scenario are shown in Fig. 6 and
described in Table I. All objects were 3D printed in ABS with a
wall thickness of 2.5 mm. Note that particular attributes of
shape and size were repeated between objects to focus investi-
gations on whether the system would be better at differentiating
either size or shape. These objects were manipulated in a planar
fashion, with the robot hand supported above a flat surface on
which the object rests before being manipulated (Fig. 1).
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Fig. 6. One half-cycle of the object-rotation WIHM action used for proprio-
ceptive data collection. For a full cycle, the fingers would return to the start pose.

B. Data collection

Though initial hopes were to use both sliding and rolling
capabilities to explore objects through functional motion
sequences. It was soon observed that certain cylindrical objects
were often ejected from the hand following several sliding
actions. Considering that this is an initial proof-of-concept
study, it was decided that reliable baseline data from simple
manipulations was preferable to data from more varied, but
error-prone manipulations. A back-and-forth rolling action was
therefore utilized as the exploratory procedure for this work
(Fig. 6), following the initial positioning of the object into the
start pose, which is achievable by sliding.

The rolling action is achieved by moving to the rightmost,
then leftmost limits of the workspace while applying a high '
value, causing the object to pivot. Fig. 1 shows the rolling being
executed from left (panel 1) to right (panel 4) for the 25.4 mm
(1 inch) square object. Following this, the motion is reversed
and the object returned to the start pose. This constitutes one
cycle. The object exploration was completed in four sets of
seven cycles per object. Between each set the object was
removed and replaced in roughly the same location in the grip-
per. This permitted some variation in starting conditions.

C. Recorded Data

Fig. 7 illustrates the captured data over one object rolling
cycle with the 25.4 mm square object. The data consists of
each actuator’s position, position reference (demand), and load
data. Note that the position reference signals are only followed
by a finger when it is in position control mode, which we illus-
trate in Fig. 7 using a dotted line, with a solid line indicating
that the actuator (and finger) is in torque controlled mode. Note
also that, as described in Section III.C, the position-controlled
and torque-controlled roles of the fingers switch depending on
whether the object is being moved toward the left or right.

D. Gross Feature Extraction

Fig. 7 illustrates that the trajectories of position, position
reference and load are approximately trapezoid profiles. This
allows us to automatically extract features based on key
aspects of these profiles, notably the ‘elbows’ of the trapezoids
(which may also be considered as regions of significant gradi-
ent change). These 20 points (denoted A-T) are encoded in

IEEE TRANSACTIONS ON HAPTICS, VOL. 13, NO. 3, JULY-SEPTEMBER 2020

TABLE I
SIZE AND SHAPE CHARACTERISTICS OF THE SIX MANIPULATION OBJECTS
Object Shape Size Diameter (mm)
1 Circle Small 25.4
2 Circle Medium 38.1
3 Square Small 25.4
4 Square  Medium 38.1
5 R-Square Small 25.4
6 Circle Large 50.8

terms of time, magnitude, gradient (between points) and error
(in the case of Position and Position Reference) as described
in Table II. The time indices of the reference points in position
and position reference (i.e., points A-C and D-F) are the same
and therefore are only sampled once. Also, in order to capture
the more subtle differences between trajectories, several way-
points between points were added for sampling (e.g., the gra-
dient is sampled between M and N, but also sampled in the
central 1/3™ of the trajectory between M and N).

This method provides a total of 66 ‘gross features’ which are
provided to the classifier. From these gross features, we will
later extract ‘key features’, as will be discussed in Section V.B.

E. Machine Learning Approach

A total of 168 movement cycles were available for the 6
objects (28 cycles per object). Each cycle was represented by
the 66 features previously described. The data was randomly
split using stratified 5-fold cross validation. This split the tri-
als so that 80% of the data was used for training, and the
remaining 20% was used for testing the model. This splitting
is completed 5 times and then the training is run 100 times,
the classification accuracies converging to the presented clas-
sification value to follow.

For classifier selection, we implemented TPOT (Tree-based
Pipeline Optimization Tool [43]), a machine learning pipeline
that makes use of genetic algorithms to find the best classifica-
tion model for the given data. From this analysis, we found the
Extra Trees classifier (with 100 estimators), an extended ver-
sion of the Random Forests classifier, presented the best cross
validation results. For validation, we also tested a Random For-
ests classifier and a Support Vector Machine, which fell mar-
ginally short (about 5%) in classification accuracy compared to
that of Extra Trees.

