
Nicolas Rojas1

Department of Engineering and Design,

University of Sussex,

Brighton, BN1 9QT, UK

e-mail: n.rojas@sussex.ac.uk

Aaron M. Dollar
Department of Mechanical Engineering and

Materials Science,

Yale University,

New Haven, CT 06511

e-mail: aaron.dollar@yale.edu

Classification and Kinematic
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In the context of robot manipulation, Salisbury’s taxonomy is the common standard used
to define the types of contact interactions that can occur between the robot and a con-
tacted object; the basic concept behind such classification is the modeling of contacts as
kinematic pairs. In this paper, we extend this notion by modeling the effects of a robot
contacting a body as kinematic chains. The introduced kinematic-chain-based contact
model is based on an extension of the Bruyninckx–Hunt approach of surface–surface con-
tact. A general classification of nonfrictional and frictional contact types suitable for
both manipulation analyses and robot hand design is then proposed, showing that all
standard contact categories used in robotic manipulation are special cases of the sug-
gested generalization. New contact models, such as ball, tubular, planar translation, and
frictional adaptive finger contacts, are defined and characterized. An example of manipu-
lation analysis that lays out the relevance and practicality of the proposed classification
is detailed. [DOI: 10.1115/1.4032865]

1 Introduction

The modeling of contacts between fingers and objects has been
a recurring theme in robot manipulation [1]; in fact, contact
mechanics is a fairly standard topic not only in multibody abstrac-
tions but also in continuum mechanics (see, for instance, Ref. [2]).
In the context of robot hands, the types of contact interactions
which can occur between a grasped object and a fingertip are usu-
ally classified in nine categories, namely: (i) no contact, (ii) point
contact without friction, (iii) line contact without friction, (iv)
point contact with friction, (v) planar contact without friction, (vi)
line–line contact without friction, (vii) soft finger (or compliant
surface contact), (viii) line(-line) contact with friction, and (ix) planar
contact with friction. The description and kinematic equivalents of
all these contact types are presented in Table 1. A kinematic
equivalent simply corresponds to a single kinematic constraint—a
subset of the continuous group of displacements—that represents
the constrained motion between two contacting bodies. A com-
plete list of subgroups of displacements can be found in Ref. [3].

The above contact taxonomy was introduced by Salisbury in
his groundbreaking work on the kinematics and force analysis of
mechanical articulated hands [4, Chap. 2], with the exception of
the line–line contact without friction entry that was later presented
by Tischler et al. in Ref. [5]. Since the contact types (iii), (v), (vi),
(viii), and (ix) are not suitable for arbitrary objects—they depend
on the assumptions on the curvature properties of the surface of
the object, the contact models considered in robot manipulation
are often reduced to frictionless point contact2, (ii), point contact
with friction (iv), and soft finger3 (vii). This is the standard in the
specialized literature on robot manipulation [6,7].

The basic concept behind the Salisbury’s contact taxonomy is
the modeling of contacts as kinematic pairs. This assumption is
clearly stated by Salisbury and Roth in Ref. [8]: “In considering
the effects of a finger contacting a body it will be useful to model
each contact as a kinematic pair.” However, this fundamental

supposition has been frequently omitted in important discussions
about contact modeling in robot manipulation—e.g. [7, Chaps. 27
and 28], with some relevant exceptions [1 (p. 86)], [9], probably
because it was not explicitly indicated in Salisbury’s Ph.D. thesis
[4]. The identification of such assumption is relevant for three rea-
sons: first, to clarify the kinematic origin of the standard contact
models used in grasp analysis; second, to clarify that closed kine-
matic chains (e.g., spatial linkages, parallel platforms) have been
employed to model within-hand prehensile manipulation since the
dawn of the research field; and third, to open the door to a more
general axiom that yields a richer and more insightful classifica-
tion of contact types for the analysis of fingertip-based robot hand
manipulation and the design of robot hands. This work focuses on
the development of this last aspect.

In this paper, we extend the standard modeling of contacts as
kinematic pairs used in dexterous manipulation by modeling
the effects of a fingertip contacting a body as kinematic chains.
The introduced contact model is based on an extension of the
Bruyninckx–Hunt approach of surface–surface contact [10,11].
Thanks to such extension, a general classification of nonfrictional
and frictional contact types suitable for both robot hand manipula-
tion analyses and robot hand design is proposed. It is shown that
all standard contact categories used in robotic manipulation,
namely, Salisbury’s taxonomy [4] along with the line–line contact
without friction presented in Ref. [5], is obtained as special cases
of the proposed generalization. Additionally, new contact models,
such as ball, tubular, planar translation, and frictional adaptive fin-
ger contacts, are characterized and their kinematic equivalents are
defined via Herv�e’s group-theoretic approach [12].

