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This paper shows how, using elementary Distance Geometry, a closure polynomial of degree 8 for
the Dixon linkage can be derived without any trigonometric substitution, variable elimination, or
artifice to collapsemirror configurations. The formulation permits the derivation of the geometric
conditions required in order for each factor of the leading coefficient of this polynomial to vanish.
These conditions either correspond to the case in which the quadrilateral defined by four joints is
orthodiagonal, or to the case in which the center of the circle defined by three joints is on the line
defined by two other joints. This latter condition remained concealed in previous formulations.
Then, particular cases satisfying some of the mentioned geometric conditions are analyzed. Final-
ly, the obtained polynomial is applied to derive the coupler curve of the generalized Peaucellier
linkage, a linkagewith the same topology as that of the celebrated Peaucellier straight-line linkage
but with arbitrary link lengths. It is shown that this curve is 11-circular of degree 22 from which
the bicircular quartic curve of the Cayley's scalene cell is derived as a particular case.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The Dixon linkage, named after Alfred Dixonwho first studied it in 1900 [1], is a planar nine-bar linkagewith three triple joints. Its
topology is that of a hexagon with three diagonals, the ones whose end points belong to non-consecutive edges [Fig. 1(left)]. By
applying Laman's theorem [2], it can be verified that this linkage is, in general, rigid. Conditions under which it becomes movable
were studied by Dixon [1], Wunderlich [3], and more recently by Stachel [4]. In 2007, Walter and Husty obtained the univariate
closure polynomial of this linkage in its completely general form (that is, without explicitly specifying the eight bar lengths) [5].
Using a substitution based on a complex parametrization of the unit circle to eliminate the trigonometric functions, and a sequence
of elaborated eliminations, they were able to obtain a polynomial of degree 16 with 2.770.936 monomials. Then, this polynomial
was reduced to order 8 by collapsing mirror configurations into single configurations. This proved that the Dixon linkage has at
most 8 assembly modes for a given set of link lengths thus proving a conjecture by Wunderlich.

In this paper, we show how, using Distance Geometry, a closure polynomial for the Dixon linkage, of degree 8 with 1.018.150
monomials, can be directly derived without any trigonometric substitution, variable elimination, polynomial factorization, or artifice
for collapsing mirror configurations.

A general technique to obtain closure polynomials for arbitrary planar linkages usingDistanceGeometrywas presented in [6]. This
technique relies on the use of the so-called bilateration matrices. The use of this kind of matrices is useful when the linkage to be an-
alyzed contains ternary links (that is, triangleswhose orientation is imposed). Nevertheless,when analyzing linkageswith only binary
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Notation

Pi point i in some Euclidean space
pi position vector of point Pi in the global reference frame
pi,j = pj − pi vector pointing from Pi to Pj
di,j = ‖pj − pi‖ distance between Pi and Pj
si,j = ‖pj − pi‖2 squared distance between Pi and Pj
|i,j line segment connecting Pi and Pj
∧ i,j,k the dyad defined by the segments |i,j and |j,k
Δi,j,k triangle defined by Pi, Pj, and Pk
Ai,j,k oriented area of Δi,j,k in E2

□i,j,k,l quadrilateral with diagonals |i,k and |j,l
i,j,k,l,m three dyads, ∧ i,j,m, ∧ i,k,m, and ∧ i,l,m, sharing their end-points
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links, a more direct and simpler approach can in general be adopted. This is the case of the Dixon linkage for which a simple ad-hoc
derivation is presented herein.

The general Dixon linkage isminimally rigid, that is, when one of its links is removed, themechanism gains one degree ofmobility.
Actually, if we eliminate any link in theDixon linkagewe obtain the generalized Peaucellier linkage, that is, a linkagewith the topology
of the standard Peaucellier linkage [Fig. 1(right)] ([7], Chapter 8), but without constraints relating its link lengths. For example, if we
eliminate the link connecting P1 and P6 and we fix the location of P1 and P6 in the Dixon linkage shown in Fig. 1(left), we obtain the
generalized Peaucellier linkage in Fig. 1(right). As in the standard Peaucellier linkage, all non-fixed centers except P6 trace circles. We
will show how the coupler curve traced by P6 can be derived from the closure polynomial of the Dixon linkage thus obtaining its
general expression. To our knowledge, this general expression was previously unknown.

