
 

 
Fig. 1. During precision manipulation, a grasped object is repositioned 
within the hand workspace without breaking or changing contact. This 
task is classified in the hand-centric taxonomy of manipulation as 
within-hand prehensile manipulation with no motion at contact. 

 

Abstract— In robot hands, precision manipulation, defined 
as repositioning of a grasped object within the hand workspace 
without breaking or changing contact, is a fundamental 
operation for the accomplishment of highly dexterous 
manipulation tasks. This paper presents a method to 
characterize the precision manipulation capabilities of a given 
robot hand regardless of the particularities of the grasped 
object. The technique allows determining the composition of 
the displacement manifold (finite motion) of the grasped object 
relative to the palm of the robot hand and defining the 
displacements that can actually be controlled by the hand 
actuators without depending on external factors to the hand. 
The approach is based on a reduction of the graph of kinematic 
constraints related to the hand-object system through proper 
manipulations of the continuous subgroups of displacements 
generated by the hand joints and contacts. The proposed 
method is demonstrated through three detailed and 
constructive examples of common architectures of simplified 
multi-fingered hands. 

I. INTRODUCTION 

In the context of robot hands, dexterous manipulation can 
be broadly defined as the purposeful movement of an object 
within the hand by the relative movement of some fingers 
respect to the palm [1-3]. The importance of such kind of 
manipulation for the successful deployment of robots in real-
world tasks is evident. However, the development of 
mechanical systems that reliably perform autonomous 
dexterous manipulations outside controlled environments is 
still an open problem [4]. While good progress is being 
made (e.g. [5-7]), much work remains to be done in both 
hand design and control schemes to implement dexterous 
manipulation movements. 

In this work, we present a method to analyze the 
capabilities of robot hands for performing dexterous 
manipulation; the technique is useful for both of the 
described aspects for improving robot hands. In particular, 
we focus on manipulation activities in which a grasped 
object is repositioned within the hand without breaking or 
changing contact. These kinds of tasks are classified as 
within-hand prehensile manipulation with no motion at 
contact in the taxonomy of manipulation presented in [1]. 
For simplicity, we refer to this type of dexterous 
manipulation task as precision manipulation (Fig. 1), 
although certainly the concept has been used for a broader 
class of manipulations in the domain of robot hands [8, 9]. 
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Examples of precision manipulation tasks include writing, 
inserting a key into a lock, and using scissors. 

The aim of the proposed approach is to determine a 
mathematical characterization of the precision manipulation 
capabilities of a given robot hand. Such characterization is 
performed by determining the feasible movements to 
reposition a grasped object within the hand workspace 
without breaking or changing contact. This feasibility of 
motion refers to the composition of the displacement 
manifold (finite motion) of the object relative to the palm of 
the robot hand. A second related purpose is to define which 
of these possible displacements can actually be controlled by 
the hand actuators without depending on external factors to 
the hand. Our interest is in general displacement 
characteristics regardless the particularities of the grasped 
object –the instantaneous (or local) motion features and 
limitations resulting from, for instance, the particular 
dimensions of the hand-object system or the friction 
conditions are not considered here. This strategy of analysis 
is based on the Hervé’s group-theoretic approach for the 
kinematics of mechanisms [10], a mathematical tool that has 
excelled in the type synthesis of parallel platforms [11-13]. 
Approaches based on screw theory could also be taken [14, 
15]; but special attention should be paid to identifying the 
finite motion of the resulting instantaneous analysis, a step 
that could be difficult for some robot hand architectures. 

This paper is organized as follows. Section II introduces 
the concept of the continuous group of displacements and its 
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TABLE 1 
SUBGROUPS OF DISPLACEMENTS 

 

Subgroup Kinematic 
pair Description 

ሼ۷ሽ  

The identity displacement. Rigid 
connection between bodies, no 
relative motion (0 degrees of 
freedom) 

ሼ܀ሺܰ,  ሻሽ Revolute࢛
joint 

Rotation about the axis determined 
by the unit vector ࢛ and point ܰ (1 
degree of freedom) 

ሼ܂ሺ࢜ሻሽ Prismatic 
joint 

Translation parallel to the unit vector 
 (degree of freedom 1) ࢜

ሼ۵ሺ࢜ሻሽ Planar joint 

Planar gliding motion determined by 
the unit normal vector 3) ࢜ degrees 
of freedom) 

ሼ܁ሺܰሻሽ Spherical 
joint 

Spherical rotation about a point ܰ (3 
degrees of freedom) 

subgroups. Section III discusses kinematic constraints as 
subsets of the continuous group of displacements, showing 
the operations to properly reduce a type of graph of 
kinematic constraints for computing the possible relative 
motion between some links of its associated kinematic chain. 
In section IV, the introduced ideas are demonstrated through 
three detailed and constructive examples of common 
architectures of simplified multi-fingered hands, with the 
purpose of highlighting its potential and enlightening its use 
in other finger/palm layouts. Finally, we conclude and 
present directions for future work in section V.   

II. THE CONTINUOUS GROUP OF DISPLACEMENTS 

A group is basically a set combined with an operation, 
usually called multiplication or group operation, in which its 
elements satisfy four fundamental properties, namely: 
closure, associativity, the existence of identity, and the 
existence of inverses. A subgroup is a subset of a group that 
is itself a group under the same operation. In the context of 
robotics, a relevant example of group is the set of all the 
isometries of Թଷ (the three dimensional Euclidean space) 
that maintain handedness –i.e. the transformations that 
preserve a metric, excluding reflections– combined with the 
composition operation, denoted herein by the interpunct 
symbol ሺ	∙	ሻ. This group is usually called the proper 
Euclidean group [16].  