The suggested kinematic-chain-based contact model—the
extended Bruyninckx–Hunt approach—is advantageous for classi-
fying, defining, and characterizing contact types for robot manipu-
lation because, in contrast to kinematic-pair-based contact
models, it considers the curvature of contacting bodies to deter-
mine unequivocally the location and direction of the resulting
degrees-of-freedom. This allows differentiating contact conditions
that under traditional practices are considered same. Additionally,
contrary to the original Bruyninckx–Hunt model, the proposed
contact model considers not only passive revolute joints but also
resistant passive joints (i.e., passive joints able to resist moments
till some value). This feature generalizes the characterization of
friction used in modeling approaches based on kinematic pairs,
simplifies contact specialization via changes in the assumed

1Corresponding author.
2The point contact without friction, as originally proposed by Salisbury, actually

assumes a curvature model of the grasped object (see Table 1).
3Soft finger is the historical name used for the contact model that idealizes a point

contact that deforms to have a contact area large enough to resist moments about the
contact normal.
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motion constraints, and facilitates the computation of kinematic
equivalents in complex contact types.

The rest of this paper is organized as follows. Section 2 introdu-
ces the Hunt’s and Bruyninckx‘s kinematic-chain-based contact
models and presents their corresponding kinematic equivalents.
Section 3 details the proposed extension of the Bruyninckx–Hunt
approach as well as the suggested classification of nonfrictional
and frictional contact types. Section 4 discusses an example of
fingertip-based robot hand manipulation that stands out the rele-
vance and practicality of the introduced classification in manipu-
lation studies and robot hand design. We finally conclude and
present lines of future work in Section 5.

2 Kinematic Equivalents of Contact Models

2.1 Hunt’s Kinematic Equivalent. Kinematic pairs are a
basic constituent of any mechanism; hence, the natural generaliza-
tion of Salisbury’s axiom for the development of contact types is
to model each contact as a kinematic chain. This assumption was
presumably first proposed by Hunt in Ref. [10, p. 334] when dis-
cussing kinematic models for the connection of two rigid bodies
touching at a single point. Hunt’s model corresponds to three

serially connected passive joints that provide exactly five degrees-
of-freedom. Specifically, this kinematic model is built as follows
(Fig. 1 (left)): take any two points, say A and B, on the line defined
by the point of contact C and the unit normal vector between the
contacting bodies whose boundaries can be represented, in the
neighborhood of C, by the surfaces UA and UB. Then, perpendicu-
larly connect in series perfectly aligned Hooke couplings (universal
joints) at points A and B with a revolute joint at the point of contact
in the direction of the common normal line between the bodies and
rigidly connect the universal joints to UA and UB as shown in Fig. 1
(left). The resulting mechanism is a universal-revolute-universal
chain of four links that provides five independent degrees-of-
freedom of motion between the touching bodies.

Applying serial kinematic reduction to the described kinematic
chain to obtain a single equivalent kinematic constraint between
the bodies, we get, according to the notation of Fig. 1 (left),

fRðA;uÞg � fRðA;wÞg � fRðC; vÞg � fRðB;wÞg � fRðB;uÞg: (1)

Now, since fRðC; vÞg ¼ fRðA; vÞg–ðC; vÞ and (A,v) define the
same axis, fRðC; vÞg ¼ fRðB; vÞg, u, v, and w are linearly

Table 1 Standard classification of contact types in robot manipulation

Contact type Description Kinematic equivalent

(i) No contact Free object in E3 (six degrees-of-freedom) fDg

(ii) Point contact
without friction

A point on the fingertip is constrained to move on a frictionless
plane surface of the grasped object (five degrees-of-freedom)

fSðCÞg � fPðvÞg

(iii) Line contact
without friction

A line in the fingertip is constrained to move on a frictionless plane
surface of the grasped object (four degrees-of-freedom)

fCðC;uÞg � fRðC; vÞg � fTðwÞg

(iv) Point contact with
friction

A point on the fingertip is constrained to move on a point of the
grasped object (three degrees-of-freedom)

fSðCÞg

(v) Planar contact
without friction

A plane surface of the fingertip is constrained to move on a fric-
tionless plane
surface of the grasped object (three degrees-of-freedom)

fGðvÞg

(vi) Line–line contact
without friction

A line in the fingertip is constrained to coalesce with a line in the
grasped object (two degrees-of-freedom)

fCðC; uÞg

(vii) Soft finger A point on the fingertip is constrained to move on a point of the
grasped object without rotation about the axis determined by the
contact point and the unit normal vector of the contact tangent
plane (two degrees-of-freedom)

fRðC;uÞg � fRðC;wÞg, u and
w define the contact tangent plane

(viii) Line(-line) con-
tact with friction

A line in the fingertip is constrained to coalesce with a line in the
grasped object without sliding (one degree-of-freedom)

fRðC; uÞg

(ix) Planar contact
with friction

A plane surface of the fingertip is constrained to lie on a plane
surface of the grasped object without relative motion (zero degree-
of-freedom)

fIg
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independent vectors, and A and B are arbitrary points along the
common normal line, Eq. (1) can be rewritten as

fSðAÞg � fS2ðBÞg ¼ fSðCÞg � fS2ðBÞg ¼ fS2ðAÞg � fSðBÞg
¼ fS2ðAÞg � fSðCÞg

(2)

with fSðOÞg ¼ fRðO; iÞg � fRðO; jÞg � fRðO; kÞg—by the prop-
erty of closure of groups—provided that i, j, and k are linearly
independent vectors [13] and fS2ðOÞg ¼ fRðO;uÞ � fRðO; vÞg a
submanifold included in {S(O)}, defined as the composition of
two different subgroups of rotations whose axes meet at a single
point [14,15].