The rest of this paper is organized as follows. Tomake the presentation self-contained, Section 2 contains somebasicmathematical
background on Distance Geometry used in subsequent sections. Then, Section 3 presents a simple method to obtain the univariate
closure polynomial for the Dixon linkage. Some particular cases, in which the degree of this polynomial drops, are studied in
Section 4 based on the analysis of the cases in which some factors of the leading and independent coefficients of the polynomial van-
ish. Then, the obtained closure polynomial is used, in Section 5, for the derivation of the coupler curve equation of the generalized
Peaucellier linkage. Finally, the main contributions and prospects for future research are summarized in Section 6.
2. Preliminaries

Given the point sequences Pi1 ;…; Pin , and P j1 ;…; P jn , we define:
Fig. 1. If
obtaine
D i1;…; in; j1;…; jnð Þ ¼
0 1 … 1
1 si1 ; j1 … si1 ; jn
⋮ ⋮ ⋱ ⋮
1 sin ; j1 … sin ; jn

��������

��������
;

the link connecting P1 and P6 is eliminated from the Dixon linkage (left), and the location of P1 and P2 isfixed on the plane, the generalized Peaucellier linkage is
d (right).
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and
E i1;…; in−1; j1;…; jnð Þ ¼
1 … 1
si1 ; j1 … si1 ; jn
⋮ ⋱ ⋮
sin−1 ; j1

… sin−1 ; jn

��������

��������
:

where sp,q stands for the squared distance between Pp and Pq. When the two point sequences are the same, it is convenient to abbre-
viate D(i1, …, in; i1, …, in) by D(i1, …, in).

For any four points in E2, say Pi, Pj, Pk and Pl, the following properties hold ([8], pp. 737–738):

• Property 1: D(i, j, k, l) = 0.
• Property 2: D(i, j; k, l) = 0 if, and only if, |i,j and |k,l are orthogonal.
• Property 3: D(i, j, k; i, j, l) = 16Ai, j,kAi, j,l, where Am,n,o denotes the oriented area of Δm,n,o defined as positive when the sequence of
points Pm, Pn, and Po is traversed clockwise and negative otherwise. As a consequence, D(i, j, k) = 16Ai, j,k2 .

By expanding the determinants in D(i, j, k; i, j, l) = 16 Ai, j,kAi, j,l and D(i, j, k) = 16 Ai, j,k
2 , it is possible to conclude that
sk;l ¼
1

2si; j

h
s j;k si; j þ si;l−s j;l

� �
−si;k −si; j þ si;l−s j;l

� �

−si; j si; j−si;l−s j;l
� �

þ 16Ai; j;kAi; j;l

i
;

ð1Þ
and
Ai; j;k ¼ �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
si; j þ si;k þ s j;k

� �2
−2 s2i; j þ s2i;k þ s2j;k

� �r
; ð2Þ
respectively. Both expressions will be useful later.
For any five points in E2, say Pi, Pj, Pk, Pl, and Pm, the following property also holds [9]:

• Property 4: E(j, l; i, k, m) = 0 if, and only if, the center of the circle defined by Pi, Pk, and Pm is on the line defined by Pj and Pl.

A dyad, ∧ i, j,k, consists of two segments, |i, j and |j,k, connected through Pj. Two dyads can be connected by their end-points to form a
quadrilateral. For example, the quadrilateral□i, j,k,lwith diagonals |i,k and |j,l can either be seen as formed by the set of dyads {∧i, j,k, ∧ i,l,k}
or {∧j,k,l, ∧ j,i,l}. Finally, three dyads connected by their end-points, say ∧ j,k,l, ∧ j,i,l, and ∧ j,m,l, will be denoted by j,k,i,m,l.

Now, let us constrain the lengths of the edges of □i, j,k,l as follows:
sl;i ¼ s j;i þ λ
sl;k ¼ s j;k þ λ

�
ð3Þ
which is always possible provided that the above system has a solution for λ. That is, if, and only if,
D j; l; i; kð Þ ¼ s j;i−sl;i 1
s j;k−sl;k 1

����
���� ¼

0 1 1
1 s j;i s j;k
1 sl;i sl;k

������
������ ¼ 0: ð4Þ
In other words, if □i,j,k,l satisfies Eq. (3), its diagonals are orthogonal according to Property 2. In this case □i,j,k,l is called
orthodiagonal.

Finally, let us constrain the lengths of the edges of j,k,i,m,l as follows:
s j;m ¼ μs j;i þ 1−μð Þs j;k
sl;m ¼ μsl;i þ 1−μð Þsl;k

�
ð5Þ
which is always possible provided that the above system has a solution for μ. That is, if, and only if,
E j; l; i; k;mð Þ ¼ s j;i−s j;k s j;k−s j;m
sl;i−sl;k sl;k−sl;m

����
���� ¼

1 1 1
s j;i s j;k s j;m
sl;i sl;k sl;m

������
������ ¼ 0: ð6Þ
In otherwords, if j,k,i,m,l satisfies Eq. (5), then Pk, Pi, and Pm define a circlewhose center is on the line defined by Pj and Pl according
to Property 4. In this case, j,k,i,m,l will be called a diamond.
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3. Position analysis of the Dixon linkage

