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Abstract—This systems paper presents the implementation
and design of RB5, a wheeled robot for autonomous long-term
exploration with fewer and cheaper sensors. Requiring just an
RGB-D camera and low-power computing hardware, the system
consists of an experimental platform with rocker-bogie suspen-
sion. It operates in unknown and GPS-denied environments
and on indoor and outdoor terrains. The exploration consists
of a methodology that extends frontier- and sampling-based
exploration with a path-following vector field and a state-of-
the-art SLAM algorithm. The methodology allows the robot to
explore its surroundings at lower update frequencies, enabling
the use of lower-performing and lower-cost hardware while
still retaining good autonomous performance. The approach
further consists of a methodology to interact with a remotely
located human operator based on an inexpensive long-range
and low-power communication technology from the internet-of-
things domain (i.e., LoRa) and a customized communication
protocol. The results and the feasibility analysis show the
possible applications and limitations of the approach.

Code—The open-source software stack is made available on
the project repository webpage†.

I. INTRODUCTION

The promise of autonomous long-term robotic exploration
is currently being restricted in part by the expense of the
required sensing, computing, and mechanical hardware. This
cost is related to the computational intensity of most com-
mon navigation and communication approaches [1, 2], which
significantly increases for outdoor terrains. Addressing this
challenge, we introduce techniques to reduce update frequen-
cies and enhance the communication capabilities of existing
approaches. By loosening the required update frequencies
and communication requirements, our methods enable the
use of lower-performing and lower-cost hardware while still
retaining good autonomous performance.

Recent efforts in this direction include low-cost robots
that, e.g., exploit sensing capabilities of commercial smart-
phones [3, 4] but lack crucial components for autonomous
long-term exploration such as terrain adaptability [3, 5],
outdoor navigation [4, 6], etc. Furthermore, in areas that are
challenging to traverse, state-of-the-art approaches rely on
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Fig. 1: RB5 low-cost wheeled robotic explorer. A robot needs to explore its
surroundings with fewer and cheaper sensors – the picture illustrates RB5,
our experimental wheeled robotic platform that carries an RGB-D camera
and low-power computing hardware to derive an exploratory coverage path.

humans for supervision and high-level decision-making [7–
9]. As a result, robots often operate close to humans or
require expensive network equipment such as a mesh of com-
munication devices [10, 11] and existing network infrastruc-
ture [12, 13], thereby restricting autonomous exploration to
indoor settings only [14–17]. Our methodology exploits LoRa
– an inexpensive long-range and low-power communication
technology [18] from the internet-of-things domain – and a
customized communication protocol. This allows a human to
intervene when the robot is unable to move with the local
sensory information.

For visual sensing, our approach maintains a low sensory
footprint with low-cost components: an RGB depth (RGB-D)
camera to sense the environment. Most approaches tackling
autonomous exploration use costly equipment such as 3D Li-
DARs [7–11, 19–21] and laser range finders [22, 23] instead.
Even though approaches that utilize cheaper sensors, such as
RGB-D cameras [24–26], RGB cameras [20], sonars [3, 4],
and 2D LiDARs are studied [5], they often operate along
more expensive hardware [20] or indoors only [24] and have
limited autonomy [25] or obstacle avoidance features [3, 4].

From a software perspective, recent efforts tackle au-
tonomous exploration with prior learning [27] or run on mul-
tiple robots [7, 8, 10], whereas approaches that require fewer
computing resources are scarce [3, 6, 21, 24]. Although
some less computationally demanding approaches, such as
those based on frontiers [8, 21, 22], graphs [7, 10, 20],
grids [9, 17], and random trees are studied, mixed approaches
(i.e., a combination of the previous approaches) are pre-
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ferred [23–25, 27, 28]. In the presence of diverse sensing
modalities, e.g., involving raw sensory data, topologies,
semantics, etc., and outdoor environments [2, 21], mixed
approaches maximize performance and resources [2, 24]. Our
methodology is a mixed approach: a frontier- and sampling-
based method that extends exploration with a path-following
vector field from the aerial robotics domain [29–31]. It
exploits the scarcity of resources while still running with
good autonomy and obstacle avoidance features. Further-
more, our approach derives the robot’s position using a state-
of-the-art simultaneous localization and mapping (SLAM)
algorithm [32] and can operate in both unknown and GPS-
denied environments. This allows the robot to explore its
surroundings for longer and at lower update frequencies,
utilizing cheaper computing hardware.

