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Abstract— This paper presents a nhew and comprehensive metho
of modeling robots having highly flexible members &ch as
flexure joints. An accurate model of large deformabn bending is
important for precisely describing the configuration of the
flexible member. Additionally, the accuracy of theJacobian and
Hessian of the forward kinematics are critically inportant at
large angles for predicting the deformation and thestiffness of
the joint under load. The model introduced here isased on the
assumption that the curvature of a beam in bendings smooth,
and thus can be approximated by low-order, orthogoal
polynomials. This produces a parameterized descrin of
flexure motion that can be used as a joint model vén expressed
in Denavit-Hartenberg form, as a transformation from one rigid
link to the next in a serial manipulator. We will show that with
only three parameters, this model faithfully reprodices the
elastic deformation of a flexure hinge predicted byhe continuum
model, even for large angles, without requiring nurarical
integration or many finite elements. It can also beused to
compute the compressive buckling load of the flexer as
predicted by the continuum model.

l. INTRODUCTION

Highly flexible members have been frequently conside
in the context of robotic hardware. A number ofl#s into the
behavior of flexible link robots have been condd¢ciften for
the purposes of controlling for undesirable dynawifects
related to working with long, thin links (e.g. [1}3A smaller
number of efforts have dealt with the beneficial easp of
highly flexible links, such as providing a large nmoer of
degrees of freedom for manipulation tasks [4] ov Kiiffness
for grasping and assembly purposes [5]. A relatgdicgiion is
the use of highly flexible members §sints between rigid
links, typically referred to as flexures. The costrhetween
these two applications is shown in Fig. 1. Thesdufes are
commonly used to allow motion in monolithic struets, and
have been used as joints in a number of differebbtic
mechanisms, particularly in compliant hands [6-8]he
benefits of flexure-based joints include havingstiding parts
(and therefore no friction or stick-slip effectsi backlash, and
are able to compliantly deform in response to ummdal
collisions, making them ideal for robots that maperate in
unstructured environments [9].

Another major benefit of flexures is the simplicignd
potential lower cost compared to standard revojoiats,
which require bearings for smooth, accurate motiés.
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Figure 1. A comparison between traditional rigid robot marépars (left),
flexible link robots (center), and flexure-jointats, in which flexible links
act as hinges (right).

flexures are likely to be used with increasing freracy due to
their compatibility with inexpensive polymeric fatation
processes such as multi-shot injection molding |t shape
deposition manufacturing [11].

One drawback to flexure-based robot mechanismses
complex mechanical behavior that they exhibit coragdo pin
joints. A pin joint has one degree of freedom, velasr the
elastic deformation of a beam in bending has itdipimany
degrees of freedom. Moreover, a flexure hinge liakent often
bends to angles up to 90 degrees or more, so adhssnall-
deflection beam bending models are inapplicableaAssult,
there is no canonical parametric model for plaraxuie
hinges suitable for robot analysis. This paperemssa model
that can fill this role. In order to apply the riglet of tools
available for serial manipulator design, controld a@mnalysis,
one must have a model of elastic behavior that igrate and
computationally simple. The design specification &ogood
flexure model can be broken into three functioegluirements:

1. It should be possible to compute both shapeof the robot
and the elastic energyassociated with deformation as
function of a small set of generalized coordinatsspne might
describe a jointed mechanism using the internat gigles.

2. It should be possible to compute tloece in generalized
coordinates resulting from a force on the robotrat point
using the Jacobian of that point's coordinatesyab as the
local equilibrium positionresulting from such a force.

3. It should be possible to compute 8i#fnessin generalized
coordinates resulting from a force on the robat pbint by the
Hessian of that point's coordinates, as well as langkling
modesthe robot has (configurations/loads having zeiftness

robotics become more common as commercial product# some direction).
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Many models of flexible robot components meet sobug
not all of these requirements. One common apprascto
model flexure elements as having constant curvafLpg.
Flexures have also been approximated as a singlgopit
halfway between the ends of the flexure [13]. Bofhthese
models capture the relative rotation between tigidies on the
manipulator, making them useful for inverse kinémat
computation and form closure grasp analysis.
because these models have fewer degrees of freddima
real flexure, they are too rigid and under-preditte
deformation of a loaded flexure. Another family of des,
called pseudo-rigid body models, consists of onesereral
joints placed to approximate the flexure’'s centerathtion,
connected in parallel with nonlinear springs fitrlegression to
the exact force-deflection profile [14]. These mnledean be
used to find flexure deflection under load, butythare
unsuitable for manipulator analysis because the atjek

However
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Figure 2. A comparison of the moment profile in small- andj&
deflection cantilevered beam bending.