The six joint centers P1, …, P6 of the Dixon linkage in Fig. 1 define the nine quadrilaterals □2,1,6,5, □1,2,4,3, □1,2,5,3, □2,1,6,4, □1,3,4,6,
□1,3,5,6, □2,4,6,5, □2,4,3,5, and □3,4,6,5. Any of the six unknown distances (s1,4, s4,5, s5,1, s2,3, s3,6, and s6,2) in this linkage corresponds to
the length of one diagonal of three of these nine quadrilaterals. For example, |2,6 is a diagonal of □2,1,6,4, □2,1,6,5, and □2,4,6,5. Then,
using Property 3 and Eq. (1),
D 2; 6; 1; 2; 6; 4ð Þ ¼ 16A2;6;1A2;6;4 ⇒ s1;4 ¼ f 1 s2;6
� �

ð7Þ
D 2; 6; 1; 2; 6; 5ð Þ ¼ 16A2;6;1A2;6;5 ⇒ s1;5 ¼ f 2 s2;6
� �

ð8Þ

D 2; 6; 4; 2; 6; 5ð Þ ¼ 16A2;6;4A2;6;5 ⇒ s4;5 ¼ f 3 s2;6
� �

ð9Þ
Moreover, using Property 1,
D 1; 3; 4; 5ð Þ ¼ 0⇒ f 4 s1;4; s1;5; s4;5
� �

¼ 0: ð10Þ
Now, by replacing Eqs. (7), (8), and (9) in Eq. (10) and rearranging terms, we obtain:
Φ1 þΦ2A2;6;1A2;6;4 þΦ3A2;6;1A2;6;5 þΦ4A2;6;4A2;6;5 ¼ 0; ð11Þ
whereΦ1,Φ2,Φ3, andΦ4 are polynomials in s2,6. Therefore, Eq. (11) is a scalar equation in a single unknown, s2,6, whose roots deter-
mine the assemblymodes of the Dixon linkage. Indeed, for each of these roots, given the position vectors p1 and p2, we can determine
the position of the remaining four joints of the linkage by computing, for instance, the following sequence of bilaterations (see [6] for
details): computing p6 from p1 and p2, then p4 from p2 andp6, thenp5 from p2 and p6, and finally p3 from p4 andp5. This leads to up to
32 locations for P3. Those locations that satisfy the distance imposed by the binary link connecting P3 and P1 correspond to the valid
assembly modes.

In order to transform Eq. (11) into a polynomial, it is possible to clear all square roots associated with A2,6,1, A2,6,4, and A2,6,5 (see
Eq. (2)) by iteratively isolating some terms and squaring both sides of the resulting equation. This process yields the distance-
based univariate closure equation of the Dixon linkage in polynomial form
−2Φ2
1Φ

2
2A

2
2;6;1A

2
2;6;4−2Φ2

1Φ
2
3A

2
2;6;1A

2
2;6;5−2Φ2

1Φ
2
4A

2
2;6;4A

2
2;6;5

þ8Φ1Φ2A
2
2;6;1A

2
2;6;4Φ3A

2
2;6;5Φ4 þΦ4

2A
4
2;6;1A

4
2;6;4 þΦ4

4A
4
2;6;4A

4
2;6;5

þΦ4
3A

4
2;6;1A

4
2;6;5−2Φ2

2A4
2;6;1A

2
2;6;4Φ

2
3A

2
2;6;5−2Φ2

2A
2
2;6;1A

4
2;6;4Φ

2
4A

2
2;6;5

−2Φ2
3A

2
2;6;1A

4
2;6;5Φ

2
4A

2
2;6;4 þΦ4

1 ¼ 0;

ð12Þ
which, when fully expanded, leads to the octic polynomial equation
X8
n¼0

Cns
n
2;6 ¼ 0: ð13Þ
The coefficients Ci, i = 1, …, 8, are polynomials in the nine link lengths s1,2, s1,3, s1,6, s2,4, s2,5, s3,4, s3,5, s4,6, and s5,6. They can be
expressed as:
C8 ¼ 768 s3;5 s
2
1;3 s

3
5;6 s2;4 s3;4 s

2
2;5 þ 1536 s3;5 s

2
1;3 s

2
5;6 s2;4 s3;4 s

3
2;5−512 s3;5 s31;3 s

3
5;6 þ…;

C7 ¼ −1536 s41;3 s34;6 s
2
2;5 s

2
3;5 þ 2816 s51;3 s24;6 s22;5 s

2
3;5−1024 s31;3 s

2
4;6 s32;5 s

3
1;6 þ…;

C6 ¼ −512 s61;3 s
2
2;4 s

4
5;6−256 s63;5 s

4
1;6 s21;2 þ 512 s63;5 s

3
1;2 s

3
1;6 þ…;

C5 ¼ −512s83;5s
3
4;6s

2
1;2−1024s53;4s

3
1;2s

5
5;6 þ 1536s73;5s

3
1;2s

3
4;6 þ…;

C4 ¼ 256 s43;5 s
5
2;4 s

5
1;6−3584 s4;6 s35;6 s51;2 s

4
3;5 s3;4−24064 s34;6 s

3
5;6 s

2
2;5 s

2
3;5 s

4
1;2 þ…;

C3 ¼ −768 s53;5 s
4
1;6 s

6
2;4 þ 512 s73;4 s31;2 s55;6 þ 512 s73;4 s

5
1;2 s

3
5;6 þ…;