Utilizing these components with the open-source robot
operating system (ROS) middleware, we additionally build
a low-cost robotic platform – RB5 in Figure 1, a wheeled
mobile robot with rocker-bogie suspension – capable of
exploring indoor and outdoor environments autonomously.
Comparable platforms in the literature comprise two degrees
of freedom suspension with pivots [6, 33] and provide rough
terrain static adaptability. They are cheaper than, e.g., legged
robots in terms of the price of sensors and operation, as
they avoid obstacles without costly computations for gait
adaptation and planning [3]. The approach is generic in terms
of portability to other mobile robots with price and compu-
tational constraints, but we target use cases where cheaper
robotic explorers are preferred. These include nature conser-
vation and surveying efforts [34] and education [26, 35]. The
open-source software stack to replicate our approach is made
available on the project repository webpage†.

The main contributions of this systems paper are (i) the
implementation and design of a low-cost robot for au-
tonomous long-term exploration and (ii) its feasibility and
limitations analysis. We demonstrate the exploration perfor-
mance and obstacle avoidance features with a set of indoor
and outdoor experiments in Section IV and discuss the limi-
tations of our low-cost exploration in Sec. V. The remainder
of the paper is then structured as follows: Sec. II formalizes
the problem of autonomous exploration, Sec. III describes
the approach from the software and hardware standpoints,
and Sec. VI concludes and provides future perspectives.

II. PROBLEM DESCRIPTION

The problem considered in this work is that of exploring
an unknown bounded space, i.e., visiting every point within.
The robot is free to move except for some possible obstacles.
Formally, the problem is that of exploring a bounded volume
Q ⊆ R3 with respect to an inertial navigation frame OW .
If the notation [n] denotes a set of positive naturals up to
n ∈ N>0 and [n]>0 of strictly positive naturals, we are
interested in collision-free trajectories that explore Q and
avoid n obstacles QOi ⊂ R3, i ∈ [n]>0. We can approximate
the space that delimits Q and QOi for each i with a set of
vertices within which the two sets are contained.

Problem (Exploration). Consider sets of vertices V := {v1,
v2, . . . }, Oi := {oi,1,oi,2, . . . } with vj ,oi,k ∈ R2, ∀j ∈
[|V |], k ∈ [|Oi|] points w.r.t. OW . Let V enclose Q, Oi

QOi per each i ∈ [n]>0. The exploration problem is the
problem of finding the coverage that visits every point p ∈
Q ∩QO1 ∩QO2 ∩ · · · ∩ QOn =: QV .

Here the notation | · | denotes the cardinality and R, Z are
reals and integers. Bold notation is used for vectors.

Let ϕ be a path function, i.e., a function the robot tracks as
it explores its surroundings in QV , avoiding obstacles QOi .

Definition II.1 (Path function). ϕ : R2 → R is a two-
dimensional continuous and differentiable path function of
the x, y components of p.

Definition II.2 (Coverage). Given a tuple with a path func-
tion and its time component, ⟨ϕ, t⟩, the coverage is the
collection of multiple tuples.

The exploration approach (see Sec. III-A) derives ϕ at each
time step and adds it to the global “coverage stack.” The
process ends once QV is covered.

III. SYSTEMS APPROACH

In this section, we detail the implementation and design
choices in terms of our software and low-cost hardware for
autonomous long-term exploration in Sec. III-A and III-B
respectively.

