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Two degree-of-freedom (2-DOF) closed spatial linkages can be
useful in the design of robotic devices for spatial rigid-body
guidance or manipulation. One of the simplest linkages of this
type, without any passive DOF on its links, is the revolute-
spherical-revolute-spherical (RSRS) four-bar spatial linkage.
Although the RSRS topology has been used in some robotics appli-
cations, the kinematics study of this basic linkage has unexpect-
edly received little attention in the literature over the years.
Counteracting this historical tendency, this work presents the der-
ivation of the general implicit equation of the surface generated
by a point on the coupler link of the general RSRS spatial mecha-
nism. Since the derived surface equation expresses the Cartesian
coordinates of the coupler point as a function only of known geo-
metric parameters of the linkage, the equation can be useful, for
instance, in the process of synthesizing new devices. The steps for
generating the coupler surface, which is computed from a
distance-based parametrization of the mechanism and is algebraic
of order twelve, are detailed and a web link where the interested
reader can download the full equation for further study is
provided. It is also shown how the celebrated sextic curve of the
planar four-bar linkage is obtained from this RSRS dodecic.
[DOI: 10.1115/1.4030776]

1 Introduction

When the end links of two revolute-spherical (RS) serial chains
are rigidly connected, an RSSR four-bar spatial linkage is
obtained. This closed chain mechanism has mobility two and,
regardless of the considered kinematic inversion, one of these
DOF corresponds to the passive rotation of the link connecting the
two spherical pairs about the axis defined by their centers of rota-
tion. The kinematic analysis and synthesis of this spatial linkage
has been object of extensive study over the years. The literature
on the topic is indeed vast, but a good introduction to relevant
results and its applications can be found in Refs. [1–4].

The linkage resulting from the topological permutation of one of
the RS couples in the RSSR mechanism corresponds to a four-bar
spatial linkage of mobility two without any passive DOF on its links:
the spatial RSRS linkage, where all kinematic inversions are equiva-
lent (Fig. 1). Surprisingly, this 2-DOF four-bar spatial linkage has

received little attention in the literature except for cursory descrip-
tions [5,6, p. 180]. In terms of applications, the mechanism has been
employed in the design of force-reflecting devices [7,8], and closed
spatial linkages of mobility two can generally be used for the design
of high performance pick-and-place robots [9] or for the develop-
ment of milling tool manipulators [10]. The scarce prior work related
to this mechanism has not formally described its coupler surface.

This work aims to direct the attention of the mechanism com-
munity to the interesting, and basic, RSRS spatial linkage by pre-
senting the derivation of the general implicit equation of the
surface generated by a point on its coupler link. This equation
expresses the Cartesian coordinates of the coupler point as a func-
tion only of known geometric parameters of the mechanism. The
coupler surface of a RSRS mechanism determines its full work
region, that is, its reachable workspace. In other words, at any
spatial point that belongs to the coupler surface of a RSRS mecha-
nism, the linkage can be assembled. Thus, for instance, this sur-
face equation can be useful in the process of synthesizing new
devices based on the RSRS topology for any application that
implies spatial rigid-body guidance or manipulation.

Parametric equations of coupler curves/surfaces of planar and spa-
tial linkages are in general simpler to derive than implicit
equations—think, for example, in the coupler curve equation of the
planar four-bar linkage in parametric form. The deduction of implicit
expressions for the motion of coupler links is indeed far more compli-
cated. These kinds of equations are important in theoretical kinemat-
ics of mechanisms for several reasons, for instance, implicit
equations allow the determination of singular points, e.g., ordinary
double points—in the workspace of the mechanism and other alge-
braic, geometric, and kinematic properties of it, e.g., circularity
[4,11]. Moreover, in implicit expressions, the point membership
determination is trivial; then it can be straightforwardly detected if a
point belongs to the workspace of the linkage. This is a relevant ques-
tion for any designer, and specialized software can use the property
to guide the design not only of the mechanism itself but also of the
surrounding environment to avoid potential collisions. Other aspects
that show the relevance of implicit coupler equations include the syn-
thesis of mechanisms for known workspaces [12], the development
of alternative approaches for kinematic synthesis [13], and their use
in the validation of numerical approaches for the computation of the
workspace of linkages and robotic systems, e.g., Refs. [14,15].