C2 ¼ −256 s33;5 s
2
1;6 s

6
2;4 s

2
3;4 s

3
2;5−3072 s21;2 s

4
4;6 s

5
2;5 s

3
2;4 s

2
5;6 þ…;

C1 ¼ −512 s41;3 s
2
1;2 s

7
2;5 s

2
4;6 s5;6 s2;4−256 s51;3 s

6
4;6 s2;5 s

3
5;6 s3;5 s1;6 þ…;

C0 ¼ 512 s1;6 s
2
3;5 s

5
1;2 s

4
2;4 s

2
3;4 s

3
2;5 s1;3−3840 s31;6 s

4
1;3 s

4
4;6 s

3
5;6 s

3
2;4 s3;5 þ 5120 s31;6 s

4
1;3 þ…:



Fig. 2. A Dixon linkage with eight assembly modes. According to Fig. 1, the blue lines correspond to the links defining the hexagon, and the gray lines to the three
diagonals. P1 is located at the origin, and P2 is on the x-axis.
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The full expressions for these coefficients cannot be included here due to space limitations. Actually, C0,…, C8 consist of 127.924,
178.530, 198.984, 183.532, 141.597, 93.264, 55.483, 27.666, and 11.070 monomials, respectively. However, they can be easily
reproduced using a computer algebra system following the steps given above.

As an example, let us set s1,2 = 13689/100, s1,3 = 89, s1,6 = 80, s2;4 ¼ ð
ffiffiffiffiffiffi
85

p
þ 1Þ2, s2,5 = 85, s3,4 = 241, s3,5 = 137, s4,6 = 122, and

s5,6 = 1521/25. Then, by replacing these link lengths in the closure polynomial derived above, we obtain:
3:9377 1021 s82;6−2:8046 1024 s72;6 þ 6:7900 1026 s62;6−6:7652 1028 s52;6 þ 3:3732 1030 s42;6
−9:0927 1031 s32;6 þ 1:3290 1033 s22;6−9:7683 1033 s2;6 þ 2:7761 1034

:
ð14Þ
This polynomial has 8 real roots. The resulting assemblymodes, one each for the 8 real roots, for the case inwhich p1= (0, 0)T and
p2 ¼ ð11710 ;0ÞT are shown in Fig. 2. Mirror configurations with respect to the x -axis are not considered as different assembly modes.
This example was already used by Walter and Husty in [5]. It can be verified that the results obtained here are in agreement with
those reported by these authors.

4. Special cases of the Dixon linkage

The Dixon linkage in Fig. 1 contains:

1. Nine quadrilaterals, namely, □2,1,6,5, □1,2,4,3, □1,2,5,3, □2,1,6,4, □1,3,4,6, □1,3,5,6, □2,4,6,5, □2,4,3,5, and □3,4,6,5. If, for example, □2,1,6,5 is
orthodiagonal, then D(2, 6; 1, 5) = 0. Likewise for all other quadrilaterals.

2. Six sets of three dyads sharing their end-points, namely, 1,3,6,2,5, 3,5,4,1,6, 5,6,2,3,4, 6,4,1,5,2, 4,2,3,6,1, and 2,1,5,4,3. If, for example,
1,3,6,2,5 is a diamond, then E(1, 5; 2, 3, 6) = 0. Likewise for all other sets of three dyads.

A remarkable result arises when observing that the leading and independent coefficients in Eq. (13) can be factored as
follows:
C8 ¼ 256 D 1;4;2;3ð ÞD 1;5;2;3ð ÞD 1;4;3;6ð ÞD 1;5;3;6ð ÞD 2;3;4;5ð Þ
D 3;6;4;5ð ÞE 3;6;1;4;5ð ÞE 2;3;1;4;5ð Þ; ð15Þ
C0 ¼ 256 Cx D 2;6;1;5ð ÞD 2;6;1;4ð ÞD 2;6;4;5ð Þ
E 4;5;2;3;6ð ÞE 1;5;2;3;6ð ÞE 1;4;2;3;6ð Þ; ð16Þ
where Cx is a factor, apparently related to E(2, 6; 1, 4, 5), whose geometric interpretation remains elusive.
Clearly, when any of above factors vanish, the number of assembly modes drops. Thanks to Properties 2 and 4, the geometric con-

ditions for this to happen are expressible in terms of the presence of orthodiagonal quadrilaterals and diamonds. Several cases are ex-
emplified below.