A. Autonomous exploration

Our software stack consists of a mixed approach that com-
bines frontier- and sampling-based methods. Here, with fron-
tiers, we indicate boundaries between known and unknown
space [2, 20].

Our approach evaluates local frontiers at each step, samples
the environment, and determines feasible candidate path
functions ϕ that intersect QV (see Definition II.1). The next
ϕ is selected so that the frontier is largest, but other cost
functions are possible (see Sec. VI). The collection of the
candidate path functions forms the coverage (see Def. II.2).
The approach then derives a path-following vector field that
points to ϕ at any point and guides the robot utilizing
the gradient descent algorithm. This allows the robot to,
e.g., follow the coverage path for longer and in real-time
compared to approaches that utilize frontiers only, decreasing
computational requirements (see Sec. IV).

To derive the path-following vector field, let the gradient
of ϕ be defined

∇ϕ :=

[
∂ϕ/∂px

∂ϕ/∂py

]
, (1)

where ∂ϕ/∂p is the partial differential, and px, py are the
x and y components of p. The path-following vector field
points in the direction where ϕ maximally locally increases.
To assign the direction to each point, we use the construct
of vector fields, which is common in other motion planning
literature [30, 36]

Φ(t, ϕ) :=
⋃

p(t)∈Q
∇ϕ(p(t)). (2)
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(a) Initial detection of an obstacle wheel with ϕt0
selected so that it avoids the obstacle.
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(b) The robot continues to track ϕt0 up to the next
iteration. Here it finds a new trajectory ϕt1 .

(c) The process continues up to when the entire
space is explored.

Fig. 2: Detail of our autonomous exploration methodology. The approach consists of the robot sampling the environment and searching for obstacles
and unexplored areas. The approach clusters the two groups into vertex sets and builds candidate path functions. From these, it selects the trajectory w.r.t.
a given cost function and iterates the operation at each step. In between the iterations, it tracks the trajectory, saving computational and sensing resources.

Algorithm 1 Derivation of the exploration coverage ⟨ϕ, t⟩
1: for all t ∈ T do
2: if P ∩Q = ∅ then return ⟨ϕ, t⟩
3: QV

t := {O1,t, O2,t, . . . , On,t, Vt} ← sensor readings
4: if QV

t ̸= QV
t−1 then

5: {ϕ1,t, ϕ2,t, . . . } ← ϕs in Def. II.1, inters. QV ∩Ψ(QV
t )

6: if ϕt := {ϕ1,t, ϕ2,t, . . . } = ∅ then the robot is stuck
7: else
8: ϕt ← argmaxϕ l(ϕt, t,QV

t ) in Eq. (7)
9: ⟨ϕ, t⟩ ← ⟨ϕ, t⟩ ∪ ⟨ϕt, t⟩ in Def. II.2

10: P ← P ∪Ψ(QV
t )

11: end if
12: end if
13: φ(t,p(t))← φ(t− 1,p(t− 1)) + θ∆ϕ(p(t)) in Eq. (3)
14: end for

We modify the vector field in Equation (2) to point to the
contour of the path function ϕ rather than its local maxima,
as proposed in [30]

∆ϕ(p(t)) := E∇ϕ(p(t))− keϕ(p(t))∇ϕ(p(t)), (3)

where E∇ϕ points perpendicularly to the gradient and ϕ∇ϕ
to ϕ at ke ∈ R>0 rate. E is the following direction, i.e.,

E =

[
1 0
0 −1

]
, (4)

is counterclockwise and −E clockwise directions.
Let the path-following equivalent of Eq. (2) be

Φϕ(t, ϕ) :=
⋃

p(t)∈Q
∆ϕ(p(t)). (5)