Equation (2) corresponds to the kinematic equivalent (i.e., sin-
gle kinematic constraint relating two contacting bodies) of the
Hunt’s kinematic-chain-based model of point contact without fric-
tion. Note that the selected directions of the vectors u and w are
indeed irrelevant, a consequence of the use of Hooke couplings in
the model regardless of the geometry of the touching objects.
Hunt’s model seems to be a more general approach than that of
Salisbury (see Table 2). However, since in the Hunt’s model the
direction of vectors u and w does not affect the description of the
motion between the bodies and the location of points A and B is
not explicit, the whole Salisbury’s taxonomy cannot be deduced
from it. Most relevant, no new contact types can be obtained from
such approach. Despite all these drawbacks, the Hunt’s model is
still matter of research [16]. A similar kinematic-chain-based
model of point contact was introduced by Montana in Ref. [9].

2.2 Bruyninckx’s Kinematic Equivalent. Independently
from Hunt’s work and in the context of compliant robot motion,
Bruyninckx et al. [11] proposed a kinematic-chain-based model of
point contact that logically resolves all the weaknesses of the
Hunt’s approach; it can be indeed seen as an extension of such
perspective. The Bruyninckx’s model, which we call the general-
ized kinematic-chain-based model of point contact, or the
Bruyninckx–Hunt model, consists of five serially connected pas-
sive revolute joints whose location and direction are unequivocal.
The model is described next.

According to the notation of Fig. 1 (right), given two bodies
touching at a single point C with UA and UB being smooth surfa-
ces representing their boundaries in the neighborhood of the con-
tact point (i.e., UA and UB has the same tangent plane at C), let

� Ar and AR (correspondingly Br and BR) be the centers of max-
imum and minimum curvature of UA (UB), respectively,

� ua and wa (correspondingly ub and wb) be the directions of
maximum and minimum curvature of UA (UB), respectively,
and

� v a unit normal vector defining the common contact tangent
plane.

A convenient introduction to the curvature theory of surfaces
can be found in, e.g., Ref. [2, Chap. 2]. From elementary differen-
tial geometry, it is known that ui, wi, and v (i 5 a, b) are orthogo-
nal with directions uniquely defined unless the surface is locally a
sphere or a plane5.

The generalized kinematic-chain-based model of point contact
without friction is then built by serially connecting revolute joints
at points Ar, AR, Br, BR, and C in the direction determined by vec-
tors ua, wa, ub, wb, and v, respectively, and rigidly connecting the
revolute joints at AR and BR to UA and UB as shown in Fig. 1
(right). The resulting mechanism is a five-revolute chain of six
links that provides five independent degrees-of-freedom of motion
between the touching objects. Now, by applying serial kinematic
reduction to this kinematic chain to obtain a single equivalent ki-
nematic constraint between the bodies, we get

fRðAR;uaÞg � fRðAr;waÞg � fRðC;vÞg � fRðBr;wbÞg � fRðBR;ubÞg
(3)

The above equation corresponds to the kinematic equivalent of
the Bruyninckx–Hunt model.

3 Classification of Contact Types for Fingertip-Based

Manipulation

The Bruyninckx–Hunt model of point contact depends on the
local curvature properties of the touching bodies, represented by
the smooth surfaces UA and UB; thus, the model is indeed an infin-
itesimal characterization of the contact where, according to the
notation of Fig. 1 (right), ra ¼ kArCk and Ra ¼ kARCk (corre-
spondingly rb ¼ kBrCk and Rb ¼ kBRCk) correspond to the radii
of maximum and minimum curvatures of UA (UB), respectively,
with AB the vector pointing from A to B and kABk the Euclidean
norm of AB; and KUi

¼ 1
ri Ri

, (i ¼ aðAÞ; bðBÞÞ is the Gaussian cur-
vature of Ui in the vicinity of the contact point. ra and Ra are
indeed oriented distances, defined as positive in the direction of
the inward normal of the tangent plane at point C.

Despite the explicit local definition of the Bruyninckx–Hunt
model, useful novel finite kinematic equivalents of contact types
can be defined since suppositions about the Gaussian curvature of
the fingertip (and the object) can be made. Additionally, nonfric-
tional and frictional cases can be considered by replacing the three

Fig. 1 Left: Hunt’s kinematic-chain-based model of point contact without friction and its kine-
matic equivalent. Right: the Bruyninckx’s kinematic-chain-based model of point contact with-
out friction—called herein the Bruyninckx–Hunt model—and its kinematic equivalent.