4.1. Orthodiagonal quadrilaterals and no diamonds

If we impose the constraints
s2;4 ¼ s3;5; s3;4 ¼ 2 s3;5−s2;5; ð17Þ
then□2,4,3,5 is orthodiagonal. In this case, the closure polynomial reduces to a polynomial of 7th-degreewith leading coefficient
256 s2;5−s3;5
� �2

s2;5−s5;6 þ s4;6−s3;5
� �

s5;6 þ s1;3−s1;6−s3;5
� �

s4;6 þ s1;3 þ s2;5−s1;6−2 s3;5
� �

ðs1;3s4;6−s1;3s5;6−s3;5s1;6 þ s1;6s2;5−s2;5s5;6

−s3;5s4;6 þ 2 s3;5s5;6Þ −s1;3 þ s4;6 þ s1;2−s5;6
� �

s1;2−s1;3−s2;5 þ s3;5
� �3

:

Since the polynomial degree of this special case is odd, it is not possible to have an instancewith all the assemblymodes real [10]. If
we also impose the constraints
s1;3 ¼ s4;6 ¼ s3;5; s1;6 ¼ s2;5; ð18Þ
then □1,3,4,6 is also orthodiagonal, and the closure polynomial reduces to a sextic with leading coefficient
256 s2;5−s5;6
� �3

s2;5−s3;5
� �4

s1;2−s5;6
� �2

s1;2−s2;5
� �3

:



34 N. Rojas et al. / Mechanism and Machine Theory 94 (2015) 28–40
If we also impose the constraint s1,2 = s5,6, □2,4,3,5 and □1,3,4,6 remain as the only orthodiagonal quadrilaterals, and still no
diamonds arise. Now, the closure polynomial reduces to a quartic. If, in addition, we set
Fig. 3. T
□ 1,3,4,6,
s1;2 ¼ s5;6 ¼ a ¼ �
−s22;5−4 s23;5 þ 4 s3;5s2;5 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2;5 2 s3;5−s2;5

� �
s2;5−s3;5

� �2
r

s2;5−2 s3;5
; ð19Þ
such quartic simplifies to the biquadratic
D4s
4
2;6 þ D2s

2
2;6 þ D0; ð20Þ
where
D4 ¼ s2;5−s3;5
� �2

;

D2 ¼ 2 s2;5−4 s3;5
� �

a3 þ 18 s23;5−16 s3;5 s2;5 þ 4 s22;5
� �

a2

þ 44 s23;5 s2;5 þ 2 s32;5−32 s33;5−20 s3;5 s
2
2;5

� �
a

−24 s3;5 s
3
2;5−32 s33;5 s2;5 þ 34 s23;5 s

2
2;5 þ 8 s42;5 þ 16 s43;5;

D0 ¼ s2;5−s3;5
� �2

a−s2;5
� �4

:

As an example, let us set s1;2 ¼ 5−ð4=5Þ
ffiffiffi
5

p
, s1,3=3, s1,6=1, s2,4=3, s2,5=1, s3,4=5, s3,5=3, s4,6=3, ands5;6 ¼ 5−ð4=5Þ

ffiffiffi
5

p
. It

can be verified that these link lengths satisfy the constraints (17), (18), and (19). Then, by replacing these values in (20), we
obtain
4 s42;6 þ −
1792
5

þ 512
5

ffiffiffi
5

p� �
s22;6−

24576
25

ffiffiffi
5

p
þ 57344

25
; ð21Þ
whose two positive roots are s2;6 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
224
5 − 64

5

ffiffiffi
5

p � 32
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55−22

ffiffiffi
5

ppq
. The resulting two real assembly modes, for the case in which

p1= (0, 0)T andp2 ¼ ð1=5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
125−20

ffiffiffi
5

pp
;0ÞT, appear in Fig. 3. The diagonals of the orthodiagonal quadrilaterals□2,4,3,5 and□1,3,4,6 are

represented in red and green, respectively. Remember that mirror configurationswith respect to the x -axis are not considered as dif-
ferent assembly modes.
he two assembly modes of a Dixon linkage satisfying the constraints (17), (18), and (19). This linkage contains two orthodiagonal quadrilaterals, □ 2,4,3,5 and
whose diagonals are represented in red and green, respectively.
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4.2. Diamonds and no orthodiagonal quadrilaterals

If we would impose the constraint
Fig. 4. T
root of m
s4;6 ¼ s5;6 ¼ s1;6; ð22Þ
then 3,5,4,1,6 and 2,5,1,4,6 would be diamonds, and the closure polynomial would reduce to a 7th-degree polynomial. Likewise, if we
would impose the constraints
s1;2 ¼ λ s1;3; s2;4 ¼ λ s3;4; s2;5 ¼ λ s3;5; ð23Þ
with λ ≠ 0, 1, 2,1,4,5,3 would be a diamond (observe that if λ = 1, □2,1,3,4, □2,1,3,5, and □2,4,3,5 would be, in addition, orthodiagonal).
If the constraints in Eqs. (22) and (23) are simultaneously satisfied, the closure polynomial reduces to
256 λ4s21;6 s3;4−s3;5
� �4

s1;3−s3;5
� �4

s1;3−s3;4
� �4

λ−1ð Þ4 λ s1;6−s2;6
� �4

; ð24Þ
whichhas a single root, s2,6=λ s1,6, ofmultiplicity 4. As an example, let us set s1,2=3, s1,3=1, s1,6=3/2, s2,4=6, s2,5= 15/2, s3,4=2,
s3,5 = 5/2, s4,6 = 3/2, and s5,6 = 3/2. By replacing these values in Eq. (24), we obtain the polynomial
59049
4

2 s2;6−9
� �4

; ð25Þ
whose root at s2,6 = 9/2 with multiplicity 4 leads to the four assembly modes shown in Fig. 4 for the case in which p1 = (0, 0)T and
p2 ¼ ð

ffiffiffi
3

p
;0ÞT .