The RSRS coupler surface, which is computed from a distance-
based parametrization of the mechanism, is algebraic of order
twelve, i.e., a dodecic surface. The highest-order term of the

equation is ð1=16Þs4
1;2A4

4;5;6 x2 þ z2ð Þ2 x2 þ y2 þ z2ð Þ4, where s1;2

and A4;5;6 correspond to known squared distance and area values
of the spatial linkage. The details for generating such surface are
provided, as well as a web link where the interested reader can
download the full equation for further study. The presented result
is additionally validated by showing how the celebrated sextic
curve of the planar four-bar linkage is obtained from the derived
RSRS dodecic. Both results as well as the distance-based tech-
nique introduced for the computation of coupler equations of
spatial linkages constitute original contributions to theoretical
kinematics of mechanisms.

2 The RSRS Coupler Surface

Using a distance-based parametrization, a link connecting two
skew revolute axes can be modeled by taking two points on each of
these axes and connecting them all with edges to form a tetrahedron.
Similarly, a link connecting a revolute axis and a ball joint can be
modeled by taking two points on the axis and the center of rotation of
the spherical pair and connecting them all with edges to form a trian-
gle. Then, a general RSRS mechanism can be modeled as the bar-
and-joint framework involving seven vertices and 13 edges shown in
Fig. 1, where P7 corresponds to a point on the coupler link.

Given the point sequence Pi;Pj;Pk;Pl;Pm in some Euclidean
space, the Cayley–Menger determinant of the involved points is
defined as
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D i; j; k; l;mð Þ ¼ � 1

16
Di;j;k;l;m

�� ��

¼ � 1

16

0 1 1 1 1 1

1 0 Si;j Si;k Si;l Si;m

1 Si;j 0 Sj;k Sj;l Sj;m

1 Si;k Sj;k 0 Sk;l Sk;m

1 Si;l Sj;l Sk;l 0 Sl;m

1 Si;m Sj;m Sk;m Sl;m 0

���������������

���������������

(1)

where si;j ¼ d2
i;j ¼ kpj � pik

2
is the squared distance between Pi

and Pj, with pi being the position vector of point Pi in the global
reference frame. Equation (1) is a quadratic polynomial in sl;m that
via Laplace expansion can be expressed as

D i; j; k; l;mð Þ ¼ � 1

16
ai;j;k;l;ms2

l;m þ bi;j;k;l;msl;m þ ci;j;k;l;m

� �
(2)

with the coefficients ai;j;k;l;m, bi;j;k;l;m, and ci;j;k;l;m as given in
Appendix A. For the general point sequence Pi1

;Pi2 ;…;Pin , the

Cayley–Menger determinant gives ðn� 1Þ!2 times the squared

hypervolume of the simplex spanned by the points in En�1 [16].

Hence, D i; j; k; l;mð Þ ¼ 0 in E3.
According to the notation of Fig. 1, let f1 ¼ D 1; 2; 7; 3; 4ð Þ and

f2 ¼ D 5; 6; 7; 3; 4ð Þ. Then,

f1 ¼ a1;2;7;3;4s2
3;4 þ b1;2;7;3;4s3;4 þ c1;2;7;3;4 ¼ 0 and (3)

f2 ¼ a5;6;7;3;4s2
3;4 þ b5;6;7;3;4s3;4 þ c5;6;7;3;4 ¼ 0 (4)

since points P1;…;P7 are all embedded in E3. Now, by eliminat-
ing s3;4 in the system formed by Eqs. (3) and (4), we get

a2
1c2

2 � 2a1a2c1c2 � a1b1b2c2 þ a1b2
2c1 þ a2

2c2
1

þ a2b2
1c2 � a2b1b2c1 ¼ 0 (5)

where a1 ¼ a1;2;7;3;4, b1 ¼ b1;2;7;3;4, c1 ¼ c1;2;7;3;4, a2 ¼ a5;6;7;3;4,
b2 ¼ b5;6;7;3;4, and c2 ¼ c5;6;7;3;4. Equation (5) is a closure polyno-
mial of the RSRS mechanism in terms of the squared lengths of
the edges of its associated framework and the unknown squared
distances: s1;7; s2;7, and s3;7. This equation is solely satisfied in the
points in E3 where the spatial four-bar linkage can be assembled

with the corresponding bar dimensions and orientation of the
revolute pairs.