F. Classification Experiments

Three separate classification approaches were completed in
order to identify how well the machine learning approach was
able to distinguish between different properties of objects.
These experiments are as follows:

A) Different size (but constant shape)

B) Different shape (but constant size)

C) Different shape and size

This involved separate training and testing of the classifiers
with selected object data.

For experiment A, the system was trained and tested using
only data from cylindrical shaped objects, in three different



SPIERS et al.: USING A VARIABLE-FRICTION ROBOT HAND TO DETERMINE PROPRIOCEPTIVE FEATURES FOR OBJECT... 605

Left Finger

Torque Control

Position Control

Actuator 1 Position

® ®

100

5 0-0-0-9
T 50 'q
N N
8 ™
Torque Control Q ©
0 - - - Position Control o ———=o=-
0 5 10 15 2

Position 1 Reference

Pos (deg)

N B D
o (=] o o
-

Load (A)

® @ eanneases

Fig. 7.

Right Finger

Position Control Torque Control

Actuator 2 Position

@ ® = = = Position Control
oo o-0 . —— Torque Control
=) . data1
£ 20 8,
8 40 lo‘*
YO,
-60 1 O----- 1 1 1

0 5 10 15 20

@ ® Position 2 Reference

l

OFpo0-000@
1 ~
Q
S 20 3,
g '
2 ) D‘
é 40! .
! O
60 ~----
0 5 10 15 20

@
®

N

Load (A)
o ——

ely
Wi
- PRI S

L L L L

5 10 15 20
Time (s)

Actuator Position, Position Reference (demand) and Load signals for one back-and-forth manipulation of the small square object. The manipulation

changes direction at approximately 9.6 seconds. The labels A-T show events (specified by large changes in gradient) where values of time and magnitude were
sampled to create the general set of 66 features. Additional features were created by taking the difference (between Position and Position Reference) or gradient
(in the case of Load) in the intervals between the labels (illustrated by small circles). This process automatically generates 66 features to comprehensively

describe the manipulation action, as further detailed in Table II.

sizes (diameters). These sizes are shown in Table I, but are
referred to in the test as ‘small, medium and large’.

For experiment B, three objects with different shapes (cir-
cle, square and rounded square) were selected with the same
‘small’ size (25.4 mm diameter).

For experiment C, which includes all objects, is the most
difficult as certain objects resemble other objects at particular
time instances. For example, when the medium size square
object is in the middle of the rotation (i.e., held by opposing
corners) the grasp aperture (space between the fingers) resem-
bles that of the large circle. Additionally, the rounded square
may resemble a circle or square at different points of the
manipulation action.

V. RESULTS
A. Gross Feature Classification

Using the Extra Trees classifier with parameters selected by
the TPOT algorithm and all 66 features, the classification accu-
racies for the three experiments are displayed in Table IIIL.
While a classification rate of 89.8% was achieved for both the
size and shape classification task (Experiment C), this rate rises
when the classifier has only to predict one of these object
parameters. These classification accuracies were therefore
90.4% for size distinction (experiment A) and 93.7% for shape
(experiment B) distinction.

The confusion matrices associated with these experiments
are presented in Fig. 8 (experiments A and B) and Fig. 10
(experiment C).

In experiment A, the classifier has the most difficulty with
the small object, misclassifying it as a large object. This may
be due to the reduction in manipulation workspace size that
occurs with large objects. This has the effect of diluting other
features.

Experiment B illustrates better classification accuracy, most
likely due to different shape objects causing notable differen-
ces in actuator trajectories. This is highlighted in Fig. 9, which
illustrates how square objects, with sharp corners, can cause
sudden changes in actuator trajectories at certain points of the
workspace.

This is apparent in the quite different range of finger and
object trajectories that stem from rotation of a square
(which pivot on its corners), the rounded square (which piv-
ots to a less degree), and the circle (which rolls without piv-
oting). As a result, most of the errors in this experiment are
caused by the system misclassifying the rounded square as a
circle.