The path-following vector field is summarized in the
pseudo-code in Algorithm 1, with the gradient descent in
Line 13. The vector φ ∈ R2 points the robot in the direction
of the path function ϕ with a scalar step size θ ∈ R>0. The
algorithm runs at each time step in T , but practically there
might be different time steps at different times (see Sec. IV).
In Line 2, the algorithm evaluates if the bounded volume Q
is covered utilizing P ⊆ R3 updated in Line 10, where the
function Ψ : R2n ×R2 → R3n ×R3 maps the vertices to the
volume. The vertices of the local free space QV

t in Line 3

are derived from sensor readings, assuming the presence of
an RGB-D camera. The approach reads the camera’s point
cloud, clustering the obstacles O1,t, O2,t, . . . by checking if
the distance between consecutive points in space is within a
given threshold ε ∈ R>0. The vertices of the free space at
time instant t, Vt are simply the limits of the sensor’s field
of view.

The remaining lines compute the feasible path functions
{ϕ1,t, ϕ2,t, . . . } by intersecting the local free space Ψ(QV

t )
with possible candidate trajectories that have their final points
laying at the edges of QV

t , i.e., splines of the form

a(x− px)
3 + b(x− px)

2 + c(x− px) + d− y = 0, (6)

where a, b, c ∈ R are the coefficients of the spline. The best
trajectory is then derived via the cost function l in Line 8,
utilizing the intersection of the largest frontier. Formally

l :=
{
∥p1 − p2∥ | ∃p1,p2 ∈ Ψ(QV

t ), i ∈ [|ϕt|]
s.t. p1 ̸= p2, ϕi,t(p1 − p2) ⊴ 0

}
,

(7)

where the operator ⊴ evaluates ϕ on a given ε ∈ R>0, i.e.,
|ϕi,t(p1 − p2)| ≤ ε and in such a way that the middle
path functions of the largest subset of the contiguous path
functions are selected preferably, e.g., if the largest subset
is {ϕ1,t, ϕ2,t, . . . , ϕ5,t}, ϕ3,t is selected. In this way, if there
are no obstacles, Eqs. (6–7) are such that ϕ is a line parallel
to the direction of travel.

The algorithm is illustrated in Fig. 2. At each iteration, the
robot samples the environment and derives a set of candidate
path functions {ϕ1,t, ϕ2,t, . . . }. If there is no obstacle ahead,
the optimal function per iteration ϕt is a line parallel to the
robot’s direction of travel (see Fig. 2c). If there are obstacles,
the approach selects the trajectory via the cost function l, ϕt,
which goes through the middle of the largest frontier (see
Fig. 2a and 2b for obstacles “wheel” and “wall”).

The algorithm provides a way to explore space Q and
avoid obstacles QOi . Nevertheless, there are configura-
tions at which there are no feasible trajectories, i.e., if
{ϕ1,t, ϕ2,t, . . . } = ∅ in Line 6. In this scenario, our approach
allows a human to intervene via wireless or LoRa com-
munication technology. The robot can be then teleoperated



over long distances – studies from the internet-of-things
domain [18] report a range of up to five kilometers in an
urban setting – and with inexpensive hardware equipment
(two LoRa bundles). The approach we propose utilizes a
web interface to parse human commands into our custom
communication protocol, which utilizes the LoRa physical
layer’s payload to transfer φ’s x and y components (see
Line 13). The current setup is limited to control and position
commands.

To derive a map of the environment and to keep track of
the robot within – in Line 13 – our approach uses a state-of-
the-art SLAM algorithm from the literature [32]. The robot’s
location is also used to determine whether the exploration
is complete in Line 2. An earlier iteration of the work
exploited a different SLAM algorithm from the visual SLAM
community [37], showing that some of the components are
interchangeable.

The software stack is distributed under the popular open-
source CC BY-NC-SA license†. It is composed of three
distinct components. (i) A “ground robot” ROS2 package
implements the communication with a base station using
either the IEEE 802.11 wireless communication or long-range
LoRa technology. The package further contains serial com-
munication with the microcontroller implemented in Arduino
and the vertices detection (see Algorithm 1). (ii) A “ground
navigation” ROS package collects point clouds from an RG-
B-D camera and other data from the SLAM algorithm [32]
and ports them into ROS2. Finally, (iii) a “base server”
implements the necessary functionality for remote human
intervention. Both ground robot and ground navigation are
implemented in C++ in ROS2 and ROS respectively, whereas
base server is in PHP and JavaScript.