Finally, to derive the locus of point P7 with coordinates
p7 ¼ ðx; y; zÞ, the location of the ground link has to be defined.
Then, we can assume that P1 equals the origin of the global refer-
ence frame with P2 located in the positive side of the y� axis and
that P3 is located in the positive quadrant of the xy� plane. Thus,
we have p1 ¼ 0; 0; 0ð Þ, p2 ¼ 0; d1;2; 0

� �
, and

p3 ¼
2A1;2;3

d1;2
;
s1;2 � s2;3 þ s1;3

2d1;2
; 0

� �

where A1;2;3¼ 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2

2;3þ2s1;2s2;3þ2s1;3s2;3�s2
1;3þ2s1;3s1;2�s2

1;2

q
is the area of the triangle defined by points P1, P2, and P3.
Therefore,

s1;7 ¼ x2 þ y2 þ z2

s2;7 ¼ x2 þ y2 þ z2 � 2d1;2yþ s1;2; and

s3;7 ¼ x2 þ y2 þ z2 � 4A1;2;3

d1;2
x� s1;2 � s2;3 þ s1;3

d1;2
yþ s1;3

(6)

Substituting Eq. (6) into Eq. (5), fully expanding the result and
rearranging terms, we get

C x;y; zð Þ ¼def 1

16
s4

1;2A4
4;5;6 x2 þ z2
� �2

x2 þ y2 þ z2
� �4

þ 1

32
d7

1;2A2
4;5;6p3 x2 þ z2

� �
x2þ y2þ z2
� �3

þ 1

213
s3

1;2p6 x2þ y2þ z2
� �2þ 1

212
d5

1;2p7 x2 þ y2 þ z2
� �

þ 1

216
s2

1;2q8 þ
1

214
d3

1;2q7 þ
1

215
s1;2q6þ

1

214
d1;2q5

þ q4 þ
1

214
d1;2 s1;4 � s4;7

� �
q3þ

1

215
s1;2 s1;4� s4;7

� �2
q2

þ 1

26
d3

1;2A2
1;2;3A2

5;6;7q1þ
1

28
s2

1;2A4
5;6;7 s1;4 � s4;7

� �4
q0 ¼ 0

(7)

where pi and qi are homogeneous polynomials of the formP
aþbþc¼i aa;b;cxaybzc with at most

iþ 2

i

� �
monomials and aa;b;c

a polynomial in s1;2 ¼ d2
1;2; s1;3; s1;4; s2;3; s2;4; s3;5; s3;6;

Fig. 1 General RSRS spatial mechanism and its associated notation
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s4;5; s4;6; s4;7; s5;6; s5;7; and s6;7 that can be zero. Additionally,

A4;5;6 ¼ ð1=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2

5;6þ 2s5;6s4;6� s2
4;6þ 2s4;5s4;6þ 2s4;5s5;6� s2

4;5

q

and A5;6;7¼ð1=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2

5;6þ2s5;7s5;6�s2
5;7þ2s5;6s6;7þ2s6;7s5;7�s2

6;7

q
.

C x;y;zð Þ is an algebraic surface of degree 12 (a dodecic) that
corresponds to the coupler surface, traced by point P7, of the
general RSRS spatial mechanism. The expressions of the poly-
nomials pi and qi cannot be included here due to space limita-
tions. However, they can be easily reproduced using a computer
algebra system following the steps given above and the inter-
ested reader can download the full expression of C x;y;zð Þ from
the website.2 Examples of the RSRS dodecic are depicted in
Fig. 2.

3 The Planar Four-Bar Sextic

According to the notation of Fig. 1, if

(i) the axes of the revolute pairs, defined by points P1 and
P2, and P5 and P6, respectively, are parallel and

(ii) the points P1, P3, P4, P6, and P7 lie on the xz� plane,

the RSRS spatial mechanism reduces to a planar four-bar linkage,
namely, the kinematic chain constituted by the revolute centers
P1, P3, P4, and P6 with the triangle formed by P4, P6, and P7

defining the coupler link. It is well known that the coupler equa-
tion of a planar four-bar linkage, i.e., the curve traced by point
P7—is a curve of order six [1]. Next we show how such sextic can
be obtained from C x; y; zð Þ, the RSRS dodecic presented in
Eq. (7).