It is known that such group of rigid motions is also a Lie 
group, that is, a continuous group of transformations [10, 
17]. Henceforth, we denote this group as the continuous 
group of displacements, ሼ۲ሽ, that corresponds to a 6-
dimensional manifold, or 6-manifold. Hence, six parameters, 
or degrees of freedom, are required to define the location of 
a free body in space. In general, any motion of a rigid body 
can be described by a subset of ሼ۲ሽ, which may be either a 
subgroup or just a submanifold. It is important to clarify 
that, in any Cartesian reference frame, the composition of 
rigid motions (proper isometries) can be represented by a 
matrix product; the corresponding continuous group (Lie 

group) of matrices is normally denoted as SE(3), the special 
Euclidean group acting on Թଷ  [18, 19].  

In this work, we build from the ideas of Hervé [10], who 
was, to the authors’ knowledge,  the first in proposing a 
group-theoretic approach for the kinematics of mechanisms 
and robotic systems. In his seminal paper, Hervé presented a 
detailed analysis of the subgroups of ሼ۲ሽ. An example of 
these subgroups is ሼ܀ሺܰ,  ሻሽ, the subgroup of rotations࢛
around a fixed axis ሺܰ,  ,࢛ ሻ, that is defined by a unit vector࢛
parallel to the axis, and a point ܰ that belongs to it. The 
significance for robotics of these concepts lies in the fact 
that the rigid connection between two bodies and the relative 
motion allowed by any lower kinematic pair constitute 
subgroups of the continuous group of displacements. Table I 
presents a description of some of the subgroups of ሼ۲ሽ, with 
their associated lower kinematic pair, that are relevant for 
our discussion. For a complete list of subgroups, the 
interested reader is addressed to [20]. 

From the subgroups of the continuous group of 
displacements presented in Table I, ሼ܀ሺܰ,࢛ሻሽ and ሼ܂ሺ࢜ሻሽ 
are the more fundamental because through their composition 
the other subgroups are formed. In this way, by a proper use 
of the group properties, these subgroups ሺሼ۵ሺ࢜ሻሽ 
and	ሼ܁ሺܰሻሽሻ can be written in different equivalent ways. For 
instance, ሼ۵ሺ࢜ሻሽ, the subgroup of planar gliding motions is 
generated from the composition of ሼ܂ሺ࢜ሻሽ, ሼ܂ሺ࢝ሻሽ, and 
ሼ܀ሺܰ,  ٣ሻ to the plane) is perpendicular ࢛ ሻሽ, provided࢛
formed by vectors ࢜ and ࢝. That is, ሼ۵ሺ࢜ሻሽ ൌ ሼ܂ሺ࢜ሻሽ ∙
ሼ܂ሺ࢝ሻሽ ∙ ሼ܀ሺܰ, ,ሺܰ܀ሻሽ. Since ሼ࢛ ሻሽ࢛ ∙ ሼ܀ሺܰ,࢛ሻሽ ൌ
ሼ܀ሺܰ, ,ݔ∀ሺ			ሻሽ࢛ ሻሽ࢛,ሺܰ܀ሼ∋ݔ ∙ ሼ܀ሺܰ, ,ሻሽ࢛ ,ሺܰ܀ሼ∋ݔ  ሻሽሻ࢛
and ሼ܂ሺ࢝ሻሽ ∙ ሼ܀ሺܰ,࢛ሻሽ = ሼ܀ሺܱ, ࢛ ሻሽ, with࢛ ٣ ܱ and ࢝ ്
ܰ, we have 

 

ሼ۵ሺ࢜ሻሽ ൌ ሼ܂ሺ࢜ሻሽ ∙ ሼ܂ሺ࢝ሻሽ ∙ ሼ܀ሺܰ,࢛ሻሽ						  
ൌ ሼ܂ሺ࢜ሻሽ ∙ ሼ܂ሺ࢝ሻሽ ∙ ሼ܀ሺܰ,࢛ሻሽ ∙ ሼ܀ሺܰ,࢛ሻሽ
ൌ ሼ܂ሺ࢜ሻሽ ∙ ሼ܀ሺܱ,࢛ሻሽ ∙ ሼ܀ሺܰ,࢛ሻሽ		
ൌ ሼ܀ሺܲ,࢛ሻሽ ∙ ሼ܀ሺܱ, ሻሽ࢛ ∙ ሼ܀ሺܰ, .ሻሽ࢛      

(1) 

 

Other representations of the subgroup ሼ۵ሺ࢜ሻሽ can be derived 
following an equivalent procedure. For the case of the 
subgroup ሼ܁ሺܰሻሽ, using the property of closure, it can be 
straightforwardly proven that ሼ܁ሺܰሻሽ ൌ ሼ܀ሺܰ, ሻሽ࢏ ∙
ሼ܀ሺܰ, ሻሽ࢐ ∙ ሼ܀ሺܰ,࢑ሻሽ provided that ࢐ ,࢏, and ࢑ are linearly 
independent vectors [19].   

III. GRAPHS OF KINEMATIC CONSTRAINTS 

Given two bodies ݉ and ࣿ in a Euclidean space, a 
kinematic constraint can be defined as the subset of the 
continuous group of displacements associated to the allowed 
motion of the body ݉ relative to body ࣿ. Thus, for example, 
the kinematic constraint of a free body in Թଷ is ሼ۲ሽ and that 
of a cube constrained to move on a planar surface of normal 
 with a constrained ݋ ሻሽ. If there exists a third body࢛is ሼ۵ሺ ࢛
motion relative to the bodies ݉	and ࣿ, we can construct a 
directed graph of three nodes and three directed edges that 
describe the restrictions of motion in the system. The nodes 
correspond to the bodies and the edges to the kinematic 
constraints between them. Such graph is called a graph of 
kinematic constraints [21, 22].             
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Fig. 2. Basic operations of reduction in graphs of kinematic 
constraints: serial reduction (a) and parallel reduction (b). 