Finally, when the system trained on all of the objects in
Table I (a variety of shapes and sizes) with all 66 features, the
model makes the most errors when predicting rounded squares
and large circles. Intuitively, we presumed that this classifica-
tion would be the most difficult since we only have one
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TABLE II
THE 66 GROSS FEATURES ARE CONSTRUCTED FROM A NUMBER OF
MEASUREMENTS OF SEVERAL VARIABLES AT PRE-DEFINED EVENTS IN THE
DATA (THOUGH THE TIMING OF THESE EVENTS CHANGES BETWEEN TRIALS).
THESE MEASUEMENTS ARE ALSO ILLUSTRATED IN FIG. 7

Value Points Sub Points Number of Features
Time A-l, M-T No 14
Magnitude AT No 20
Gradient MN, NO, OP, QR, RS, ST No 6
Central Gradient MN, NO, OP, QR, RS, ST Yes 6
Error AD-BE (5), BE-CF (5) Yes 20

GJ-HK (5), HK-KL (5)
Total 66
TABLE III

RESULTS OF THE THREE CLASSIFICATION EXPEIRMENTS
WHEN USING ALL 66 FEATURES

Experiment Test Accuracy
A Size 90.40%
B Shape 93.70%
C Size & Shape 89.80%

example of a large size object and one example of a rounded
shape object. The classification of these two objects is there-
fore actually testing some of the interpolation and extrapola-
tion of our learned model.

B. Key Feature Identification/Classification

Key features are features of the data that were determined to
have the greatest contribution to overall classification accu-
racy. To determine key features we used an ‘Importance’ met-
ric, which determines how much a feature contributes to the
overall classification for an experiment. This importance
metric was based on the Gini impurity measure, which was
introduced in [44] and is often used in ensemble tree classi-
fiers. When a random element in the data set is selected, the
Gini impurity represents the likelihood of accurate classifica-
tion given a random class selected from the distribution of
labels. This measure is extracted for each feature when deter-
mining how to split the branches for each tree in the forest,
which has the main intention of measuring purity of the node
after a split.

The feature importance measure is then calculated by aver-
aging the Gini measures for each split in the forest. We then
characterize feature contribution by scaling the Gini impuri-
ties to add up to 100 and finding percentages. These percen-
tages characterize how important a feature is to our learned
model.

A complete set of importance values for all 66 features for a
‘pilot’ classification of experiment A’s data is given in the
Appendix. To create ‘Key Feature’ classifiers, we selected the
top 6 features, i.e., those that contribute most to the classifica-
tion of objects in each of the three experiments. These key fea-
tures are provided in Table IV, where the letters coincides
with the feature labels in Fig. 7.

Somewhat surprisingly, in all experiments the algorithm has
selected the key features to only be position or position refer-
ence magnitudes. More specifically, it has not given much
importance to any load, gradient, sub-points, errors or time
index values (as described in Table II). Indeed, features of this
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Fig. 8. Confusion matrices for experiments A (size classification) and B
(shape classification).

kind can be seen to take much lower ranking in the table pro-
vided in the Appendix.

We believe that the importance of position based features is
due to the adaptive nature of the grasping and manipulation
scheme, where the torque based control of one of the fingers
means that contact is always maintained with the object,
regardless of object shape and size. Though manipulation with
different shapes and sizes no doubt cause changes in load tra-
jectories, such variations appear more subtle than the variations
that occur in the positioning of the fingers over the span of the
manipulation action.

Table V illustrates the classification accuracy that is
achieved for each experiment when only limited numbers of
key features are used. These results are presented for a range
of classifiers that make use of between 6 and 1 key feature.
This data is also represented in Fig. 11, along with the accu-
racy achieved when all features are used.

It is noticeable that the relationship between accuracy
and feature number is non-linear in all of the experiments,
with accuracy actually increasing in some occasions, when
the number of features are reduced. This non-intuitive
behavior is related to the randomness of the machine learn-
ing approach, which also does not consider the dependency
that may occur between features. Nonetheless, reducing the
number of features in experiment C (the most challenging
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Fig. 9. Actuator 1 position recordings for two different rolling manipulations
with a medium square (top) and medium circle (bottom). The change in
trajectory caused by corner pivoting has been highlighted.
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Fig. 10. Confusion matrix for experiment C (size and shape classification)
with key to object labels (object numbers are same as in Table I).

classification task) from 66 to 6 leads to a reduction
of only 4% classification accuracy, while using only a
single feature gives classification accuracy of over 80% for
experiment A.