5For these particular cases, there exist an infinite number of directions for the
vectors u and w.
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Table 2 Proposed classification of contact types

Special cases

Contact type Kinematic equivalent (nonfrictional/frictional) Particular geometrya Limit instancesb

Elliptic contact KUA
> 0 fRðAR;uaÞg � fRðAr;waÞg � fRðC; vÞg� fRðBr ;wbÞg � fRðBR; ubÞg

ðgBr
¼ gBR

¼ gC ¼ 0Þ
Elliptic-ball contact, elliptic-cylinder
contact, elliptic-plane contact, non-
frictional ball contact

Point-ball contact, point-cylinder
contact, point-plane contact (or (ii)
point contact without friction), ball-
plane contact

fRðAR;uaÞg � fRðAr;waÞg � fRðC; vÞg ðgBr
> 0; gBR

> 0; gC ¼ 0Þ Ball contact (iv) Point contact with friction, (vii)
soft finger ðgC > 0Þ

Cylindrical contact KUA
¼ 0; Ra !1 fCðAr ;waÞg � fRðC; vÞg� fRðBr ;wbÞg � fRðBR; ubÞg

ðgBr
¼ gBR

¼ gC ¼ 0Þ
Cylindrical-ball contact, cylindri-
cal–cylinder contact, cylindrical-
plane contact

Line-ball contact, line-cylinder con-
tact, line-plane contact (or (iii) line
contact without friction), frictional
line-plane ðgBr

> 0; gC > 0Þ (or (vi)
line–line contact without friction),
fully frictional line-plane ðgBr

>
0; gBR

> 0; gC > 0Þ (or (viii) line(-
line) contact with friction)

fCðAr ;waÞg � fRðC; vÞg ðgBr
> 0; gBR

> 0; gC ¼ 0Þ — Tubular contact ðgC > 0Þ

Flat contact KUA
¼ 0; ra ¼ Ra !1 fGðvÞg � fRðBr ;wbÞg � fRðBR;ubÞg ðgBr

¼ gBR
¼ gC ¼ 0Þ Flat-ball contact, flat-cylinder con-

tact, flat-plane contact (or (v) planar
contact without friction)

Fully frictional flat-plane ðgBr
>

0; gBR
> 0; gC > 0Þ (or (ix) planar

contact with friction)

fGðvÞg ðgBr
> 0; gBR

> 0; gC ¼ 0Þ — Planar translation contact ðgC > 0Þ

Adaptive finger KUA
¼ KUB

;ra ¼ rb and Ra ¼ Rb fRðAR; uaÞg � fRðAr ;waÞg � fRðC; vÞgðgBr
¼ gBR

¼ gC ¼ 0Þ Adaptive ball contact, adaptive cy-
lindrical contact, adaptive plane
contact

Multiple cases

fRðC; vÞgðgBr
> 0; gBR

> 0; gC ¼ 0Þ — Fully frictional adaptive finger
ðgC > 0Þ

aParticular geometry cases correspond to instances with particular values of the model variables KUA
and KUB

.
bLimit instances cases correspond to instances with extreme values of KUA

and/or relaxed conditions on gBr
, gBR

, and gC of particular geometry cases; then limit instances of nonfrictional equivalents may be frictional.
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passive revolute joints of one of the surfaces—including the revo-
lute joint at the contact point—by resistant passive joints, that is,
passive joints able to resist moments till some value g before
entering in motion (in a passive joint g ¼ 0). Therefore, from the
kinematic viewpoint, assuming that any moment si induced on a
resistant passive revolute joint is not greater than g, the joint can
be considered as locked; in other words, the kinematic constraint
between the involved links reduces to a rigid connection (i.e., fIg
(see Fig. 2)6). Under these considerations, the contact is said to be
unable to resist moments about the axis of the revolute joint if
g ¼ 0. Otherwise, the contact is said to be able to resist moments
about the involved revolute axis.

In classical kinematic-pair-based contact models (i.e., Salis-
bury’s taxonomy plus line–line contact without friction), it is
assumed that, in cases where friction is said to be active, frictional
forces larger than the forces they must resist are created. This fric-
tional assumption constrains the displacement between bodies
along or about specific axes of a common reference frame. In the
extended Bruyninckx–Hunt contact model herein proposed, this
notion is generalized via the introduced concept of resistant pas-
sive joints and their corresponding threshold moments.

In what follows, we present a general classification of contact
types for robot manipulation based on the proposed kinematic-
chain-based contact model (i.e., Bruyninckx–Hunt model with
resistant passive joints). It will be shown how the Salisbury’s tax-
onomy along with line–line contact without friction are obtained
from special instances of some of these more general types and
how new useful contact types are deduced. In all cases, UA repre-
sents the boundary of the fingertip and UB that of the grasped
object; the resistant revolute joints that model the friction effects
on the contact motion are located in the grasped body, explicitly
at points Br , BR, and C with directions ub, wb, and v and threshold
moments gBr

, gBR
, and gC, respectively.

3.1 Elliptic Contact. The elliptic contact is characterized by
a positive Gaussian curvature of the fingertip, that is,
KUA
¼ 1

ra Ra
> 0. In the frictionless case, it is assumed that gBr

¼
gBR
¼ gC ¼ 0 and the kinematic equivalent correspond to that of

Eq. (3). In the frictional case, it is supposed that the contact is
able to resist moments but not about the contact normal, that is,
gBr

> 0; gBR
> 0; and gC ¼ 0. Then, the kinematic equivalent

reduces to

fRðAR; uaÞg � fRðAr;waÞg � fRðC; vÞg (4)

since fRðBr;wbÞg and fRðBR; ubÞg are replaced by fIg. Next,
some special cases of the nonfrictional and frictional elliptic con-
tact are discussed; these are divided in two categories: (1) particu-
lar geometry, which corresponds to instances with particular
values of the model variables KUA

and KUB
, and (2) limit instances,

which corresponds to extreme values of KUA
and/or relaxed condi-

tions on gBr
, gBR

, and gC of particular geometry cases. This also
applies for the other contact models discussed in this section.