A mechanism, or kinematic chain, is a system of rigid 
bodies (links) interconnected by kinematic pairs (joints). A 
kinematic pair is basically a connection between links that 
constraints their relative motions –in this work we only 
consider lower pairs. Thus, a kinematic chain of L links and J 
joints can be naturally represented as a graph of kinematic 
constraints of L nodes and J edges. The fundamental 
geometric problem in a kinematic chain is to determine the 
possible relative motion of a link i respect to a link	j. In 
terms of a graph of kinematic constraints, this problem 
consists in finding a reduction of two nodes and one edge of 
the original graph representing the kinematic chain, that is, 
finding a single equivalent kinematic constraint between the 
nodes associated to links i and	j.           

In order to reduce a graph of kinematic constraints for 
obtaining the equivalent constraint between two nodes, two 
operations can be defined [10], namely: i) serial reduction 
and ii) parallel reduction. The operation of serial reduction 
can be applied to a set of nodes that are in series. The 
reduction is performed by computing the composition of the 
kinematic constraints involved in the nodes. Thus, if the 
series has N nodes (Nെ 1 edges), we get two nodes and a 
single edge after the reduction [Fig. 2(a)]. The operation of 
parallel reduction can be applied to any two nodes that are 
connected by at least two edges. The reduction is performed 
by computing the intersection of the kinematic constraints 
associated to two selected edges. If the two involved nodes 
have E edges, after the reduction we get two nodes and 
E െ 1 edges [Fig. 2(b)]. 

The intersection of two kinematic constraints, that is, two 
subsets of the continuous group of displacements is basically 
the intersection as in set theory [19], taking into account that 
the intersection of some subgroups of ሼ۲ሽ generates a 
subgroup besides the identity displacement. For instance, the 
intersection ሺ∩ሻ between two planar gliding motions ሼ۵ሺ࢛ሻሽ 
and ሼ۵ሺ࢜ሻሽ is ሼ܂ሺ࢝ሻሽ, where ࢝ is a unit vector in the 

direction of the intersection of the two planes. Moreover, 
ሼ۵ሺ࢛ሻሽ ∩ ሼ܁ሺܰሻሽ ൌ ሼ܀ሺܰ, ሺܱሻሽ܁ሻሽ and ሼ࢛ ∩ ሼ܁ሺܲሻሽ ൌ
ሼ܀ሺܱ, ෞሻሽ࢖࢕ ൌ ሼ܀ሺܲ, ෞ࢖࢕ ෞሻሽ with࢖࢕ ൌ ܱܲሬሬሬሬሬԦ ฮܱܲሬሬሬሬሬԦฮൗ . The reader 
is advised that these operations can be deduced from the 
general intersection of the manifolds related to the 
subgroups – e.g. sphere-sphere intersection in the case of 
ሼ܁ሺܱሻሽ and ሼ܁ሺܲሻሽ. A complete list of non-identity 
intersections between subgroups of displacements can be 
found in [14](Table C.3). 

It has been showed that it is not always possible to reduce 
a graph of kinematic constraints to a single edge connecting 
two nodes by simply using serial and parallel reductions 
[22]. However, in the case of kinematic chains where two 
links are connected through one or more sub-kinematic 
chains with serially connected joints, it can be readily 
proven that this reduction always exists for such two links. 
This is the case of the kinematic chains resulting from the 
hand-object system in precision manipulation tasks of robot 
hands composed of serial fingers. 

IV. PRECISION MANIPULATION ANALYSIS   

In this section, we apply the introduced ideas about the 
continuous group of displacements and the operations of 
reduction in graphs of kinematic constraints to the precision 
manipulation analysis of robot hands. The objective of this 
study is, first, to define the feasible movements to reposition 
a grasped object within the hand workspace without 
breaking or changing contact, a task we refer to as “precision 
manipulation” and, second, to determine which of these 
possible displacements are controllable. By feasible 
movements we mean the displacement manifold (finite 
motion) of the object relative to the base or palm of the robot 
hand. Controllable movements refer to the subset of these 
feasible displacements that can actually be controlled by the 
hand actuators, as opposed to those that cannot, such as 
motion out of the plane of a two-fingered gripper.  

This approach is based on a group-theoretic analysis of 
the kinematic constraints associated to the hand-object 
system. In this study, the contacts between the fingertips and 
the object are modeled as lower kinematic pairs, specifically, 
as spherical joints. Other more complex kinematic models of 
surface-surface contacts that are based on kinematic chains 
[23], and thus suitable for the presented method, are left for 
further research. We are interested in general displacement 
characteristics –the instantaneous (or local) motion features 
and limitations resulting from, for instance, the particular 
dimensions of the hand-object system or the friction 
conditions of the contacts, are not considered. The result of 
the proposed method is a mathematical characterization of 
the general within-hand manipulation capabilities of the 
hand regardless of the particularities of the grasped object. 

In what follows, as examples of application of the 
proposed approach, we present the precision manipulation 
analysis of three architectures of simplified multi-fingered 
hands, namely, a 2-fingered hand with RR opposed fingers 
(2F-2RR), a 3-fingered hand with two RR opposed fingers 
and an opposable RR thumb (3F-3RR), and a 3-fingered 
hand with two UR fingers and an opposable RR thumb (3F-
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Fig. 3. Top: A 2F-2RR robot hand grasping an object with the notation 
used for the analysis of its within-hand prehensile manipulation 
capabilities (with no motion at contact). Bottom: The graph of 
kinematic constraints of the hand-object system for the 2F-2RR hand 
(a) and its corresponding reduction (b, c) –see text for details.

2UR1RR). In this description, R and U stand for revolute 
pair and universal joint, respectively. 

A. Example 1: 2-Fingered Hand with Opposed Fingers 
(2F-2RR) 

Figure 3(top) shows a 2F-2RR hand grasping, with its 
fingertips, a general object –represented as an egg-shaped 
body in the image. This hand is composed of two identical 
fingers with two links (proximal and distal) arranged in an 
opposed configuration. In each finger, the proximal link is 
connected to the palm through a revolute joint, which 
determines the motion plane of the finger. The proximal and 
distal links are connected by another revolute joint whose 
axis is parallel to the proximal one. The motion plane of 
both fingers is parallel. This finger/palm layout has been 
normally used for power grasping (e.g. [24]); but, despite its 
simple architecture, it has been shown that this hand can be 
used for complex manipulation operations such as picking 
up small objects from a flat surface (flip-and-pinch tasks) 
[25]. 