Using projective geometry arguments, condition (i) implies that
the axes of the revolute pairs meet at a point at infinity, say P1.
Hence, P2 ¼ P5 ¼ P1, that is,

d1;2 ¼ d2;3 ¼ d2;4 ¼ d3;5 ¼ d4;5 ¼ d5;6 ¼ d5;7 ¼ d (8)

with d > 0; d!1. Moreover, condition (ii) implies that the
motion of the mechanism is restricted to the surface

y ¼ 0 (9)

After substituting Eqs. (8) and (9) into Eq. (7), the RSRS cou-
pler surface reduces to a curve that can be rewritten as a radical
equation in d. Explicitly,

C x; y; zð Þ
y ¼ 0; s1;2 ¼ d2

s2;3 ¼ d2; s2;4 ¼ d2

s3;5 ¼ d2; s4;5 ¼ d2

s5;6 ¼ d2; s5;7 ¼ d2

2
66664

¼
c12 x; zð Þd12 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1;3 4d2 � s1;3

� �q
c11 x; zð Þd11

þ c10 x; zð Þd10 þ � � � þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1;3 4d2 � s1;3

� �q
c1 x; zð Þd

þ c0 x; zð Þ ¼ 0

(10)

Now, factoring out d12 in the above expression, we get

d12 c12 x; zð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1;3 4d2 � s1;3

� �q
c11 x; zð Þ

d
þ

0
@ c10 x; zð Þ

d2
þ � � �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1;3 4d2 � s1;3

� �q
c1 x; zð Þ

d11
þ c0 x; zð Þ

d12

1
A ¼ 0 (11)

Then, the curve equation can be expressed as

c12 x; zð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1;3 4d2 � s1;3

� �q
d

c11 x; zð Þ þ 1

d2
c10 x; zð Þ þ…

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1;3 4d2 � s1;3

� �q
d11

c1 x; zð Þ þ 1

d12
c0 x; zð Þ

¼ 0 (12)

Fig. 2 Examples of the RSRS dodecic: (a) s1;2 5 4; s1;3 5 65; s1;4 5 17; s2;3 5 65; s2;4 5 21; s3;5 5 30;s3;6 5 19;
s4;5 5 66;s4;6 5 41; s4;7 5 42;s5;6 5 9; s5;7 5 36; s6;7 5 49, (b) s1;2 5 4; s1;3 5 73; s1;4 5 21;s2;3 5 65;s2;4 5 33;
s3;5 5 53;s3;6 5 35;s4;5 5 69; s4;6 5 37; s4;7 5 33; s5;6 5 14; s5;7 5 62; s6;7 5 66, and (c) s1;2 5 4;s1;3 5 50;s1;4 5 25;
s2;3 5 50;s2;4 5 29;s3;5 5 21; s3;6 5 34; s4;5 5 36; s4;6 5 21; s4;7 5 22; s5;6 5 9; s5;7 5 22;s6;7 5 21

2http://www.robot-mechanics.com/rsrsmechanism.html
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Since d!1 and

lim
d!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1;3 4d2 � s1;3

� �q
dn ¼

2
ffiffiffiffiffiffiffi
s1;3
p

lim
d!1

dn�1
¼ 2d1;3; if n ¼ 1

0; if n > 1



(13)

it is concluded that the curve equation traced by point P7 is

c12 x; zð Þ þ 2d1;3c11 x; zð Þ ¼ 0 (14)

This curve is algebraic of order twelve and factorizes as

X x; zð Þ ¼def
c12 x; zð Þ þ 2d1;3c11 x; zð Þ

¼ 1

256
wðx; zÞ � /ðx; zÞA4;6;7

� �
w x; zð Þ þ /ðx; zÞA4;6;7

� �
¼ 0

(15)

where A4;6;7¼ð1=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s2

6;7þ2s4;6s6;7þ2s6;7s4;7�s2
4;7þ2s4;7s4;6�s2

4;6

q
with wðx;zÞ and /ðx;zÞ as given in Appendix B.