B. Low-cost hardware design

Our RB5 experimental robotic platform adopts a rocker-bogie
suspension system [38] found on NASA’s rovers including
Sojourner and Curiosity, which has compelling tradeoffs in
terms of autonomy and obstacle avoidance (see Sec. IV). On
either side of the robot, an upside-down V-shaped linkage
called the rocker pivots about an axis on the robot frame. The
rocker has a wheel at one end and a smaller V-shaped linkage
on the other arm. The smaller linkage, called the bogie, can
pivot about an axis on the rocker and has two wheels at its
tips. The articulated nature of the rocker-bogie suspension
allows the mobile robot to adapt to uneven terrains [6] as the
rocker and bogie pivot to maintain wheel contact. Each of
the six wheels in the rocker-bogie suspension is actuated by
a DC gear motor, whereas the rotational degrees of freedom
in the rocker-bogie suspensions are passive. Since the wheels
are all parallel and cannot rotate out of the plane, the robot
uses the same actuation strategy as that of a differential drive
vehicle to move straight and make turns by controlling the left
and right sets of wheels in the same and opposite directions.
Given that RB5 has multiple wheels on each side, its ability
to make turns is reduced compared to a differential drive
vehicle. Due to its extended body length, RB5 incorporates a
caster wheel in the back to support the rear end of the frame.
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Fig. 3: Autonomy for differ-
ent classes of mobile robots.
Autonomy is reported in hours
between the time the battery
is fully charged to discharged
for our RB5 explorer and
other approaches that report the
value in the literature. Even
though the metric is use case-
and battery-dependent, the data
show that the reported auton-
omy for wheeled robots is
higher than the reported au-
tonomy for legged, combina-
tion of legged and aerial, and
aerial robots.

The robot frame’s dimensions are 914 by 330 millimeters,
and the robot’s bounding box dimensions are 991 by 762
mm. The frame consists of one-inch aluminum extrusions
and acrylic sheets, and the rocker and bogie linkages are
assembled from aluminum sheets and standoffs. The pivots of
the bogie and rocker sit at 240 and 330 mm from the ground
respectively, providing a clearance of approximately 190 mm
beneath the frame, i.e., RB5 can clear obstacles passively
up to 19 cm. The two wheels on each bogie linkage are
coplanar, but the wheel on the corresponding rocker linkage
is closer to the medial plane of the robot. Motor control is
performed by a Teensy (R) 4.0 microcontroller board sending
PWM commands to six DRV8871 motor driver boards. An
onboard 24 volts LiFePO4 battery provides power for the
microcontroller, motor drives, and computing hardware.

IV. EXPERIMENTS

In order to demonstrate our approach, we conduct a set of
field experiments involving our RB5 experimental robotic
platform in a variety of environments, including indoor
structured, unstructured underground, and outdoors. In each,
the microcontroller executes a finite set of motion primitives
via velocity control. These primitives are transmitted serially
to the microcontroller from RB5’s onboard computing hard-
ware, an NVIDIA (R) Jetson Xavier NX (TM) embedded
board, which runs our autonomous exploration software
stack. The computing hardware mounts peripherals for visual
sensing and for communication. The former group consists
of an Intel (R) RealSense (TM) D435 RGB-D camera, and
the latter consists of a LoRa wireless network bundle with the
RN2903 module and an Intel (R) AX200 network card for
standard wireless communication via 802.11 protocol when,
e.g., RB5 is in reach of an available wireless network. All the
software components in charge of the exploration (detailed
at the end of Sec. III-A) run in real-time onboard RB5.
Additional processing is possible, e.g., via the ROS network.