During tasks of precision manipulation, with the 
kinematic model of contact points as spherical pairs, the 
hand-object system of the 2F-2RR hand is equivalent to a 
closed kinematic chain composed of six links with two 
revolute-revolute-spherical serial limbs that connect the 
palm of the robot hand, or base, to the grasped object. The 
mobility of such closed kinematic chain (6 links, 6 joints in 
Թଷ with a total number of 10 degrees of freedom in the 
joints) is, applying the Hunt’s form of the Chebychev–
Grübler–Kutzbach criterion [26], 4. This implies that the 
feasible movements of a grasped object respect to the base 
correspond to a 4-manifold (embedded in	Թଷ), in other 
words, the object has 4 degrees of freedom. The questions 
are: how is the composition of the displacement related to 
these degrees of freedom? What are the involved axes in 
such motion? And, can all these movements be controlled by 
the hand actuators? Next, we present how to apply the 

continuous group of displacements method to resolve these 
relevant questions.  

According to the notation of Fig. 3(top), for the left finger, 
the axis of the ground revolute joint (or proximal joint) is 
determined by a unit vector ࢛ଵ, that is parallel to the ݕ-axis 
of the palm’s reference frame (࢛ଵ ∥  and any point, say ,(࢟
 .ଵ, that belongs to the line defined by the rotational axisܣ
This kinematic pair corresponds to a kinematic constraint 
that forms the subgroup of displacements ሼ܀ሺܣଵ,࢛ଵሻሽ ൌ
ሼ܀ሺܣଵ,࢟ሻሽ that restrict the movement between the proximal 
link and the palm. Similarly, for the case of the distal joint, 
the generated subgroup is ሼ܀ሺܤଵ, ,ଵܤሺ܀ଵሻሽ=ሼ࢜  ,ሻሽ. Finally࢟
assuming that the contact point between the fingertip and the 
object is ܥଵ, the motion constraint between the two bodies 
generates the subgroup ሼ܁ሺܥଵሻሽ, that results from the 
spherical joint model of contacts. By replicating this analysis 
in the right finger, we can construct the graph of kinematic 
constraints of this hand-object system as depicted in Fig. 
3(bottom[a]).  

  In order to obtain a mathematical characterization of the 
displacement manifold of the grasped object relative to the 
palm of the 2F-2RR hand, we employ the operations of 
reduction, introduced in section III, to the corresponding 
graph of kinematic constraints. First, using the notation of 
Fig. 3(bottom[a]), we apply serial reduction to the nodes 1, 
2, 3, and 6. Then, we get,    

 

ଵ࣭ ൌ ሼ܀ሺܣଵ,࢟ሻሽ ∙ ሼ܀ሺܤଵ, ሻሽ࢟ ∙ ሼ܁ሺܥଵሻሽ, (2) 
 

where ଵ࣭ is a kinematic constraint defined as the subset of 
the group of rigid-body displacements resulting from the 
composition operation of the subgroups involved in the 
related nodes. Now, since the subgroup ሼ܀ሺܥଵ,  ሻሽ is a࢟
proper subset of the subgroup ሼ܁ሺܥଵሻሽ, that is, ሼ܀ሺܥଵ,࢟ሻሽ ⊂
ሼ܁ሺܥଵሻሽ, then, by the property of closure, we get ሼ܀ሺܥଵ,࢟ሻሽ ∙
ሼ܁ሺܥଵሻሽ ൌ ሼ܁ሺܥଵሻሽ			ሺ∀ݔ, ,ଵܥሺ܀ሼ∋ݔ ሻሽ࢟ ∙ ሼ܁ሺܥଵሻሽ,
  ,ଵሻሽሻ. Henceܥሺ܁ሼ∋ݔ

 

ଵ࣭ ൌ ሼ܀ሺܣଵ,࢟ሻሽ ∙ ሼ܀ሺܤଵ, ሻሽ࢟ ∙ ሼ܀ሺܥଵ,࢟ሻሽ ∙ ሼ܁ሺܥଵሻሽ
ൌ ሼ۵ሺ࢟ሻሽ ∙ ሼ܁ሺܥଵሻሽ. 																													  

(3) 
 

Note that the kinematic constraint ଵ࣭ is a subset, but not a 
subgroup, of ሼ۲ሽ. Such subset corresponds to a 6-manifold.  

Applying the same serial reduction to the nodes 1, 4, 5, 
and 6, we get (with ࢛ଶ ∥ ଶ࢜ ∥  (࢟

 

࣭ଶ ൌ ሼ۵ሺ࢟ሻሽ ∙ ሼ܁ሺܥଶሻሽ.			 (4) 
 

Thus, after the application of the two serial reductions to the 
original graph of kinematic constraints, a reduced graph of 
two nodes with two edges is obtained, see Fig. 3(bottom[b]). 
The nodes of such graph are the base, the palm of the robot 
hand, and the grasped object, both connected by the 
kinematic constraints ଵ࣭ and ࣭ଶ. 

The final operation in the graph of kinematic constraints 
to get the subset of displacements of the grasped object, that 
is, to reduce the graph to two nodes with a single edge, is a 
parallel reduction applied to the kinematic constraints ଵ࣭ and 
࣭ଶ [Fig. 3(bottom[c])]. Then, we have 

   

ଵ࣪ ൌ ଵ࣭ ∩ ࣭ଶ 																												
ൌ ሼ۵ሺ࢟ሻሽ ∙ ሼ܁ሺܥଵሻሽ ∩	ሼ۵ሺ࢟ሻሽ ∙ ሼ܁ሺܥଶሻሽ
ൌ ሼ۵ሺ࢟ሻሽ ∙ ሺሼ܁ሺܥଵሻሽ ∩ ሼ܁ሺܥଶሻሽሻ										

(5) 
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Fig. 4. Top: A 3F-3RR robot hand grasping an object with the notation 
used for the analysis of its precision manipulation capabilities. 
Bottom: The graph of kinematic constraints of the hand-object system 
for the 3F-3RR hand (a) and its corresponding reduction (b, c, d) –see 
text for details. 