It can be straightforwardly verified that the expression deduced
by S. Roberts for the coupler curve of the planar four-bar linkage
[17] (a succinct reproduction of this deduction can be found in
Ref. [1]) is equivalent to wðx; zÞ � /ðx; zÞA4;6;7 ¼ 0. This equation
corresponds to the coupler curve of the linkage in the case that, in
the triangle associated to the coupler link, P7 is located to the left
of the vector defined by points P4 and P6. The equation
w x; zð Þ þ /ðx; zÞA4;6;7 ¼ 0 corresponds to the coupler curve in the
case P7 is located to the right of such vector.

From the topology of the RSRS mechanism, according to the
notation of Fig. 1, it can seem that a valid configuration of the
linkage depends on the orientation of the tetrahedrons P1P2P3P4

and P4P5P6P7 thus making the condition of Eq. (5) necessary but
not sufficient. Nevertheless, this is not the case. Note that the tet-
rahedron P1P2P3P4 is not a geometric parameter of the RSRS
linkage. Then, an RSRS mechanism may have valid configura-
tions with positive and negative orientations of such tetrahedron.
In a planar four-bar linkage, this is equivalent to the case of the
triangle formed by the crank and the ground link in a given
configuration.

The case of the tetrahedron P4P5P6P7 is different because it
defines the coupler link of the mechanism, being evidently a geo-
metric parameter of the linkage. In this circumstance, observe that
at any given configuration of an RSRS mechanism with, for
instance, a positive-oriented coupler link tetrahedron, a second
valid configuration with opposite orientation can always be
obtained since the points P5 and P6 can be mirrored with respect
to the plane defined by the points P3, P4, and P7. In other words, a
valid configuration of an RSRS mechanism does not depend on
the orientation of the coupler link. However, note that this is not
the case in a planar four-bar linkage; since, in general, the coupler
link cannot be reflected with respect to a fixed reference at a par-
ticular configuration. This is indeed the reason why Eq. (15) fac-
torizes in two factors of degree six.

4 Conclusion

The derivation of the general implicit equation of the coupler
surface of the RSRS spatial mechanism has been presented and its
full expression has been made publicly available for those inter-
ested in its further study. Despite that this closed chain linkage
belongs to the family of four-bar spatial mechanisms, whose
members are the simplest movable closed chains and have been
the object of extensive analyses over the years, the kinematics
study of the RSRS topology has certainly received little attention.
Additionally, it has been also shown how the celebrated sextic
curve of the planar four-bar linkage can be obtained from the
derived RSRS coupler expression. To the authors’ knowledge, all
these results are original contributions to theoretical kinematics of

mechanisms; they are obtained thanks to a novel distance-based
technique introduced herein to compute implicit coupler equations
of spatial linkages. Future work on the topic could focus on deter-
mining algebraic, geometric, and kinematic properties of the
RSRS mechanism from its coupler equation as well as on explor-
ing the application of the presented technique to the unification of
the computation of coupler surfaces of 2-DOF four-bar spatial
mechanisms.
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Appendix A

This appendix presents the expressions of the coefficients
ai;j;k;l;m, bi;j;k;l;m, and ci;j;k;l;m of Eq. (2). They can be straightfor-
wardly obtained from iteratively developing D i; j; k; l;mð Þ
¼ �ð1=16Þ Di;j;k;l;m

�� �� according to Laplace along the last row. Thus,

ai;j;k;l;m ¼ �M65;55; (A1)

bi;j;k;l;m ¼ �M61;55 þ si;mM62;55 � sj;mM63;55 þ sk;mM64;55

�M65;51 þ si;lM65;52 � sj;lM65;53 þ sk;lM65;54 (A2)

ci;j;k;l;m ¼ �si;lM61;51 þ sj;lM61;52 � sk;lM61;53

þ si;m M62;51 � sj;lM62;52 þ sk;lM62;53

� �
� sj;m M63;51 � si;lM63;52 þ sk;lM63;53

� �
þ sk;m M64;51 � si;lM64;52 þ sj;lM64;53

� �
(A3)

where Mop;qr is the ðq; rÞ minor of the submatrix constructed by
removing row o and column p from Di;j;k;l;m. For instance,