Fig. 3 compares our hardware approach to others. “Auton-
omy,” which is related to instantaneous energy consumption,
is reported in hours between the time the battery is fully
charged to discharged – the time when the robot can actively
explore its surroundings – and is compared to representative
approaches in the literature tackling autonomous exploration.
For our RB5, the minimum and maximum are approximately
four hours and twenty minutes and sixteen and a half hours



when the robot respectively moves at full speed and is not
moving (red outlier). The first quartile is six hours and
ten minutes, the third is nine hours. The median is eight
hours and twenty minutes when the average velocity is two-
thirds of the maximum. Even though the metric is often use
case- and battery-dependent (i.e., in [7, 8] the objective is
to explore the surroundings in the shortest time), the data
show that the reported autonomy for wheeled robots [8, 23]
is generally higher than the reported autonomy for legged [7],
combination of legged and aerial [10], and aerial robots [39].
Here [3] is an outlier as it uses a small wheeled robot.

Fig. 4 shows experimental results for a structured indoor
environment, a university hallway on the second floor of
a multistory building. The hallway is composed of four
connected corridors for a total approximate length of 80
meters in a closed circuit. The resulting point cloud is
shown in Fig. 4a, where the color scheme in the top-left
indicates the different heights of points in the point cloud.
Figs. 4b–4c show a detail of the algorithm in the experiment
in terms of obstacle detection and avoidance. Here RB5
detects an obstacle, a “door” with a surrounding wall as it
travels through the hallway at approximately 15 and 0 on the
respective z- and x-axis. Fig. 4b shows the initial detection
of the obstacle on top. The vertices V,Oi are the empty
red circles and represent the field of view on the left and
the edge of the obstacle on the right. On the bottom is the
path-following vector field from Eq. (3) in red and the path
function ϕt in cyan. Fig. 4c shows the following time step
when the robot has to perform a sharper maneuver to avoid
the obstacle.

Fig. 5 shows experimental results for an unstructured
environment, a hallway connecting to an underground tunnel
(in Fig. 1) on the respective left and right sides of Fig. 5a. The

hallway and tunnel combined have an approximate length
of 100 meters. Conversely to the experiment in Fig. 4, this
experiment showcases an open circuit, i.e., the exploration is
concluded when a specific frontier is encountered. Figs. 5b–
5c show the obstacle detection, similar to Figs. 4b–4c, for
a wheel placed close to the left edge of the first length of
the figure wide approximately 0.42 meters. The trajectory of
the robot avoiding the obstacle is to be observed in Fig. 5a
between 15 and 20 meters on the z-axis. The figure also
demonstrates the remote human intervention via LoRa, as
the robot is stuck at the entrance of the underground tunnel
(approximately 50 meters on the z-axis in Fig. 5a).

The turning direction E in Eq. (3) is positive for left turns
(see Figs. 4b–4c) and negative for right turns (see Figs. 5c–
5b). The turning rate ke is derived empirically similar to other
literature [29, 30] and is 0.05, 0.1, and 0.4 depending on the
turning maneuver, i.e., it is 0.05 when ϕt is a line (or close
to it), 0.4 when a sharp curve in respectively Fig. 4a and 5b,
and 0.1 otherwise. The points in the point cloud are adjusted
for height and length and filtered for visualization purposes,
i.e., we have reported one point every 250, every 500, etc.,
in Fig. 4a and 5a.

V. LIMITATIONS OF A LOW-COST EXPLORER

In this section, we discuss the limitations of the current
approach from both software and hardware perspectives.

Software-wise, a negative of the low-cost approach is a
reduced density of the point cloud, as visualized in Fig. 4,
where between, e.g., 15 and 20 meters on the z-axis and zero
and five meters on the x-axis there are significantly fewer
points in the point cloud than in other parts of the figure. The
algorithm here keeps track (see Line 13) of the path function
ϕt (see Line 8) in the event of, e.g., the computing hardware

15

10

x
(m

)

5

25
20

z, depth (m)

150
10

5
0

-2

0

2

y,
he

ig
ht

(m
)
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(b) The first detection of an obstacle
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(c) The new path function is selected
at the next time step as the obstacle
occurrence is observed closer.