(1) Particular geometry (elliptic contact)
In the case of the frictional elliptic contact, the curvature of the

grasped object does not affect the kinematic equivalent. However,
in the nonfrictional model, this is not the case since the subgroups
fRðBr;wbÞg and fRðBR;ubÞg are in the equation. Then, the non-
frictional elliptic contact can be specialized by considering spe-
cific shapes of the grasped object (i.e., explicit values of KUB

), for
instance, if in the vicinity of the contact point the grasped object
is a plane, then KUB

¼ 0 (rb !1 and Rb !1) and the kine-
matic equivalent is

fRðAR;uaÞg � fRðAr;waÞg � fRðC; vÞg � fTðubÞg � fTðwbÞg
¼ fRðAR;uaÞg � fRðAr;waÞg � fGðvÞg� (5)

Similar analyses to the elliptic-plane contact can be done for the
cases in which the grasped object corresponds to a ball-like shape
(elliptic-ball contact) or a cylinderlike shape (elliptic–cylinder
contact).

An interesting particularization in the frictional case results
when in the fingertip is assumed that ra ¼ Ra > 0. Then,
AR ¼ Ar ¼ A. In this frictional ball contact, the kinematic equiva-
lent is

fRðA;uaÞg � fRðA;waÞg � fRðC; vÞg ¼ fSðAÞg (6)

since fRðC; vÞg ¼ fRðA; vÞg and for any couple of selected vec-
tors ua and wa; ua, wa, and v are linearly independent. Similarly,
the nonfrictional ball contact can be defined. For this case, the
kinematic equivalent is

fSðAÞg � fRðBr;wbÞg � fRðBR; ubÞg (7)

In both cases, if ra ¼ Ra < 0, the kinematic behavior is equiva-
lent, but physically the shape of the fingertip implies the contact is
interior.

(2) Limit instances (elliptic contact)
Limit instances of the elliptic contact result from reducing the

shape of the fingertip to a single point, that is, ra ¼ Ra ¼ 0 and
KUA
!1. In this extreme case, the kinematic equivalent of the

frictional ball contact reduces to

fSðCÞg (8)

since A ¼ C; thus obtaining the classical point contact with fric-
tion ((iv) in Table 1). Since fSðCÞg can be represented as
fRðC; uÞg � fRðC;wÞg � fRðC; vÞg, where u and w are any linearly
independent vectors that define the contact tangent plane; then, if
we assume that the point contact is able to resist moments about
the contact normal—axis ðC; vÞ, that is, to relax the condition
gC ¼ 0, then fRðC; vÞg becomes fIg and the kinematic equiva-
lent is

fRðC;uÞg � fRðC;wÞg (9)

which corresponds to the soft finger model ((ix) in Table 1).
If we apply the point assumption to the elliptic-plane contact,

since the subgroup fGðvÞg can be written as fRðC; vÞg � fPðvÞg,
we get

5fRðC;uaÞg � fRðC;waÞg � fRðC;vÞg � fPðvÞg¼fSðCÞg � fPðvÞg
(10)

Fig. 2 A resistant passive revolute joint (right) is able to resist
moments till some value g before entering in motion. In a pas-
sive revolute joint (left) g 5 0. Then, by assuming that any
moment induced on the resistant passive revolute joint is not
greater than g, the joint can be considered as locked.

6We have opted for the more general term resistant joint rather than frictional
joint to avoid implicit assumptions about the nature of the power loss and the shape/
geometry of the revolute pair.
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known as the point contact without friction model ((ii) in Table 1).
Again, for the elliptic-ball contact and the elliptic–cylinder con-
tact, limit instances can be similarly defined.

3.2 Cylindrical Contact. The cylindrical contact corresponds
to a fingertip with zero Gaussian curvature, that is,
KUA

¼ 1
raRa
¼ 0, with Ra !1 and ra finite. In the frictionless

case (i.e., gBr
¼ gBR

¼ gC ¼ 0), the kinematic equivalent is

fTðwaÞg � fRðAr;waÞg � fRðC; vÞg � fRðBr;wbÞg � fRðBR; ubÞg
¼ fCðAr;waÞg � fRðC; vÞg � fRðBr;wbÞg � fRðBR; ubÞg

(11)

since a rotation fRðO; uÞg center at infinity respect to a point M is
equivalent to a translation in the direction of the cross product
between u and MO=kMOk, that is, fRðAR;uaÞg ¼ fTðwaÞg if
Ra !1. Additionally, the subgroup fCðA; vÞg can be written as
fTðvÞg � fRðA; vÞg.

In a frictional cylindrical contact, it is supposed that the contact
is able to resist moments but not about the contact normal, that
is, gBr

> 0; gBR
> 0; and gC ¼ 0. Applying these conditions to Eq.