Il.  THE SMOOTH CURVATURE MODEL

geometries used to approximate the beam bendinggehanA- Motivation

based on the direction of applied force, and thiasat purely
kinematic descriptions of flexure behavior. Anotepproach is
based on assuming some set of superimposed defonaati
modes [15]. This technique has been applied tdblieXinks
(e.g. [16]) and continuum manipulators [17]. Modalduls for
flexures have been proposed based on analyticalgulated
small-deformation solutions, as well as finite elatr@olutions
[18,19]. However, modal models are specific to ltiedavior
they are designed to model, and none of the cuyramtilable
models in the robotics literature accurately captlarge-
deformation flexure behavior.

The flexure model introduced in this paper is a atod
model which approximates the curvature of a flexusiag an
orthogonal polynomial basis. The polynomial coeéfits
define the relative position and orientation of twodies
connected by the flexure, as well as the elasticggnstored in
the flexure itself. This model meets all three of tiwectional
requirements introduced above, while avoiding teednto use
numerical integration or to break the beam into méniye
elements. It predicts not only the deflection ofextire under
load, but also second-order kinematic effects sudbuakling
and the change in flexure stiffness resulting frmympressive
or tensile loads. These second-order effects artécylarly
useful in the study of grasping and manipulatiohexe grasp
stability may depend on the elastic stability of thanipulator
itself [20].

The remainder of this paper is divided into threetises.
Section Il is an overview of the flexure model, a@dsng how
the parameters define the shape and the energyidraft a
flexure hinge. Section Ill examines the shape of fterure
when an arbitrary load and moment is applied ateswk The

In 1694, Jacob Bernoulli proposed (and solvedptioblem
of finding the shape of a pre-bent cantileveredibealengthL
that would bend into a straight line when loadedhwan
arbitrarily large forceP at the tip [21]. Today the curve is
known as the clothoid or Euler spiral. The curvai(s) of the
clothoid curve varies linearly with the arc lengttirom the
base of the cantilever,

_P(,_s
K(S)—a(l Lj

Here E is the elastic modulus anidis the constant planar
moment of the beam area. The clothoid is also aap#ess
approximate solution the more useful problem of figdthe
deformed shape of dnitially straightbeam loaded at one end
with a large load. This can be seen by examiniegntbnlinear
deformation of a cantilevered beam, as shown in Eigzor a
small end load (left), the bending moment will benast
exactly proportional to the distance from the tighe flexure,
as expected. A large end load (right) will prodaceon-linear
deformation profile, but the moment, plotted as acfiom of
arc length, is still roughly linear. The curvatuiee directly
proportional to bending moment in the beags),
_1(s)

K(S) E

For some range of large loads, then, the curvaitie beam
can be approximated as some constant plus a lineetion of
arc length. Horn discussed this approximation edbntext of
spline curves [22]. The accuracy of this model ddue further
improved by noting that while the curvature may lbetexactly
linear, it is certainly smooth, and so might becdibgd with a

1)

)

results are compared to exact large deformation beaBhsis of n orthogonal polynomials,Gy(S) Gna(S). The

solutions. Additional results are shown compatimg smooth

St curvature is expressed as a weighted sum of thespas
curvature model to finite element models of a sample

mechanism. Section IV demonstrates the second—ordef(sg)=quo(s)+qul(s)+...+qn_1Gn_1(s)

3)

kinematic accuracy of the model by comparing classical

continuum buckling models to the discrete buckiprgdicted
by the proposed parameterized model.