Let us analyze the obtained result geometrically. Since 2,1,4,5,3 is a diamond, the center of the circle defined by P1, P4, and P5 is on
the line defined by P2 and P3. Moreover, since P6 is at the samedistance of P1, P4, and P5, it is necessarily the center of this circle (shown
in red in Fig. 4). As a consequence, P2, P3, and P6 are on a line (shown in light blue in Fig. 4). Now, take any of the four assemblymodes
in Fig. 4 and observe how the sets of three links connected to P1, P4, and P5 can flip over the line defined by P2, P3, and P6 without
he four assemblymodes of a Dixon linkage satisfying the constraints (22) and (23). In this case, the general closure polynomial reduces to a quarticwith a single
ultiplicity 4.
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violating any distance constraint. This permits generating 7 other valid assemblymodes corresponding, up tomirror reflections, to the
other three assembly modes shown in Fig. 4. Now, one interesting question arises: what would happen if, in any of these assembly
modes, P1, P4 or P5 would coincide? This situation is analyzed in the next subsection.

4.3. Orthodiagonal quadrilaterals and diamonds

If we impose the constraints
Fig.
s2;4 ¼ s2;5; s3;4 ¼ s3;5; ð26Þ
then □2,4,3,5 is orthodiagonal and 2,1,4,5,3 is a diamond. In this case, the general closure polynomial reduces to a polynomial of
6th-degree. If we also impose the constraint
s4;6 ¼ s5;6; ð27Þ
then, in addition, □3,4,6,5 and □2,4,6,5 are orthodiagonal, and 3,5,4,1,6 and 5,6,2,3,4, diamonds. In this case, the general closure
polynomial reduces to
γ1 s2;6 þ γ0

� �2
; ð28Þ
where
γ1 ¼ s5;6−s3;5−s1;6 þ s1;3
� �

s3;5−s1;3−s2;5 þ s1;2
� �

;

γ0 ¼ s5;6−s2;5 þ s1;2−s1;6
� �

s3;5s1;2−s1;2s5;6 þ s1;3s5;6 þ s1;6s2;5−s1;3s2;5−s3;5s1;6
� �

:

In this case, it is interesting to realize that the link lengths of the three links connected to P1 can be independently selectedwithout
violating the constraints given in Eqs. (26) and (27). Thus, this linkage could be used as the basis for a planar positioning robot with
three degrees of freedomand simple forward kinematics. As an example, let us set s1,2=3, s1,3=1, s1,6=3/2, s2,4= 15/2, s2,5= 15/2,
s3,4 = 5/2, s3,5 = 5/2, s4,6 = 3/2, and s5,6 = 3/2. By replacing these link lengths in Eq. (28), we obtain the polynomial
9
2
s2;6−

81
4

� �2
; ð29Þ
whose double root at s2,6 = 9/2 leads to the two rigid configurations shown in Fig. 5 for the case in which p1 = (0, 0)T and
p2 ¼ ð

ffiffiffi
3

p
;0ÞT .

Following a similar reasoning to the one used in the previous subsection, we conclude that the sets of three links connected to P1,
P4, and P5 can flip over the line defined by P2, P3, and P6 without violating any distance constraint. In this case, P4 and P5 can coincide
leading to an assembly mode with mobility 1. Actually, Ivory's theorem predicts this behavior [4].

Finally, it is worth mentioning that there are two very special cases of the Dixon linkage, known as the two Dixon's mechanisms
[1,3], that are continuously movable with mobility 1 with no rigid assembly modes and no coincident joint centers. These two
mechanisms satisfy the following two sets of constraints:
s4;6 þ s3;5 ¼ s5;6 þ s3;4; s1;6 þ s3;5 ¼ s1;3 þ s5;6;
s2;4 þ s3;5 ¼ s2;5 þ s3;4; s1;2 þ s3;5 ¼ s1;3 þ s2;5;

ð30Þ
5. The two rigid assembly modes of a Dixon linkage satisfying the constraints (26) and (27). In this case, the linkage also has a movable assembly mode.
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s5;6 ¼ s2;4; s1;3 ¼ s2;4; s1;2 ¼ s3;4;
s4;6 ¼ s2;5; s3;5 ¼ s1;6; s1;2 þ s5;6 ¼ s2;5 þ s1;6;

ð31Þ
respectively [5]. In the Dixon's mechanism satisfying Eq. (30), all the nine quadrilaterals in the linkage are orthogonal and all the six
sets of three dyads sharing their end-points are diamonds. In the Dixon's mechanism satisfying Eq. (31), only □3,4,6,5 and □2,1,6,5 are
orthogonal, and 2,1,5,4,3 and 4,2,3,6,1 are diamonds.