Fig. 4: Results for a structured environment. Experimental results are reported for a structured indoor environment, a university hallway composed of
four connected corridors for a total length of approximately 80 meters. The view includes the point cloud in Fig. 4a and the detail of the algorithm for
obstacle avoidance and detection at successive time steps in Fig. 4b and 4c. The points in the point cloud are filtered to report one point every 250. The
colors of the spheres in Figs. 4b–4c indicate the proximity of an obstacle (orange indicates close proximity) and arrows the path-following vector field in
Eq. (3). The robot’s trajectory is in red and red dots indicate SLAM’s registration points.



45

40

35

30

25

20

15

10

5

x (m)

4
2

0 x (m)
00-2

50

55

60

65

70

z,
de

pt
h

(m
)

75

80

85

90

4
2

95-2

(a) Point cloud view of an unstructured indoor environment (left) and an
underground tunnel (right) with visible contours of the exploration space.
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(b) The obstacle wheel is detected in
the path of the robot, which selects a
path function that avoids the obstacle.
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(c) The path function is refined at the
next time step, similar to Fig. 4c, as the
obstacle appears closer.

Fig. 5: Results for an unstructured environment. Experimental results are reported for an unstructured indoor environment and an underground tunnel
for a total length of approximately 100 meters. The view of the point cloud in Fig. 5a is filtered to report one point every 500. The detail of the algorithm
for successive time steps is shown in Figs. 5b–5c, similar to Fig. 4.

being busy while executing other tasks such as communi-
cation. While specific to the computing hardware onboard
RB5, the occurrence is expected with lower-performing com-
puting hardware. It is due to the unpredictable nature of the
execution, which is a common occurrence in the literature,
especially if involving heterogeneous elements, i.e., CPU,
GPU, and microcontrollers [40]. Despite a lower update
frequency, the approach maintains its obstacle avoidance and
navigation capabilities, with a nominal frequency of one to
ten hertz.

Hardware-wise, a hurdle that we encountered is that many
components are still expensive and limited in variety. Prior
work has been opting for expensive servo motors or well-
established electric motor manufacturers. Furthermore, exist-
ing low-cost kits such as the TurtleBot [35] are limited to
deployment in environments that are not physically demand-
ing. There is still a large gap in low-cost robot hardware that
can be tested in challenging conditions. Due to the lack of a
common specification for a rough terrain environment, there
are no performance or life cycle requirements to meet in the
design process; therefore, it is difficult to develop a low-cost
generalized mobile robot for rough terrains.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper consists of an approach and an experimental
robotic platform for low-cost autonomous long-term ex-
ploration in both indoor and outdoor environments. While
comparable with other approaches tackling autonomous ex-

ploration, our approach operates in the presence of fewer
sensory and computing requirements. Requiring only an
RGB-D camera, all the exploration is computed in real-time
on low-power computing hardware that is cheaper compared
to the existing literature in similar settings.

The exploration consists of a mixed approach – a frontier-
and sampling-based method from the literature extended
with a path-following vector field from the aerial robotics
domain – which allows the robot to operate at lower update
frequencies. The position is from a state-of-the-art SLAM
algorithm. Human intervention, if required, is implemented
via a novel methodology based on the LoRa low-power
long-range communication technology from the internet-of-
things domain. Requiring only two low-cost LoRa bundles
for communication, the approach enables operations on long
distances with a custom communication protocol with no
significant impact on price and resources as opposed to
existing methodologies based on a mesh of devices.

To enable further savings, we are currently extending the
approach to account for energy requirements and to different
cost functions in Eq. (7). Applicability to different use cases
is also being investigated via, e.g., implementation of feature
detection and tracking and extension of the custom LoRa
communication protocol.
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