The coefficients,q...¢h.1, Uused as a generalized coordinate
vector g for describing the deformation of the flexure, are
central to the proposed flexure model. Two paréicudases
will be considered here, corresponding to the modéth 2



and 3 parameters, whose basis functions are Legendr

polynomials, translated and scaled to be orthogom#0, L],
1 2s-L
(8D =0+ = ) Proximal A)<
Coordinate\ Distal

1 2s-L 6s®> —6sL+ L2 Coordinate
K;(s9) =4, L +q, E +d, E ) Frame Frame

Models of this type, which we will call smooth cature Figure 3. A Denavit-Hartenberg kinematic model of a flexuomsists of a
models, can be used to predict the shape of thairflein transformation mapping the coordinate frame aptioaimal side of the joint
bending, as well as the elastic bending energy.s&he to the coordinate frame at the distal side of thet;
derivations follow in the next two sections.

completing the square and using trigonometric aufdit
B. Flexure Shape identities, but it contains discontinuities, anch@t practically
S p- . . useful. Further, this strategy does not generalzethe 3
Joints in a serial robot manipulator are oftenespnted in _parameter model. Instead, an interpolating appratién was
Denavit-Hartenberg notation, that is, as a geometri geq so that (11) and (12) can be analyticallyrapmated
transformation between the pairs of rigid links wected by \yithin some reliable error bounds. In this papenely/shev
each joint. The analogous transformation for ajpint is &  jnterpolation [23] was used to approximate the siné cosine
rotation about the joint axis. In the case of aute, this fnctions as polynomials. There is a trade-off lestw the
transformation corresponds to the translation atation from  §omain of interpolation and the computational cost

one end of the flexure to the other, as shown @ Bi[12].  maximum flexure rotation was limited to be lessntHeD8®.

This could be written as a matrix, for instance, Alternatively, a technique such as Gaussian quadratould
o be used, which is essentially equivalent to intfong the
095@“P) Sin@,) Xy, entire integrand as a polynomial.
T = Sln(¢tip) Cos@np) ynp (6)
0 0 1 C. Elastic Energy

Having found the shape of the hinge as a functiog, ave
now turn to finding an expression for the elastiergy in the
flexure. The energy stored in an Euler-Bernoulliaeis
proportional to the integral of the squared cumaf5]:

The three quantities characterizing this transfoionaare the

flexure tip displacementxf, Yip), and the relative angle from
the base of the flexure to the tip of the flexysg, They can be

written as functions of the polynomial coefficiewgctor, g.

The angular profilep(s, g), is the integral of the curvature, El & ,
U(@) == [«(s9)’ds (13)
#(sA) = [(sgds (7) 0
, If the 2 parameter curvature is usdd(g) evaluates to a
S s°—-sL i
8, (Sg) =q, f+q1 = ®) weighted sum of the squared parameters.
El ( o 4q1(23_|-) ’ El 2 ql2
s s*-sL  2s*-3s’L+sl? U, (o) =— [—‘*— ds=—|q, +— | (14)
$.(sQ) =0 +0 =5+, E 9) T2\t L 2L™® 3

Because the polynomial basis is orthogonal, thexena cross-
terms in this expression. The expression for engiggn 3
parameters differs only in the addition of a sirtglen.

At the end of the flexures€L), the tip angle is equivalent tp

irrespective of the model order. This is a happle sffect of
using orthogonal polynomials, as all the highem-ponstant
terms must integrate to zero:

4, =#(LO)=q, (10)

The tip position of the flexure can be found byearating the
cosine and sine of the angular profile,

El e g
U.(@ =Z[q§ +%+%j (15)

D. Summary

The smooth curvature model for flexure hinges hasnb
introduced, based on the observation that the tuneraof a
flexure can be approximated using a low-dimensidaalis of
orthogonal polynomials. The position and orientatif the

Lo flexure tip can be found relative to its base usimfy a few
Yio =IS'”(¢(S q))ds (12) model parameters, and these can be used to reprigen
0 flexure as a joint in Denavit-Hartenberg form. Thkstic

These expressions are transcendental. The secomer or€Nergy stored in the bent beam is a weighted surthef
solution can be solved in terms of Fresnel intsgray Sduared flexure parameters.

Xtip =

O ey —

cos@(s, 9))ds (12)



The remaining sections will demonstrate that thisdeho
can be used to satisfy the two other requiremeants flexure
joint model, that is, that the model accuratelydmes the
equilibrium position of the flexure when an arhiyréorce and
moment are applied, and that the model accurateddigis
variable stiffness effects and buckling due to carapive
loads.