5. Position analysis of the generalized Peaucellier linkage

In this Section, we show how the closure polynomial for the Dixon linkage in Fig. 1(left) can be used to obtain the curve traced by
P6 in Fig. 1(right).

To slightly simplify the formulation, all link lengths can benormalizedwith respect to the length of the base link. Thus,without loss
of generality, we can set s1,2 = 1. Therefore, if we set p1 = (1, 0)T, p2 = (0, 0)T, and p6 = (x, y)T, we have that
s1;6 ¼ x−1ð Þ2 þ y2; ð32Þ
s2;6 ¼ x2 þ y2: ð33Þ
Thus, to determine the curve traced by P6, we just need to replace Eqs. (32) and (33) in the closure equation of the Dixon linkage
given in Eq. (13). The result can beautifully expressed as:
p0 x2 þ y2
� �11 þ p1 x2 þ y2

� �10 þ p2 x2 þ y2
� �9 þ p3 x2 þ y2

� �8 þ p4 x2 þ y2
� �7

þp5 x2 þ y2
� �6 þ p6 x2 þ y2

� �5 þ p7 x2 þ y2
� �4 þ p8 x2 þ y2

� �3 þ p9 x2 þ y2
� �2

þp10 x2 þ y2
� �

þ q11 þ q10 þ q9 þ q8 þ q7 þ q6 þ q5 þ q4 þ q3 þ q2 þ q1 þ q0 ¼ 0;

ð34Þ
where
p0 ¼ α0
p1 ¼ α1 x
p2 ¼ α2 x

2 þ α3 y
2

p3 ¼ α4 x
3 þ α5 x y

2

p4 ¼ α6 x
4 þ α7 x

2 y2 þ α8 y
4

p5 ¼ α9 x
5 þ α10 x

3 y2 þ α11 x y
4

p6 ¼ α12 x
6 þ α13 x

4 y2 þ α14 x2 y4 þ α15 y
6

p7 ¼ α16 x
7 þ α17 x

5 y2 þ α18 x3 y4 þ α19 x y
6

p8 ¼ α20 x
8 þ α21 x

6 y2 þ α22 x4 y4 þ α23 x
2 y6 þ α24 y

8

p9 ¼ α25 x
9 þ α26 x

7 y2 þ α27 x5 y4 þ α28 x
3 y6 þ α29 x y

8

p10 ¼ α30 x
10 þ α31 x

8 y2 þ α32 x
6 y4 þ α33 x

4 y6 þ α34 x
2 y8 þ α35 y

10

q11 ¼ α36 x
11 þ α37 x

9 y2 þ α38 x7 y4 þ α39 x
5 y6 þ α40 x

3 y8 þ α41 x y
10

q10 ¼ α42 x
10 þ α43 x

8 y2 þ α44 x6 y4 þ α45 x
4 y6 þ α46 x

2 y8 þ α47 y
10

q9 ¼ α48 x
9 þ α49 x

7 y2 þ α50 x5 y4 þ α51 x
3 y6 þ α52 x y

8

q8 ¼ α53 x
8 þ α54 x

6 y2 þ α55 x4 y4 þ α56 x
2 y6 þ α57 y

8

q7 ¼ α58 x
7 þ α59 x

5 y2 þ α60 x3 y4 þ α61 x y
6

q6 ¼ α62 x
6 þ α63 x

4 y2 þ α64 x2 y4 þ α65 y
6

q5 ¼ α66 x
5 þ α67 x

3 y2 þ α68 x y4

q4 ¼ α69 x
4 þ α70 x

2 y2 þ α71 y4

q3 ¼ α72 x
3 þ α73 x y

2

q2 ¼ α74 x
2 þ α75 y

2

q1 ¼ α76 x
q0 ¼ α77
where αi, i=0… 77, are polynomials in s1,3, s2,4, s2,5, s3,4, s3,5, s4,6, and s5,6. The expressions of all these coefficients cannot be included
here due to space limitations, but they can be reproduced using a computer algebra systemwithoutmuch effort. Eq. (34) corresponds
to a 11-circular curve of degree 22 ([11], pp. 87).
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As an example, let us set s1,3= 9/2, s2,4= 45/4, s2,5 = 109/4, s3,4 = 13/4, s3,5 = 25/4, s4,6= 13/2, and s5,6 = 5. Remember that all
link lengths are assumed to be normalized with respect to s1,2. Hence, s1,2 = 1. By replacing these values in Eq. (34), we obtain the
equation
Fig. 6. E
□3,6,4,5 i
4769856 x2 þ y2
� �11 þ 154321440 x x2 þ y2