(11), the resulting kinematic equivalent is

fCðAr;waÞg � fRðC; vÞg (12)

(1) Particular geometry (cylindrical contact)
Similarly to the case of the elliptic contact, the nonfrictional

cylindrical contact can be specialized by considering specific
shapes of the grasped object. Then, for instance, if in the vicinity
of the contact point the grasped object is a plane—KUB

¼ 0
(rb !1 and Rb !1), the resulting kinematic equivalent is

fCðAr;waÞg �fRðC;vÞg �fTðubÞg �fTðwbÞg¼fCðAr;waÞg �fGðvÞg
(13)

However, note that, by the property of closure,
fCðAr;waÞg ¼ fTðwaÞg � fRðAr;waÞg ¼ fRðAr;waÞg � fTðwaÞg,
fGðvÞg can be written as fTðwaÞg � fRðC; vÞg � fTðuaÞg, and
fTðwaÞg ¼ fTðwaÞg � fTðwaÞg. Therefore,

fCðAr;waÞg � fGðvÞg ¼ fRðAr;waÞg � fTðwaÞg � fTðwaÞg�
fRðC; vÞg � fTðuaÞg ¼ fRðAr;waÞg � fTðwaÞg � fRðC; vÞg�

fTðuaÞg ¼ fCðAr;waÞg � fRðC; vÞg � fTðuaÞg
(14)

Equation (14) is the kinematic equivalent of the cylindrical-
plane contact. Likewise, if it is assumed that in the grasped object
rb ¼ Rb > 0. Then, BR ¼ Br ¼ B and we get

fCðAr;waÞg � fRðC; vÞg � fRðB;wbÞg � fRðB; ubÞg ¼ fCðAr;waÞg
� fSðBÞg (15)

since fRðC; vÞg ¼ fRðB; vÞg and for any couple of selected vec-
tors ub and wb; ub, wb, and v are linearly independent. The above
equation is the kinematic equivalent of the cylindrical-ball con-
tact. A similar deduction can be elaborated for the circumstance in
which the grasped object corresponds to a cylinderlike shape
(cylindrical–cylinder contact). Moreover, given the assumptions
of the frictional cylindrical contact (Eq. (12)), no particulariza-
tions of interest can be deduced from it and itself can be consid-
ered as a particular case.

(2) Limit instances (cylindrical contact)
Note that if in the cylindrical-plane contact model, the fingertip

boundary is reduced to a line, that is, ra ¼ 0, then Ar ¼ C. Apply-
ing this condition in Eq. (14) yields

fCðC;waÞg � fRðC; vÞg � fTðuaÞg (16)

that corresponds to the kinematic equivalent of the line-plane con-
tact, known as line contact without friction ((iii) in Table 1). Simi-
larly, the kinematic equivalents of the line-ball contact model and
the line-cylinder contact model can be easily obtained. Now, if we
assume that the line-plane contact is able to resist moments about the
contact normal and about the axis ðBr;wbÞ, that is, to relax
the condition gBr

¼ gC ¼ 0, then the kinematic equivalent reduces to

fCðC;waÞg (17)

the frictional line-plane contact model, known as line–line contact
without friction in the standard classification of contacts ((vi) in
Table 1). Moreover, if we accept that the line-plane contact is also
able to resist moments about the axis ðBR; ubÞ—gBR

> 0, the trans-
lational motion of the subgroup fCðC;waÞg is restricted. Thus,

fRðC;waÞg (18)

is the kinematic equivalent of the fully frictional line-plane con-
tact model or line(-line) contact with friction ((viii) in Table 1).

In the case of the frictional cylindrical contact, if it is allowed
to resist moments about the contact normal (gC > 0), then
fRðC; vÞg becomes fIg and the kinematic equivalent simplifies to

fCðAr;waÞg (19)

that we call the tubular contact model (fully frictional cylindrical
contact). The frictional line-plane contact model (Eq. (17)) and
the tubular contact model seem analogous, but the second does
not assume any curvature properties of the grasped object.

3.3 Flat Contact. The flat contact corresponds to a fingertip
with zero Gaussian curvature, that is, KUA

¼ 1=raRa ¼ 0, with
ra !1 and Ra !1. Then, fRðAR; uaÞg ¼ fTðwaÞg and
fRðAr;waÞg¼ fTðuaÞg. In the frictionless case (i.e., gBr

¼ gBR
¼

gC ¼ 0), the kinematic equivalent is

fTðwaÞg � fTðuaÞg � fRðC; vÞg � fRðBr;wbÞg � fRðBR;ubÞg
¼ fGðvÞg � fRðBr;wbÞg � fRðBR;ubÞg (20)

Therefore, for the frictional case—gBr
> 0; gBR

> 0; and gC ¼ 0,
the resulting kinematic equivalent is

fGðvÞg (21)

The obtained displacement of frictional flat contact does not
depend on the curvature properties of the grasped object.