Ill.  DEFLECTIONUNDERLOAD

A. Jacobian Analysis of the Forces on a Robot

Accurate descriptions of the force exerted on at@nd
the resulting deflection are central to many probléemshe
control and analysis of robot manipulators. Thegeateralized
force F on a manipulator experiencing a fofget some point
p is given by the Jacobian of that point's coordisatand the
gradient of the potential energy functiokg),

F=0,@"f +0,0(@)

The generalized force balance equation is onlyistéalif the
generalized coordinates faithfully represent alkh# motions
that the robot is capable of making. For a flexuirgge, it is
important that the motion of flexure tip, as ddsed in the
previous section, is accurate, so that the forogs rmoments
transmitted from one link to the next result in laygically
realistic deformation of the flexure hinges.

(16)

This section considers two tests for benchmarking t

ability of the smooth curvature flexure model toegtict
deformation under load. The first test compares dkact
deflection of a cantilevered flexure (using numalhc
computed elastica curves [24]) to the tip posifiwedicted by
the smooth curvature model. The second test compine
deflection of a two-link finger from a tendon-drivesiastic
gripper developed by the authors. The two flexungds in the
finger are modeled with finite element flexure mogatsd with
the 3 parameter smooth curvature model, showingtlieatwo
models agree despite the vastly reduced paranyee ©f the
smooth curvature model.

Loading Method
Moment, M

0.6

Force, P
0.4

0.2

0 0.2 0.4 0.6 0.8 1

Figure 4. A flexure, loaded at the end by a force and a manTéns figure
shows the direction of load,

deformation beam bending The equilibrium configurations
were compared to the exact solution obtained byemically
integrating the large-deformation Euler-Bernoudjuation,

7(s) P(cos@) cos@(3)) —sin@) sin(@(3)))
d]e6)|_ 7(@)
& | X(S) cos@(s)) 4o
Y(S) sin(@(s))

This is a restatement of (2), (7), (11) and (12{ifferential
form, after applying the substitutions from (17hi§ equation
was solved using a Runge-Kutta solver. The tip munég
force angled, and tip angle,, were specified, and the integral
from the tip of the flexure to the based was com@uf he tip
force, P, was found using a bisection search such that the
boundary conditions at both ends of the flexure ewer
simultaneously satisfied.

Each force-moment combinationP,( 4, M) that was
computed for the exact beam equation was appli¢ietdip of
the smooth curvature flexure model, using the gsdized
force balance from (16). The Jacobian of the tiprdmates
Xips Yip @Ndgg, was derived from (10), (11) and (12),

B. Tip Deflection of a Loaded Flexure 04, [1 i=0 (19)

A straightforward method of examining the accuratyao  dq, 0 iz0
flexible beam is to clamp one end and examine thiect&n
of the other end when subject to an arbitrary madnverand X, _ ¢I,p
force P exerted at an angi; as shown in Fig. 4. To ensure 5 JS'”@(S q)) ds (20)
proper scaling of the results, a non-dimensionainfof the
beam bending equations should be used, based oe thegy L ¢
substitutions: aq“’ f cos@(s q)) ® ds (21)

2

P= FI;LI M :% T :%, S :E, X :%, y=% (17) As in (11) and (12), Chebyshev interpolation wagduso

The dimensionless beam bending equations are deuivid
modeling a beam as having length 1, and an elastidulus
and cross-sectional moment equal to 1.The onlynpeter that
is unaffected by this scaling is the beam’s angpitafile, ¢(s).
Results will be computed for the case when thartigle,pqp, is
equal to 90°, a prototypical test case in the staflyarge-

produce analytical approximations of (20) and (2The
derivatives of the energy function are much simmed can be
found from (15),

! This is a generalization of the rectangular etastiroblem posed by
Bernoulli, the problem of finding the shape of atdavered beam bent at a
right angle by a force at the tip [26].



- 1 0 0 |q
Ou(@=—|0 1/3 0 |aq, (22)
0 0 1/5|q,

The force balance, computed from (19)-(22), wadaseero to
form a system of nonlinear equations, which was esblv
numerically in Matlab. Three force-moment combinatiarere
used to compare the two models. These combinatiabsled
A, B, and C, are shown in Fig. 5. In case A, a pagading
moment was applied, sufficient to bend the flextoran angle
of 90°. Case B was a pure force of a magnituddcsert to
bend the flexure to 90°. Case C was the most coaripkd,
consisting of a moment equal and opposite to thenemb
applied in combination 1, counteracted by a forcdhat the
flexure tip angle remained at 90°.