ൌ ሼ۵ሺ࢟ሻሽ ∙ ሼ܀ሺܥଵ,  																									.ଶෟሻሽࢉଵࢉ
 

The above equation implies that the feasible movements of a 
grasped object with a 2F-2RR hand are the composition of a 
planar gliding displacement parallel to the ݖݔ-plane (two 
translations and one rotation about the normal to the plane) 
and a rotation about the axis defined by the contact points 
 ଶ. Note that, as required, the obtained finiteܥ and	ଵܥ
displacement is a 4-manifold. 

For determining if the four degrees of freedom of the 
grasped object can be controlled by the hand actuators, we 
just have to lock the input joints in the above analysis, that 
is, to equal all the controlled joints to ሼ۷ሽ, the identity 
displacement. If the resulting finite displacement from this 
process is the identity	ሼ۷ሽ, then the actuators can control the 
different degrees of freedom because of the system becomes 
rigid. In a 2F-2RR hand usually all four joints are actuated –
i.e. ሼ܀ሺܣଵ, ሻሽ࢟ ൌ ሼ܀ሺܣଶ, ሻሽ࢟ ൌ ሼ܀ሺܤଵ, ሻሽ࢟ ൌ ሼ܀ሺܤଶ, ሻሽ࢟ ൌ
ሼ۷ሽ in the previous analysis. It can be verified that, in such a 
case, the obtained subset of ሼ۲ሽ following the explained 

procedure is ሼ܀ሺܥଵ,  ଶෟሻሽ. In consequence, only 3 of the 4ࢉଵࢉ
degrees of freedom of the grasped object are controllable. 
The rotation about the axis defined by the contact points 
 ଶ cannot be controlled by the actuators and dependsܥ and	ଵܥ
on other external factors, such as contact friction and 
mass/disturbance forces. 

B. Example 2: 3-Fingered Hand with Opposed Fingers and 
Opposable Thumb (3F-3RR) 

Figure 4(top) shows a 3-fingered hand with opposed RR 
fingers and an opposable RR thumb grasping, with its 
fingertips, a general object. This hand, called herein the 3F-
3RR hand, corresponds to a 2F-2RR hand, the layout studied 
in the last section, with an additional opposed finger. The 
motion plane of this last element is perpendicular to those 
defined by the first couple of fingers. This hand layout is 
useful for manipulating small objects or grasping elements 
that are placed in difficult positions [27]. The architecture is 
an alternative to the more popular arrangement of two 
fingers with parallel motion planes and one opposable thumb 
[28-30]. Both designs are in fact particular configurations of 
the more general 3-fingered hand with two UR fingers and 
an opposable RR thumb that is analyzed in the next 
subsection. 

During tasks of precision manipulation, with the 
kinematic model of contact points as spherical pairs, the 
hand-object system of the 3F-3RR hand is equivalent to a 
closed kinematic chain composed of eight links with three 
revolute-revolute-spherical serial limbs that connect the base 
of the robot hand to the grasped object. The mobility of such 
closed kinematic chain (8 links, 9 joints in Թଷ with a total 
number of 15 degrees of freedom in the joints) is 3. This 
implies that the feasible movements of a grasped object 
respect to the base correspond to a 3-manifold (embedded 
in	Թଷ), then, the object has 3 degrees of freedom. Next, 
similar to the analysis carried out for the 2F-2RR hand, we 
present a mathematical characterization of the precision 
manipulation capabilities of the 3F-3RR hand using the 
method of the continuous group of displacements. 

According to the notation of Fig. 4(top), let us call finger 
1, finger 2, and finger 3, the fingers with contact points ܥଵ,  
 ଷ, correspondingly. Fingers 1 and 2 have the sameܥ ଶ, andܥ
configuration (and notation) than the 2F-2RR hand. In the 
case of finger 3, the axis of the ground revolute joint, that is 
defined by the unit vector ࢛ଷ and the point ܣଷ, is parallel to 
the ݔ-axis. Recall that, in this hand, the axes of the revolute 
distal joints are parallel to the axes of the proximal joints. 
The resulting graph of kinematic constraints for the hand-
object system in a 3F-3RR hand is depicted in Fig. 
4(bottom[a]). This graph is composed of eight nodes and 
nine edges, related to number of links and joints of the 
associated kinematic chain, respectively.  

For obtaining the mathematical characterization of the 
displacement manifold of a grasped object relative to  the 
palm of a 3F-3RR hand, that is, to reduce the graph to a 
graph of two nodes with a single kinematic constraint, we 
firstly apply the operation of serial reduction to the sets of 
nodes ሼ1,2,3,6ሽ, ሼ1,4,5,6ሽ, and ሼ1,6,7,8ሽ.  From equations 
(3) and (4), we know that such operation for the sets 
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ሼ1,2,3,6ሽ and ሼ1,4,5,6ሽ yields ଵ࣭ ൌ ሼ۵ሺ࢟ሻሽ ∙ ሼ܁ሺܥଵሻሽ 
and	࣭ଶ ൌ ሼ۵ሺ࢟ሻሽ ∙ ሼ܁ሺܥଶሻሽ, respectively. Similarly, for the 
case of the set of nodes ሼ1,6,7,8ሽ, we get (with ࢛ଷ ∥ ଷ࢜ ∥  (࢞

 

࣭ଷ ൌ ሼ܀ሺܣଷ,࢛ଷሻሽ ∙ ሼ܀ሺܤଷ, ଷሻሽ࢜ ∙ ሼ܁ሺܥଷሻሽ 	
ൌ ሼ۵ሺ࢞ሻሽ ∙ ሼ܁ሺܥଷሻሽ.					 																						 