(1) Particular geometry (flat contact)
Similarly to the previous contact types, the nonfrictional flat

contact can be particularized by assuming some geometry of the
grasped object. Thus, for instance, if KUB

¼ 0 (rb !1 and
Rb !1), then fRðBR; ubÞg ¼ fTðwbÞg and fRðBr;wbÞg ¼
fTðubÞg and we have

fGðvÞg � fTðubÞg � fTðwbÞg ¼ fGðvÞg � fRðC; vÞg � fTðubÞg
� fTðwbÞg ¼ fGðvÞg � fGðvÞg ¼ fGðvÞg (22)

the kinematic equivalent of the flat-plane contact model, known
as planar contact without friction ((v) in Table 1).

(2) Limit instances (flat contact)
The geometry of the fingertip in the frictional flat contact (Eq.

(21)) is already particularized. If in addition we assume that the
contact is able to resist moments about the contact normal
(gC > 0Þ, the kinematic equivalent is

fPðvÞg (23)

since the subgroup fGðvÞg can be written as fPðvÞg � fRðC; vÞg.
This planar translation contact model can be seen as an alternative
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to the soft finger model. Moreover, note that the kinematic equiva-
lent of the fully frictional case of the flat-plane contact model
(gBr

> 0; gBR
> 0; gC > 0) reduces to the identity displacement

fIg—this contact is indeed the planar contact with friction model
((ix) in Table 1).

3.4 Adaptive Finger. In general, contact types are considered
suitable for arbitrary objects if the model does not depend on the
assumptions on the curvature properties of the surface of the
object (e.g., ball contact, point contact without friction, tubular
contact). However, for manipulation analysis purposes, it can be
useful to define a contact type in which the boundary of the finger-
tip, UA, matches that of the grasped object, UB. That is, KUA

¼
KUB

with ra ¼ rb and Ra ¼ Rb. Since this contact mimics the
behavior of a compliant fingertip, we call it: adaptive finger.

Under the above assumption, we have Ar ¼ Br , AR ¼ BR,
ua ¼ ub, and wa ¼ wb. Then, in the frictionless case
(gBr
¼ gBR

¼ gC ¼ 0), the kinematic equivalent of the adaptive
finger contact reduces to

fRðAR;uaÞg � fRðAr;waÞg � fRðC; vÞg ¼ fRðBR;ubÞg
� fRðBr;wbÞg � fRðC; vÞg

(24)

In the standard frictional supposition, it is said that the contact is
able to resist moments but not about the contact normal, that is,
gBr

> 0; gBR
> 0; and gC ¼ 0. Thus, the kinematic equivalent of

the frictional adaptive finger is

fRðC; vÞg (25)

(1) Particular geometry (adaptive finger)
Since KUA

¼ KUB
, the adaptive finger model can be considered

by itself a case of particular geometry. However, if explicit curva-
ture properties of the grasped object are additionally assumed,
special cases of the nonfrictional adaptive finger can be defined in
a similar fashion as it was performed in the previous contact mod-
els. The kinematic equivalents of these particular contact types,
namely, adaptive ball contact, adaptive cylindrical contact, and
adaptive plane contact, can be straightforwardly obtained by
applying the conditions of KUB

to Eq. (24).
(2) Limit instances (adaptive finger)
By relaxing the conditions on gBr

, gBR
, and gC of the frictionless

adaptive finger and its particular cases, multiple contact models
can be deduced; from these options we present the case in which

the frictionless adaptive finger contact is allowed to resist
moments about the contact normal (gC > 0). Then, we get

fRðAR; uaÞg � fRðAr;waÞg (26)

as kinematic equivalent. A similar equivalent can be obtained
from the frictional elliptic contact model (Eq. (4)) by also assum-
ing resistance to moments about the contact normal; but, in such a
case, no assumptions on the curvature of the grasped object are
made. Finally, in the case of the fully frictional adaptive finger,
the kinematic equivalent is the identity displacement fIg. This
contact type is certainly similar to the Cutkosky’s very soft finger
model discussed in Ref. [17].

The above classification of contact types for robot manipulation
is summarized in Table 1. In all cases the degrees-of-freedom of
the contact models can be easily obtained by summing the
degrees-of-freedom of the subgroups of displacements that define
their kinematic equivalent. A hyperbolic contact could also be
defined (characterized by KUA

¼ 1=ra Ra < 0); however, from a
finite kinematic viewpoint, the behavior of the contact is equiva-
lent to that of the elliptic model, thus an explicit exposition of this
contact is redundant. The instantaneous kinematics analysis of the
introduced contact types should follow straightforwardly from the
methods presented in Refs. [11,18,19], but this is certainly an
aspect that deserves further research.