The prediction errors from the smooth curvature ef®d

were computed for values 6franging from 20 degrees to 105

degrees (as in Fig. 4). The lower bound of 20 degreas
chosen because the magnitude of the load requirdebnd a
beam to 90° in case B has a vertical asymptot&=@t Thus,
the behavior of the flexure becomes increasinghgaiistic in

this case. The upper bound of 105 degrees was rthesause
the elastica curves generated with the Runge-Isottger could
not predict buckled configurations, and as the doon the
flexure tip becomes increasingly compressive @.ex 90°),

good reference comparisons could not be made. alhste

compressive loads were compared to finite elementetadn
the following subsection.

The positional error of the flexure tip was foutitht is, the
norm of the vector from the predicted flexure tipthe tip of
the numerically computed elastica curve. This istptbin non-
dimensional form, meaning that the error is giveradraction
of the flexure length. The angular error is alsovat The
errors for the 2 parameter model are shown in &ignd the
errors for the 3 parameter model are shown in Figrhese
plots show a number of significant results. Fitlsg errors in
case A (pure moment loading) were very small fahhkibe 2
and 3 parameter smooth curvature models. The exage sine
would expect for a beam having a constant bendiogent is
an arc, a shape that can be exactly reproduced hdgth
models. Thus, the error is correspondingly smalle Erors
observed in loading cases B and C indicate thad therameter
model is significantly more accurate, especiallyewhthe
flexure is loaded by an opposed force and momerdstM
importantly, in every case, the 3 parameter smoatkiature
model was within a positional accuracy of 1 percehthe
beam length, and an angular accuracy bound of 1°.

C. Finite Element Comparisons

One purpose of the smooth curvature model of pdatic
interest to the authors is to enable efficient ysial of
manipulators having multiple flexure joints. In pieys work,
the authors have developed robot hands
polymeric elastic flexure joints [8,9]. These haads made up
of 2-link, tendon-driven fingers, represented ig.F8A. In
order to evaluate the usefulness of the smoothatume model
for multi-link manipulators, a finite element modelas
constructed using an object-oriented Matlab librengated by
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A. Flexure-based robot finger
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B. Tendon force

C. Tendon force + pad force

Figure 8. A comparison between FEM and smooth curvature (B&jels:
A. The FEM model, no tendon force vs 10 N tendando
B. SC model (i) vs FEM (i), 10 N tendon force.
C. SC model (iii) vs. FEM (iv), 10 N force + 0.5fbrce on distal link.

the authors [25]. This model represents each fiexar a
fashion similar to the finite element model proposed1],
consisting of 16 small rotational links. The traafation
representing each joint in Denavit-Hartenberg fomas the
composition of the many resulting rotations and dia@ions
making up each finite element.

A model of the finger was also constructed using 8u
parameter smooth curvature flexures. This model tneepint
transformation from (6) and the energy functiomfr@l5) to
describe the joint behavior in terms of three gelimad
coordinates per joint, for a total of 6. The fintliement model,
by comparison, had a total of 32 generalized coatds. Both
models were subjected to two different loading dimaks: in
the first condition, the finger was actuated witkirggle tendon
connected to the distal link, as in Fig. 8B. Theosel
condition, depicted in Fig. 8C, included the samnmeite force
and a horizontal force applied to the center ofgghd on the
distal link. In both cases, the generalized foredatce was
computed using (16), computing the kinematics oftérelon
and the center of the distal pad using a compaositd
geometric joint and link transformations.