TABLE IV
KEY FEATURES AND IMPORTANCE MEASURES (IMP) FROM THE EXTRA TREES
CLASSIFIER FOR EXPERIMENTS A, B, AND C. THE FEATURE NOTATIONS ARE
REFERENED FROM FIG. 8. ALL KEY FEATURES REFERRING TO A POSITION
VALUE HAVE BEEN SHADED GREY, WHILE UNSHADED FEATURES REFER
TO POSITION REFERENCE VALUE. NOTE THAT NO KEY FEATURES
‘WERE IDENTIFIED FROM ACTUATOR LOAD

Key Experiment Features
Imp (%)

Imp (%)
6.08
6.02
5.71
5.69
5.01
5.00

Feature B

o s W N

Position Reference

|Legend: - Position J

Legend: I Position J Position Reference

TABLE V
CLASSIFICATION ACCURACY FOR EXPERIMENTS A, B, AND C GIVEN
THE REDUCED FEATURES PRESENTED IN TABLE IV

Number of Accuracy (%)
Key Features A B C
6 80.2 92.8 86
5 80.1 92.2 86.8
4 81.9 931 859
3 836 94 83.7
2 79.7 80 845
1 81.1 76.8 65.8
95
90 N
L85
=
880
3 N~
<75
—A - Size
70 —B - Shape
C - Size and Shape
6566 ® 5 4 3 2 1)
Number of Features
Fig. 11. Change in classification accuracy for all three experiments using all

66 features versus only one to six key features.

VI. CONCLUSION

This work introduces the concept of proprioceptive object
sensing and discrimination using novel and mechanically sim-
ple ‘Variable Friction’ fingers capable of performing within-
hand manipulation (WIHM). The simple but novel switching
position/torque-based control method facilitates the extraction
of haptic object data via active manipulation, as the gripper
adaptively maintains contact with objects through manipulation
actions, despite variations in size and shape. It is this adaptation
that allows distinct manipulation data to be generated from
rather simple within-hand exploratory manipulation actions
that do not require explicit re-programming for different
objects. This reflects a major goal of the VF finger design



608

methodology, which is to enable WIHM with low mechanical
and control complexity, compared to related work in the field.

Due to the previously unexplored nature of the manipula-
tion and control scheme, we deliberately did not hand-select
features for our object classifier. Instead, we have taken an
approach of automatically extracting a large number of fea-
tures related to position, position-reference and load. Follow-
ing initial classification of objects using all of the features (in
three categories of size, shape and both), we subsequently
were able to arrange the 66 features in order of importance.
This enabled classification to be attempted again, but using
only a heavily reduced number of automatically selected ‘key
features’. Notably, the experiments were performed again
using only 1-6 key features.

It is worth noting that these key features were all automati-
cally selected to have their origin either in the position trajec-
tory of the actuators or in the position reference signals
(Table V). Though it is somewhat surprising that actuator tor-
que/load did not play a significant role in the key features. While
the position controlled finger drives the motion of the gripper
and object, the torque controlled finger demonstrates inherent
compliance in order to maintain a grasp on the object during
this motion. As a result, actuator torque has an indirect role in
achieving our classification results, by adaptation of finger posi-
tion trajectories with respect to the object size and shape, there-
fore leading to different actuator profiles for each object.

The classification results were promising at >90% accuracy
when all 66 features were used, showing that there is potential
for using a simple WIHM scheme for object classification,
without the use of tactile sensors. Interestingly this accuracy
remained about 80% for all experiments when only 6 features
were used. Indeed, experiment A produced results that could
still be considered satisfactory with only 1 feature, though this
was not the case for the more challenging experiment C.

Overall, this work has provided an application of the recently
developed VF fingers, showing their potential for haptic feature
extraction via within-hand object manipulation without the
requirement of force, torque or tactile sensors. As the VF fingers
are open source and simple to fabricate, we hope that others are
able to make use of the various properties of these manipulators.
On the other hand, the approach presented in this paper is cur-
rently specific to the Model VF variable friction robot gripper.
To our knowledge, this is the only variable friction hand in liter-
ature, and the only hand that uses such a controller for WIHM.
The novelty of our robotic platform therefore makes consider-
ation of a general approach to proprioceptive-based object clas-
sification difficult.