4 Example

Precision manipulation analysis is a finite (gross) kinematic
manipulation technique to characterize the capabilities of a given
robot hand architecture to reposition with its fingertips a grasped
object within the hand without breaking or changing contact. The
method allows determining the composition of the displacement
manifold of the object relative to the palm of the robot hand as
well as defining which of these possible displacements can
actually be controlled by the hand actuators without depending on
external factors to the hand (e.g., forces). The technique basically
consists of five steps, namely: (1) selection of the contact model
for each fingertip, (2) definition of the resulting closed kinematic
chain of the hand-object system (HOS), (3) construction of the
HOS’s graph of kinematic constraints, (4) reduction of the graph
to a single edge, and (5) determination of the controllable move-
ments. The interested reader may refer to Ref. [20] for details of
this method. Next, we discuss an example of precision manipula-
tion analysis that stands out the relevance of the introduced con-
tact models. This analyzes the capabilities of a simple three-
fingered robot hand grasping a special object under different

Fig. 3 A 3F-3R robot hand grasping a special object (s-shaped body) with the notation used for its fingertip-based within-
hand manipulation analysis using different contact models, namely: point contact with friction, soft finger, ball contact, and
frictional adaptive finger (see Table 3)

Journal of Mechanisms and Robotics AUGUST 2016, Vol. 8 / 041014-7

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 05/14/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



assumptions of contact types, namely: point contact with friction,
soft finger, ball contact, and frictional adaptive finger.

Figure 3 presents a 3F-3R hand grasping with its fingertips an
s-shaped body. This hand is composed of three identical fingers
with only one link; two of them arranged in semi-opposed config-
uration with the third finger acting as an opposable thumb. In each
finger, the link is connected to the palm through a revolute joint,
which determines the motion plane of the finger. This finger/palm
layout is similar to those proposed in the context of the CMU Sim-
ple Hands project [21]. Intuitively, it is clear that, regardless of
the assumed contact model, the fingertip-based within-hand
manipulation capabilities of the 3F-3R hand are very limited.
Indeed, it is expected that an object grasped by all the fingertips of
the hand cannot be relocated without breaking contact, that is, the
kinematic constraint relating the palm and the grasp object
reduces to the identity displacement fIg. This circumstance can
be used to study the effects and relevance of the contact assump-
tions in manipulation applications.

Table 3 presents the finite precision manipulation analysis of
the 3F-3R hand grasping, as presented in Fig. 3, an s-shaped
object in the cases where the contacts between the three fingertips
and the object are modeled as point contact with friction, soft fin-
ger, ball contact, and frictional adaptive finger. The results show
that under the assumptions of point contact with friction and soft
finger, the grasped object has an uncontrollable feasible displace-
ment (regardless of the friction conditions of the contacts) that
corresponds to the rotation about the axis defined by the three con-
tact points (fRðC;wÞg in Table 3). However, in the cases of ball
contact and frictional adaptive finger, the resulting displacement
is certainly the identity (under the frictional assumptions of each
contact).

The above results do not imply that ball contact and frictional
adaptive finger are better models than point contact with friction
and soft finger for manipulation studies. What they show is that,
depending on the finger/palm layout and the manipulation applica-
tion, a wrong selection of contact models can yield to erroneous

Table 3 Precision manipulation analysis of the 3F-3R hand grasping the s-shaped object
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estimates of the possible motions of a grasped object, an aspect
completely relevant to robot hand design. This, besides showing
the importance of having more contact models than the standard
limit instances (i.e., Salisbury’s taxonomy and line–line contact
without friction), makes evident that some contact assumptions
are more robust than others in ill-conditioned cases (e.g., grasping
an object in three aligned contact points).

5 Conclusion

In this paper, the effects of a fingertip contacting a body in
robot hand manipulation are modeled as kinematic chains; the
suggested contact model is based on an extension of the
Bruyninckx–Hunt approach of surface–surface contact that uses
the concept of resistant passive joints located in the object being
manipulated. From this extended model, a general classification
of nonfrictional and frictional contact types is developed in which
all standard contact categories used in robotic manipulation,
namely, the Salisbury’s taxonomy plus line–line contact without
friction, appear as special cases, and new contact models are
defined and characterized with their kinematic equivalents deter-
mined via Herve’s group-theoretic approach. An example of
fingertip-based within-hand robot manipulation showing the
impact of the assumed contact types in manipulation analyses as
well as the relevance of having more contact models to perform,
for instance, better predictions on the feasible and controllable
movements of a grasped object is discussed. The main purpose of
the proposed classification, rather than being exhaustive, is to
present a more general structure for the organization of contact
models for robotic manipulation and to serve of guidance for the
design of robot hands, in particular fingers and fingertips. Given
the generality of the concepts used, the classification and contact
types introduced can be applied to other contact conditions arising
in robotics, as those appearing in robot locomotion for instance.
Some lines of future work include the exploration of the suggested
contact classification and extended Bruyninckx–Hunt model in
kinesthetic and dynamics analyses of dexterous manipulation and
the experimental quantification of the threshold moments appear-
ing in the definition of the presented contact types.
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Nomenclature

{C(N,u)} ¼ cylindrical motion about the axis determined by the
unit vector u and point N (two degrees-of-freedom)

{G(v)} ¼ planar gliding motion on the plane determined by the
unit normal vector v (three degrees-of-freedom)

{I} ¼ the identity displacement. Rigid connection between
bodies, no relative motion (zero degrees-of-freedom)

{P(v)} ¼ planar translation on the plane determined by the unit
normal vector v (two degrees-of-freedom)

{R(N,u)} ¼ rotation about the axis determined by the unit vector
u and point N (one degree-of-freedom)

{S(N)} ¼ spherical rotation about a point N (three degrees-of-
freedom)

{T(v)} ¼ translation parallel to the unit vector v (one degree-
of-freedom)
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