The results of the test are shown in Fig. 8 andleTab
which describes the agreement between the smootiatave
and finite element models as to the position anentation of
the center of the distal link. The results showt thize
displacement of the distal link pad as calculatedhleysmooth
curvature model is within 0.1% of the position poged by the
finite element model. The angular agreement is anhgilvithin
a tenth of a degree in both cases. Attempts at visumparison
between the FEM and smooth curvature models bylayeg

TABLE I. FEM vs. SMOOTH CURVATURE FINGER MODEL RESULTS

Case Padk Pady Pad angle
FEM, Tendon Force (i) -0.0048 0.1012 147.6553]
SC, Tendon Force (ii) -0.0047 0.1012 147.5760
FEM, Tendon + Pad Force (jii) 0.0615 0.1046 103047
SC, Tendon + Pad Force (iv) 0.0615 0.1046 103.0168

Tendon

\

P

Smooth Curvature Model

Finite Element Model

Figure 9. A single tendon-driven joint, modeled using the sthaurvature
model (left) and finite rotational elements (right)

D. Summary

For both a single flexure hinge and a two-joint ipafator,
the smooth curvature model has been shown to aebura
predict the deformation of a manipulator under aewihge of
forces and moments. This is interesting and nevaumse most
methods of accurately solving large-deflection bdzending
problems involve numerical integration, or the biegkdown
of a beam into many finite elements. Because the $moot
curvature model achieves a useful degree of acguvdl only
three parameters per joint, calculation of dynaraied statics
for control or motion planning is a much simpleogess.

IV. STIFFNESS ANDBUCKLING

A. Stiffness of a Loaded Elastic Structure

One major difference between the well-studied mwbbf
flexible-link manipulators and the newer field ofexXure-
jointed manipulators is the relatively increasegamntance of
buckling in flexure joints. The flexure joints shovin Fig. 9
show a typical tendon/flexure actuation scheme. fEmelon
exerts a force in tension, which is balanced bympressive
force in the flexure, unless a parallel load patists. This
compressive force is quite large, and can easipyageh the
Euler buckling load of a thin flexure (the load vatich the
lateral stiffness of the flexure is zero). Unlikérustural
columns, buckling does not represent a necessardgsirable
effect. The fact that the flexure is buckled justams that its
rotational stiffness is very low. Most pin joinf®r example,
have zero rotational stiffness and this is notrapeidiment to
their use in robots. However, this change in s as a
function of load is critically important in somehatic tasks.
For example, a change in joint stiffness will affeomputed

indistinguishable to the eye.

grasping and manipulation rely on the elastic stgbdf the



whole system; a buckling mode could be harmlesg, aould
correspond to configuration in which a grasped abjeists
out of its gripped position [20]. As a result ofl dhese
concerns, it is important that a flexure model fofeva
reasonable model of elastic buckling.

This section briefly describes the ability of thenaoth
curvature model to predict elastic buckling in exfire using
the Hessian of the flexure kinematics. As a proxye cfs
comparing the continuum behavior of a flexure te #mooth
curvature model, the smooth curvature model willused to
predict buckling in compression by finding the smestl
compressive load for which the generalized stifnestrix is
singular. This result can be compared to Eulerskiyng load
formula. The 2 and 3 parameter models produce ssivedy
better approximations of buckling.

B. Continuum vs. Discrete Buckling

A continuum structure is said to buckle when it ha (or
negative) stiffness in some direction, so that aalkm
perturbation to the structure’s shape is met byestabilizing
force, rather than a restoring force. The compveskiadP;;
at which a clamped-free beam should buckle is givgn b
Euler’s well-known formula [26]:

Pcrit LZ —_ U

( j =24674..
2

El

(23)

The concept analogous to elastic buckling in a gdized
coordinate model has to do with the generalizetinetis
matrix obtained by taking the gradient of the galieed force
balance from (16) with respectdp
K:Dqu(E)Tip+Dqu(U(9)) (24)
Stiffness is a function of the Hessian of the cowtks where
force is applied, and of the Hessian of the enddgg). When
this stiffness matrix has an eigenvalue that i® zgrnegative,
it buckles. In other words, there will exist songeavectorig,
which, when applied to the robot as a perturbation|
produce a destabilizing force. This could alsohmeight of as a
test for the convexity of the total energy in tbbat.