M65;55 ¼

0 1 1 1

1 0 si;j si;k

1 si;j 0 sj;k

1 si;k sj;k 0

��������

��������

Appendix B

This appendix presents the expressions of the polynomials
wðx; zÞ and /ðx; zÞ of Eq. (15)

w x; zð Þ ¼ s1;3 x2 þ z2
� �3�d1;3 s4;7 þ 3s4;6 � s6;7

� �
x x2 þ z2
� �2

þ r2 x2 þ z2
� �

� d1;3

�
� 3s4;7s3;6 � s1;4s6;7 þ s6;7s3;6

� s3;6s4;6 � s4;7s4;6 � 3s4;6s1;4 þ 3s1;4s4;7 þ s4;6s1;3

� 3s4;6s6;7 � s6;7s1;3 þ 2s2
4;6 þ 3s4;7s1;3

þ s2
6;7 � s2

4;7

�
x x2 þ z2
� �

þ c1x2 þ c2z2

þ d1;3 s1;4 � s4;7

� �
c3xþ s1;3s6;7 s1;4 � s4;7

� �2
(B1)

/ x; zð Þ ¼ �4d1;3z x2 þ z2
� �2þ 8s1;3xz x2 þ z2

� �
� 4d1;3 2s4;6 � s6;7 þ s1;3 � s3;6 � s4;7 � s1;4

� �
z x2 þ z2
� �

� 8s1;3 s6;7 þ s1;4 � s4;6

� �
xz

þ 4d1;3 s1;3 þ s6;7 � s3;6

� �
s1;4 � s4;7

� �
z (B2)

with

r2 ¼
�
� s4;7s3;6 � s4;7s4;6 � s3;6s4;6 þ 3s4;6s1;3 � 2s6;7s1;3

� s1;4s6;7 þ s1;4s4;7 � s4;6s6;7 þ s2
4;6 � s4;6s1;4

þ 3s4;7s1;3 þ s6;7s3;6Þx2 þ ð�s4;7s3;6 � s4;6s6;7 � s1;4s6;7

þ s4;7s1;3 � s4;7s4;6 � s3;6s4;6 þ s4;6s1;3 þ s1;4s4;7

þ s2
4;6 � s4;6s1;4 þ s6;7s3;6

�
z2
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c1 ¼ s2
1;4s6;7 þ s2

6;7s1;4 þ s1;3s2
6;7 þ s4;7s4;6s1;3 � 2s2

4;7s1;3

� 3s4;6s1;4s1;3 � s1;4s4;7s6;7 þ s4;6s6;7s4;7 þ s1;4s1;3s6;7

þ s4;7s2
1;3 þ s4;7s2

3;6 � 2s4;6s6;7s1;3 � s4;7s1;3s6;7 � s4;7s3;6s4;6

� 2s4;7s1;3s3;6 � s1;4s6;7s3;6 � s1;4s4;7s3;6 � s6;7s4;7s3;6

þ s2
4;7s3;6 þ 3s1;4s1;3s4;7 � s1;4s6;7s4;6 þ s2

4;6s1;3 þ s4;6s1;4s3;6

c2 ¼ �2s4;7s1;3s3;6 � s1;4s6;7s4;6 þ s4;7s2
1;3 � s1;3s2

6;7 þ s4;7s1;3s6;7

� s1;4s4;7s6;7 þ s2
6;7s1;4 þ s4;7s2

3;6 þ s4;6s6;7s4;7 � s1;4s6;7s3;6

þ s2
4;7s3;6 � s1;4s4;7s3;6 � 2s2

4;7s1;3 � s6;7s4;7s3;6 � s4;7s3;6s4;6

� s1;4s1;3s6;7 þ 3s4;7s4;6s1;3 þ s1;4s1;3s4;7 þ s4;6s1;4s3;6

þ 2s4;6s6;7s1;3 þ s2
1;4s6;7 � s2

4;6s1;3 � s4;6s1;4s1;3

c3 ¼ �2s1;4s6;7 þ s4;6s6;7 þ s6;7s3;6 � s3;6s4;6 � s4;7s1;3

þ s6;7s4;7 � s6;7s1;3 þ s4;6s1;3 þ s4;7s3;6 � s2
6;7
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