(6) 

 

ଵ࣭, ࣭ଶ, and ࣭ଷ  are kinematic constraints defined as subsets 
of the group of rigid-body displacements that result from the 
composition operation of the subgroups involved in their 
corresponding nodes. After these three serial operations, the 
original graph of kinematic constraints is reduced to a graph 
of two nodes with three edges [Fig. 4(bottom[b])].   

In order to simplify the three kinematic constraints of the 
current reduced graph to a single couple of edges, we apply 
parallel reduction to, for instance, the kinematic constraints 
ଵ࣭ and ࣭ଶ, and ࣭ଶ and ࣭ଷ. We can choose in fact any 

possible combinations of edges –e.g. ଵ࣭ and ࣭ଶ, and ଵ࣭ and 
࣭ଷ. From equation (5), it is known that ଵ࣪ ൌ ଵ࣭ ∩ ࣭ଶ ൌ
ሼ۵ሺ࢟ሻሽ ∙ ሼ܀ሺܥଵ,  ሻሽ is࢟ଶෟሻሽ. Then, since the subgroup ሼ۵ሺࢉଵࢉ
generated from the composition of a translation ሼ܂ሺࢠሻሽ and 
two rotations ሼ܀ሺܱ,  ሻሽ, where points ܱ and࢟,ሺܹ܀ሻሽ and ሼ࢟
ܹ are any different points, for instance, ܥଷ and ܥଵ, we have 

 

ଵ࣪ ൌ ଵ࣭ ∩ ࣭ଶ																																																													  
				ൌ ሼ۵ሺ࢟ሻሽ ∙ ሼ܀ሺܥଵ, 					ଶෟሻሽࢉଵࢉ 																												      
							ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଷ, ሻሽ࢟ ∙ ሼ܀ሺܥଵ,࢟ሻሽ ∙ ሼ܀ሺܥଵ,   ଶෟሻሽࢉଵࢉ
							ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଷ, ሻሽ࢟ ∙ ሼ܁૛ሺܥଵሻሽ,																			  

(7) 

 

where ሼ܁૛ሺܥଵሻሽ is a submanifold included in ሼ܁ሺܥଵሻሽ and 
defined as the composition of two different subgroups of 
rotations whose axes meet at the point ܥଵ [31, 32], provided 
the corresponding unit vectors are linearly independent, as it 
is the case of ࢟ and ࢉଵࢉଶෟ.  

For the case of the kinematic constraints ࣭ଶ and ࣭ଷ, we 
have 

 

ଶ࣪ ൌ ࣭ଶ ∩ ࣭ଷ																																																												     
ൌ ሼ۵ሺ࢟ሻሽ ∙ ሼ܁ሺܥଶሻሽ	∩	 ሼ۵ሺ࢞ሻሽ ∙ ሼ܁ሺܥଷሻሽ						

        ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଷ, ሻሽ࢟ ∙ ሼ܀ሺܥଶ,࢞ሻሽ ∙ ሼ܀ሺܥଶ,  ଷෟሻሽࢉଶࢉ
ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଷ,࢟ሻሽ ∙ ሼ܁૛ሺܥଶሻሽ.																		

 

(8) 

Recalling ሼ۵ሺ࢛ሻሽ ∩ ሼ۵ሺ࢜ሻሽ ൌ ሼ܂ሺ࢝ሻሽ with ࢝ a unit vector 
in the direction of the intersection of the two planes, and 
ሼ۵ሺ࢛ሻሽ ∩ ሼ܁ሺܰሻሽ ൌ ሼ܀ሺܰ,  ሻሽ. Observe that equation (8)࢛
corresponds to a 4-manifold, as it is required by the closed 
kinematic chain associated to the kinematic constraints ࣭ଶ 
and ࣭ଷ. After the application of the two presented parallel 
reductions, a graph of kinematic constraints of two nodes 
with two edges is obtained [Fig. 4(bottom[c])]. The nodes of 
such graph are the base of the robot hand and the grasped 
object, both connected by the kinematic constraints ଵ࣪ ൌ
ଵ࣭ ∩ ࣭ଶ and ଶ࣪ ൌ ࣭ଶ ∩ ࣭ଷ. 

The final operation in the graph of kinematic constraints 
to get the subset of displacements of the grasped object is a 
last parallel reduction applied to the constraints ଵ࣪	and ଶ࣪  
[Fig. 4(bottom[d])]. Thus, we have 

   

ଷ࣪ ൌ ଵ࣪ ∩ ଶ࣪																										 																												
 							ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଷ,࢟ሻሽ ∙ ሼ܁૛ሺܥଵሻሽ	∩	 ሼ܂ሺࢠሻሽ ∙

ሼ܀ሺܥଷ,࢟ሻሽ ∙ ሼ܁૛ሺܥଶሻሽ  
													ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଷ, ሻሽ࢟ ∙ ሺሼ܁૛ሺܥଵሻሽ ∩ ሼ܁૛ሺܥଶሻሽሻ, 

(9) 

 

since ሼ܀ሺܥଵ, ଶෟሻሽࢉଵࢉ ⊂ ሼ܁૛ሺܥଵሻሽ, ሼ܀ሺܥଶ, ଶෟሻሽࢉଵࢉ ⊂ ሼ܁૛ሺܥଶሻሽ, 
and ሼ܀ሺܥଵ, ଶෟሻሽࢉଵࢉ ൌ ሼ܀ሺܥଶ,  ଶෟሻሽ (both points belong toࢉଵࢉ
the axis of rotation), ሼ܁૛ሺܥଵሻሽ ∩ ሼ܁૛ሺܥଶሻሽ ൌ ሼ܀ሺܥଵ,  .ଶෟሻሽࢉଵࢉ
Then, we finally get  

   

ଷ࣪ ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଷ, ሻሽ࢟ ∙ ሼ܀ሺܥଵ, .ଶෟሻሽࢉଵࢉ  (10) 
 

Equation (10) implies that the feasible movements of a 
grasped object with a 3F-3RR hand are the composition of a 
translation along the ݖ-axis, a rotation about the ݕ-axis, and 
a rotation about the axis defined by the contact points ܥଵ	and 
 ଶ. The obtained finite displacement is a 3-manifold, a resultܥ
coherent with the mobility of the associated kinematic chain 
of the hand-object system. 