� �10 þ 4 77025433 x2−147788975 y2
� �

ðx2

þy2Þ9−24 1303744447 x3 þ 1110046215 x y2
� �

x2 þ y2
� �8

−4 ð37412647751 x4

þ28949616460 x2 y2−5476551067 y4Þ x2 þ y2
� �7 þ 2 ð1532684101319 x5

þ2576822045150 x3 y2 þ 1075751046807 x y4Þ x2 þ y2
� �6 þ 1

2
ð24483722504627 x6

þ46893194350141 x4 y2 þ 22378081433601 x2 y4 þ 66265488247 y6Þ x2 þ y2
� �5

−2 ð92557658056081 x7 þ 236941009972511 x5 y2 þ 199886755232779 x3 y4

þ55475448116349 x y6Þ x2 þ y2
� �4 þ…þ ð−21369647416854306832493

8192
x2

þ19150328181751022802847
8192

y2Þ−16960444285050329617435
8192

x

þ48083411621190921235225
65536

¼ 0:

ð35Þ
Fig. 6 shows this generalized Peaucellier linkage in three different configurations overlapping the curve traced by P6.
Now, we can analyze an important particular case. Let us impose the constraints
s2;4 ¼ s2;5 and s4;6 ¼ s5;6: ð36Þ
If we replace them in Eq. (34), it simplifies to a expression of the form
s3;4−s3;5
� �4

f x; yð Þ ¼ 0: ð37Þ
xample of a generalized Peaucellier linkage represented in three different configurations. The curve in blue represents the 11-circular coupler curve traced by P6.
s represented in green, ∧ 5,2,4 in black, and ∧ 2,1,3 in gray.
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Clearly, if s3,4 = s3,5, the algebraic description of the curve traced by P6 vanishes, thus indicating that the resultingmechanism has
at least one branch of movement withmore than one degree of freedom. However, in this case, f(x, y) neither vanishes nor factorizes,
thus indicating that there still is a single branch of movement in which P6 traces a well-defined curve. The description of this curve
actually reduces to the following bicircular quartic ([12], Chapter 9):
Fig. 7. E
line Pea
β5 x2 þ y2
� �2 þ β4x x2 þ y2

� �
þ β3x

2 þ β2y
2 þ β1xþ β0 ¼ 0; ð38Þ
xamples of coupler curves generated by a scalene cell, a Peaucellier linkagewith s2,4= s2,5, s3,4= s3,5, and s4,6= s5,6. The last example corresponds to a straight-
ucellier linkage.
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where
β5 ¼ 1−s1;3
� �

;

β4 ¼ β1 ¼ −2 1þ s2;5−s3;5−s1;3
� �

;

β3 ¼ β2 þ 4 s2;5
β2 ¼ 1−2 s1;3 1þ s1;3

� �
þ 2 s3;5 1−s2;5

� �
−2 s5;6 1−s1;3

� �
þ s21;3 þ s22;5 þ s23;5;

β0 ¼ s2;5−s5;6
� �2

1−s1;3
� �

:

ð39Þ
Fig. 7 presents some examples of this curve for different values of s1,3, s2,5, s3,5 and s5,6. This linkagewas called by Cayley the scalene
cell. It can be verified that the expression deduced by Cayley for this curve in [13] is equivalent to the one derived here.

The scalene cell is still amore general linkage than the celebrated straight-line Peaucellier linkage. This latter linkage can be seen as
a scalene cell with the extra constraints
s3;4 ¼ s4;6; and s1;2 ¼ s1;3: ð40Þ
By replacing Eq. (40) in Eq. (38), we obtain the equation
y2 þ x2−2 x
� �

s5;6−s2;5 þ 2 x
� �

¼ 0: ð41Þ
This equation corresponds to a unit circle centered at P1 and a linewith equation x=(s2,5− s5,6)/2 (see the last example appearing
in Fig. 7).
6. Conclusions

A distance-based formulation to derive the closure polynomial of the Dixon linkage, relying only on elementary algebra, has been
presented. One of the advantages of using distance-based formulations for obtaining closure polynomials is that, in general, it is easier
to interpret the resulting expressions geometrically than by means of other formulations. For instance, we have shown how the
conditions that made the leading coefficient factors vanish, either corresponding to the case in which the quadrilateral defined by
four joints is orthodiagonal, or to the case in which the center of the circle defined by three joints is on the line defined by two
other joints. We have also shown that each of the factors of the independent coefficient, except one, falls within one of these two
categories. The remaining factor, whose geometric interpretation remains elusive, deserves further study. The use of permutation
groups to describe how all these factors are related to each other seems a promising line of investigation.

It has also been shown that the coupler curve of the generalized Peaucellier linkage is 11-circular of 22nd-degree, and how the
bicircular quartic coupler curve expression of the scalene cell can be derived from it. The presented approach to obtain the coupler
curve of the generalized Peaucellier linkage from the closure polynomial of the Dixon linkage can be applied to the analysis of coupler
curves of other single-degree-of-freedom linkages. This is another point that deserves further attention.
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