In the future, we wish to extend this work beyond the con-
trolled geometric primitives of this study into more realistic
and irregular objects manipulated three dimensional (rather
than planar) workspaces. The robust handling of such objects,
in addition to the capability of using sliding as well as rolling
WIHMs for data gathering, are likely to be inherently linked
to more complex and versatile variable-friction finger mor-
phologies, probably consisting of multiple phalanges and/or
additional fingers. Of course, the current control scheme will
require modification to be compatible with these new finger
designs while enabling more complex manipulation actions
and richer proprioceptive data extraction.
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APPENDIX
IMPORTANCE VALUES FOR ALL 66 GROSS FEATURES

Ranking Variable Name Category Importance (%)
1 'pos2_valuel’', Pos 6.66
2 'pos2_ref valuel', Pos Ref 6.44
3 'posl_value2’', Pos 6.25
4 'posZ_valueZ’', Pos 6.08
5 'posl_ref valuelZ', Pos Ref 5.19
6 'posl_valuel’, Pos 451
7 'posl_ref_valuel', Pos Ref 422
8 'posZ_ref_value3d’', Pos Ref 3.77
] 'posZ_ref valuelZ', Pos Ref 3.75
10 'posl_ref value3', Pos Ref 3.21
11 'pos2_value3’', Pos 295
12 'posl_value3’', Pos 2.59
13 'posl_diff linel_ 3', Pos Diff 248
14 'posl_ref_ indexl’, Pos Ref Time 2.05
15 'posl_diff linel_4', Pos Diff 201
16 'posl_diff line2_3', Pos Diff 152
17 'posl_diff linel_ 2', Pos Diff 144
18 'posl_diff line2_2', Pos Diff 1.09
19 'leoadl_vall’, Load 1.06
20 'posl_diff lineZ S', Pos Diff 1.01
21 'load2_vall’', Load 0.99
22 'leoad2_mid_slcpe2', Load Slope 0.97
23 'load2_index3', Load 0.95
24 'load2_index2', Load 0.90
25 'posl_ref index2', Pos Ref Time 0.90
26 'posl_diff line2_4', Pos DiffLine 0.89
27 'loadl_index3', Load 0.88
28 'loadl_indexl', Load 0.88
29 'posZ_ref_indexl', Pos Ref Time 0.87
30 'load2_indexl', Load 0.85
31 'loadl_val2', Load 0.82
32 'pos2_diff line2_3', Pos DiffLine 0.82
33 'leoadl_vall’, Load 0.81
34 'pos2_diff_line2_4', Pos DiffLine 0.79
35 'pos2_diff linel 4', Pos Diffline 0.79
36 'posl_diff linel S5', Pos DiffLine 0.78
37 'load2_vall’, Load 0.78
38 'pos2_diff_linel_1', Pos DiffLine 0.77
39 'pos2_diff linel_5', Pos DifflLine 0.76
40 'pos2_diff linel_ 3', Pos DiffLine 0.75
41 'loadl_mid_slopel', LoadMidTime 0.73
42 'load2_val2', Load 0.70
43 'posl_ref_index3’', Pos Ref Time 0.69
a4 'pos2_diff line2_1', Pos DiffLine 0.66
45 'loadl_index4', Load 0.66
46 'leoad2_mid_slopel', Load MidTime 0.65
47 'loadZ_index4', Load 0.65
48 'leadl_vall’, Load 0.63
49 'pos2_diff line2_2', Pos DiffLine 0.63
50 'posZ_ref_index2', Pos Ref Time 0.62
51 'loadl_mid_slope2', LoadMidTime 0.60
52 'lead2_vall’, Load 0.58
53 'posl_diff_lineZ_1', Pos DiffLine 0.57
54 'load2_£ull slopeZ', Load Full Time 0.56
55 'load2_mid_slope3', LoadMidTime 0.55
56 'loadl_full_slopeZ', Load Full Time 0.55
57 'loadl_£ull slcopel', Load Full Time 0.55
58 'pos2_diff_lineZ_5', Pos Diff Line 0.54
59 'loadl_mid_slope3', LoadMidTime 0.54
60 'load2_full_slope3', Load FullTime 0.51
61 'pos2_diff linel_2', Pos DiffLine 0.48
62 'loadl_index2', Load 0.48
63 'pos2_ref_ index3', Pos Ref Time 0.43
64 'posl_diff linel_1', Pos DiffLine 0.42
65 'load2_£ull_slopel', Load Full Time 041
66 'loadl_full_slope3'] Load Full Time 0.37
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