As previously discussed in the analysis of the 2F-2RR 
hand, for determining if the three degrees of freedom of the 
grasped object in a 3F-3RR hand can be controlled by the 
hand actuators, we lock the input joints in the above 
displacement analysis to verify if the resulting motion is the 
identity ሼ۷ሽ. If we assume the fingers in the 3F-3RR hand are 
fully actuated, it can be verified that the obtained subset of 
ሼ۲ሽ is in fact such displacement. Actually, we can select any 
combination of three joints from the six available revolute 
joints in the hand to control the degrees of freedom of the 
grasped object. 

C. Example 3: 3-Fingered Hand with UR Fingers and 
Opposable RR Thumb (3F-2UR1RR) 

Our last example is a 3-fingered hand with two UR 
fingers and an opposable RR thumb, called herein the 3F-
2UR1RR hand. This finger/palm layout is used in some 
popular commercial robot hands such as the Schunk Hand 
[33] or the Barrett Hand1 [27, 34] as well as in novel 
compliant underactuated hands recently presented [4]. Fig. 
5(top) shows a representation of a 3F-2UR1RR hand 
grasping, with its fingertips, a general object. Next, as in the 
previous cases, we present a mathematical characterization 
of the precision manipulation capabilities of this hand using 
the continuous group of displacements method. 

  During tasks of precision manipulation, with the 
kinematic model of contact points as spherical pairs, the 
hand-object system of the 3F-2UR1RR hand is equivalent to 
a closed kinematic chain composed of eight links with two 
universal-revolute-spherical serial limbs and a revolute-
revolute-spherical serial chain that connect the base of the 
robot hand to the grasped object. The mobility of this closed 
kinematic chain (8 links, 9 joints in Թଷ with a total number 
of 17 degrees of freedom in the joints) is 5. Similar to the 
previous cases, this implies that the feasible movements of a 
grasped object respect to the base correspond to a 5-
manifold (embedded in	Թଷ), thus, the object has 5 degrees of 
freedom. 

According to the notation of Fig. 5(top), let us call finger 
1, finger 2, and finger 3, the fingers with contact points ܥଵ,  
 ଷ, correspondingly. For the first finger, theܥ ଶ, andܥ

 
1 In the Ulrich’s UPenn/Barrett Hand, the fingers are actually RRR 

kinematic chains with the axes of the two first joints perpendicular but not 
coincident (as it is the case in a universal joint). However, it can be proven 
that, from the kinematic viewpoint of our analysis, both topologies are 
equivalent.   
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Fig. 5. Top: A 3F-2UR1R robot hand grasping an object with the 
notation used for its precision manipulation analysis. Bottom: The 
graph of kinematic constraints of the hand-object system for the 3F-
2UR1R hand (a) and its corresponding reduction (b, c, d) –see text 
for details. 

proximal joint is a universal pair whose axes of rotation are 
determined by the unit vectors ࢛ଵ and ࢝ଵ, that are parallel to 
the ݕݔ-plane and to the ݖ-axis, respectively, and the meeting 
point of the axes, say ܣଵ. This kinematic pair corresponds to 
a kinematic constraint that forms the submanifold 
ሼ܁૛ሺܣଵሻሽ ൌ ሼ܀ሺܣଵ, ሻሽࢠ ∙ ሼ܀ሺܣଵ,  ଵሻሽ, defined as the࢛
composition of two different subgroups of rotations whose 
axes meet at a single point. Taking into account that finger 1 
and finger 2 have the same configuration, and that finger 3 is 
equivalent to the opposable thumb of the 3F-3RR hand, then, 
for the hand-object system of the 3F-2UR1RR hand, we get 
the graph of kinematic constraints that is depicted in Fig. 
5(bottom[a]).  

In order to reduce the graph of kinematic constraints, we 
initially apply serial reductions as in the previous examples. 
Thus, for the case of nodes 1, 2, 3, and 6 –related to the 
hand’s first finger, we have (with ࢛ଵ ∥  (ଵ࢜

 

࣭ସ 	ൌ ሼ܁૛ሺܣଵሻሽ ∙ ሼ܀ሺܤଵ, ଵሻሽ࢜ ∙ ሼ܁ሺܥଵሻሽ													  
ൌ ሼ܀ሺܣଵ,ࢠሻሽ ∙ ሼ܀ሺܣଵ,࢛ଵሻሽ ∙ ሼ܀ሺܤଵ, ଵሻሽ࢛ ∙	

ሼ܀ሺܥଵ,࢛ଵሻሽ ∙ ሼ܁ሺܥଵሻሽ	
(11) 

ൌ ሼ܀ሺܣଵ,ࢠሻሽ ∙ ሼ۵ሺ࢛ଵሻሽ ∙ ሼ܁ሺܥଵሻሽ,										  
 

where ࣭ସ is a kinematic constraint defined by the 
composition operation of the subgroups involved in the 
constraints of its corresponding nodes. Equation (11) is 
obtained following an expansion similar to that presented in 
equation (3). In the same way, for the case of nodes 1, 4, 5, 
and 6 –related to finger 2, we obtain   

 

࣭ହ ൌ ሼ܀ሺܣଶ,ࢠሻሽ ∙ ሼ۵ሺ࢛ଶሻሽ ∙ ሼ܁ሺܥଶሻሽ. (12) 
 