We will derive the generalized stiffness matrix ftire
smooth curvature model, when the flexure is loaidethe x
direction with a forceP. Thus, the contact poimt from (24)
above is the scalak;, as described in (8). The Hessian
elements can be calculated from the Jacobiag,ah (20),

L

gl

0

0°%, _
dq0q;

2
ﬂds
0q0q

(25)

|

cos@(s))g—gg—f +sin((s))

When the flexure is straighty=0,=0,=0. In this configuration,
(25) can be simplified, because the sine term gisags and the
cosine term approaches one,

L

-

0

a ? Xtip
0dq,0q,

%%ds
dq, 0q,

(26)

These are polynomials, which can be evaluated tapate the
Hessian ofx;, with respect to the generalized coordinates. For
the 2 parameter model, the Hessian is a 2 by Axnatr

1/3 -11

2
(27)
-1/12  1/30

quq(xﬁp)n{

The stiffness due to potential energy can be fdynthking the
Hessian of the energy function derived in (14),

{10

0 1/3}
The coordinate Hessian and the energy Hessian en b
substituted back into (24),

1 0 1/3 -11
PL

2
0 1/3} -1/12 1/30}
The buckling load of the 2 parameter modR|,is the value of
P for which the determinant df is zero, indicating that the
matrix has an eigenvalue equal to zero,

El

3 (28)

0,0,U(@@) =

_El

- (29)

Bl 11

PL2 3 12 |_

1 e 1|70 (30)
12 3RL* 30

The smallest root of this polynomial is the mosygbally
meaningful, as it represents the load at whictutienstrained
flexure will buckle,

P,L?
2 =2.4860...

(31)

This is only 0.75% larger than the true value reggbiby the
continuum model in (23). This exercise can be regubfor the
three parameter model, to find the predicted bagKibad,Ps,

El 1 1 1
PL® 3 12 60

ER S @)
12 3PL® 30

1 El 1

60 5PL? 210

The resulting buckling load prediction is withir02% of the
value predicted by Euler's beam buckling formula,

P,L?
El

=2.4677... (33)

C. Discussion

The results of this brief study indicate that thmosth
curvature model has no difficulty predicting thenlioear
stiffness of a straightened flexure hinge as atfanof load. A
more general argument, too long to be presentegl, nuld
also cover the stiffness of a constrained flexstgh as one
which is effectively pinned or clamped at the efde 3
parameter model can successfully describe thesss, césthe



constraints on the flexure tip are made as parametri3]
substitutions.

The small deflection case was presented here bethese [4]
solution is widely known and understood. For ladgdlection
cases, a more thorough demonstration of agreenawniebn  [5]
the stiffness equation from (24) and the continlogam model
could be obtained by using the calculus of vanmtico
numerically find the endpoint stiffness of the atastcurves

from Section Ill. Both of the predictions of corsitred el
buckling and the large deformation stiffness corigoas will
be forthcoming in a separate paper.
[71
V. CONCLUSIONS
A. In Summary 8]

In this paper, we have presented a model for fleXibks
that is accurate for large deformations, so thediit be used for
the special case of flexible links as flexure hing€hese 9]
models are compatible with all of the standard tamslsd for
manipulator analysis, because they are in a forrersvithe [10]
shape of the joint and the elastic energy of thet joan be
entirely described by a set of generalized cootdmaNe have
demonstrated that a flexure can be described ighalével of  [11]
accuracy using only three parameters — arguably thanom
number of parameters capable of describing a flexute
three independent end conditiong, Y, andgg,. This model  [12]
is useful for “zeroth” order descriptions (shapel amergy),
first order descriptions (local deformation and &rcand for [13]
second order descriptions (buckling configuratioasd
stiffness) of mechanical behavior of flexible members
undergoing large deformations under loads. [14]

B. Future Directions

This model can be developed further by fully chemazing
the stiffness under load for large deformationsiduld also be (1
interesting to further explore the smooth curvatfiexure
model in the context of flexible links under budgli loads.

Any flexible link manipulator whose members mightckle  [17]
may benefit from a more accurate parametric bendiagem
For example, a parallel manipulator might havedairgernal
forces leading to link buckling. The simplicity andcuracy of [18]
the smooth curvature model in predicting bucklingkenthis a
natural avenue of inquiry. [19]

(15]

Finally, it is worth noting that although models @i&nar
beam bending are quite useful, many flexures adngteat
deal of out-of-plane motion. This behavior can baracterized
by a modal model similar to the one presented h&he
authors are pursuing these, with the eventual goafoducing 1
models for elastic joints having arbitrary geonestri

(20]

[22]
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