Finally, for the third finger (nodes 1, 6, 7, and 8), we have 
࣭ଷ ൌ ሼ۵ሺ࢞ሻሽ ∙ ሼ܁ሺܥଷሻሽ	(see derivation of equations (3) and 
(6)). 
 After the above reductions we get a graph of kinematic 
constraints of two nodes and three edges [Fig. 5(bottom[b])].  
To obtain a graph with a single couple of kinematic 
constraints, we apply parallel reduction to, for instance, the 
kinematic constraints ࣭ଷ and ࣭ସ, and ࣭ଷ and ࣭ହ. We can 
choose in fact any possible combinations of edges –e.g. ࣭ସ 
and ࣭ହ, and ࣭ହ and ࣭ଷ. Then, for ࣭ଷ and ࣭ସ, we have 
 

ସ࣪ ൌ ࣭ଷ ∩ ࣭ସ 																												
 ൌ ሼ۵ሺ࢞ሻሽ ∙ ሼ܁ሺܥଷሻሽ ∩ 																													

ሼ܀ሺܣଵ, ሻሽࢠ ∙ ሼ۵ሺ࢛ଵሻሽ ∙ ሼ܁ሺܥଵሻሽ	 
						ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଵ, ሻሽ࢞ ∙ ሼ܀ሺܥଷ,࢛ଵሻሽ ∙ ሼ܀ሺܥଷ, ଵෟሻሽࢉଷࢉ
						ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଵ, ሻሽ࢞ ∙ ሼ܁૛ሺܥଷሻሽ																																	 

ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଵ, ሻሽ࢞ ∙ ሼ܀ሺܥଷ,࢞ሻሽ ∙ ሼ܁૛ሺܥଷሻሽ  
ൌ ሼ۵ሺ࢞ሻሽ ∙ ሼ܁૛ሺܥଷሻሽ, 																												  

(13) 

 

where ሼ۵ሺ࢞ሻሽ ∩ ሼ۵ሺ࢛ଵሻሽ ൌ ሼ܂ሺࢠሻሽ, ሼ۵ሺ࢛ሻሽ ∩ ሼ܁ሺܰሻሽ ൌ
ሼ܀ሺܰ, ሻሽ࢞,ଷܥሺ܀ଷሻሽ = ሼܥ૛ሺ܁ሻሽ, and ሼ࢛ ∙ ሼ܁૛ሺܥଷሻሽ. Note that 
ሼ܀ሺܣଵ, 	.ሻሽ does not belong to any subgroup of ࣭ଷࢠ ସ࣪	is a 5-
manifold, as determined by the closed kinematic chain 
associated to the kinematic constraints ࣭ଶ and ࣭ଷ. 
Analogously, for ࣭ଷ and ࣭ହ, we get 
 

ହ࣪ ൌ ࣭ଷ ∩ ࣭ହ 																												
 ൌ ሼ۵ሺ࢞ሻሽ ∙ ሼ܁ሺܥଷሻሽ ∩ 																													

ሼ܀ሺܣଶ, ሻሽࢠ ∙ ሼ۵ሺ࢛ଶሻሽ ∙ ሼ܁ሺܥଶሻሽ	 
						ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଶ,࢞ሻሽ ∙ ሼ܀ሺܥଷ,࢛ଶሻሽ ∙ ሼ܀ሺܥଷ, ଶෟሻሽࢉଷࢉ
						ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଶ,࢞ሻሽ ∙ ሼ܁૛ሺܥଷሻሽ																																	 

ൌ ሼ܂ሺࢠሻሽ ∙ ሼ܀ሺܥଶ, ሻሽ࢞ ∙ ሼ܀ሺܥଷ,࢞ሻሽ ∙ ሼ܁૛ሺܥଷሻሽ  
ൌ ሼ۵ሺ࢞ሻሽ ∙ ሼ܁૛ሺܥଷሻሽ. 																												  

(14) 

 

After the application of the two above parallel reductions, a 
graph of kinematic constraints of two nodes with two edges 
is obtained [Fig. 5(bottom[c])]. 

For finally obtaining the subset of displacements of the 
grasped object, we apply a last parallel reduction to the 
constraints ସ࣪	and ହ࣪ [Fig. 5(bottom[d])]. Thus, we get 

   

଺࣪ ൌ ସ࣪ ∩ ହ࣪ 																												
 ൌ ሼ۵ሺ࢞ሻሽ ∙ ሼ܁૛ሺܥଷሻሽ ∩	ሼ۵ሺ࢞ሻሽ ∙ ሼ܁૛ሺܥଷሻሽ

ൌ ሼ۵ሺ࢞ሻሽ ∙ ሼ܁૛ሺܥଷሻሽ. 																												
 

(15) 

The above equation implies that the feasible movements of a 
grasped object with a 3F-2UR1RR hand are the composition 
of a planar gliding displacement parallel to the ݖݕ-plane 
(two translations and one rotation about the normal to the 
plane) and two rotations about any two linearly independent 
axes that meet at point ܥଷ, say, for instance, ሺܥଷ,  ሻ and࢞
ሺܥଷ,  ሻ. As necessary, the obtained finite displacement is a࢟
5-manifold. Moreover, it can be verified that any selection of 
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five actuated pairs in the hand from the possible eight joints 
(considering the universal joints as two revolute joints that 
can be independently actuated), generates the identity 
displacement. Hence, there are not uncontrollable degrees of 
freedom in the hand-object system. 

V. CONCLUSION 

We have presented a method, based on the continuous 
group of displacements and graphs of kinematic constraints, 
to characterize the precision manipulation capabilities of a 
robot hand. The approach is general and can be applied to 
any finger/palm layout or subset of it, provided the hand 
joints are lower kinematic pairs. The proposed technique can 
be used, for instance, in early stages of robot hand design to 
incorporate manipulation primitives needed to perform 
specific tasks. However, if a study of the topological 
properties of the resulting displacement manifolds is 
required, other techniques should be implemented. Several 
lines of future work can be identified within the scope of the 
proposed approach; we stand out: to extend the method to 
more complex contact models, as previously discussed, and 
to make automatic the analysis process. 
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