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ABSTRACT

Robot manipulators having elastic links or flexyoints
have a number of advantages, especially in sinipgfithe
control of contact with other objects. However, reut
simplified parametric models of flexure motion dootn
accurately predict the behavior of these mechanismdgr large
deflections. This paper presents a “smooth cureatundel” of
flexure behavior that describes the curvature tuityaly flexible
member such as a flexure joint using a basis ektlarthogonal
polynomials. Using this model, we show that it sgible to
predict the planar stiffness these mechanisms, @verases
where the deformation of the hinge is too large tfar linear
Euler-Bernoulli beam bending model. Using bothtérelement
methods and the much less computationally expemsiveosed
model, numerical results will demonstrate thasipbssible to
accurately predict the in-plane compliance of ahlyidlexible
mechanism in the presence of an external load.réselts of
this work are significant because they demonstthtg the
behavior of flexure-based robotic mechanisms cambdeled
quickly and with few parameters, enabling their irselosed-
loop control for situations where collision safétya concern,
and rigorous model-based path planning for obsimabédance,
among other applications.

INTRODUCTION

For many years, there has been a general recagitai
physical or simulated compliance can be used tadrg the
ability of a robot to perform certain tasks, speaily tasks
involving contact with the environment, such as sgrag,
manipulation, and locomotion [1-5]. Mechanical cdisapce in
a robot hand, such as the SDM Hand shown in Figiniplifies
control of a robot because contact does not nedxk texactly
predicted or modeled. The robot can simply be contted to
collide with an object, and the soft contact witisare that the
load is limited by compliance, or balanced betweauitiple
contacts through elastic averaging. Another keyaathge of
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Figure 1. Left: the SDM Hand, a flexure-based, uadwiated robotic hand
designed by the authors. Right: a computationalehofithe SDM Hand
created to study compliant finger behavior

planned-in compliance is robustness to unforesexdlisions
with objects in an uncertain environment [6].

One obstacle to progress in this field is the la€lgood
constitutive models for large-deformation flexuoénjs. These
elastic elements are often modeled as Euler-Belinbehms
connecting two rigid bodies. Because the beam begndi
equations are nonlinear for large deformation, exiprated
beam profiles are often used in place of exacttiswis [7]. For
example, a flexure is sometimes modeled as anfacorstant
curvature [8], or as a single rotational degreér@édom at the
center of the joint [9]. These methods are capabkstimating
the gross kinematic behavior, in the sense that ahgles
between the manipulator’s rigid bodies are desdribees a
consequence, these models are useful for inverserktics or
motion planning. However, the obvious drawback hese
single-parameter models is their inability to potdithe
compliance of a flexure. A one-degree of freedondehawill,
by definition, admit motion in one direction logaland it will
be infinitely stiff in any other direction. This golem is shared
by other, more accurate models such as the farifyseudo-
rigid body models [10]. The remaining alternative® finite
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element methods [11], or modal methods [12-13]h&athan
having too few degrees of freedom, finite elemermthods
describe the bending of a continuum beam with ndegyrees
of freedom, rendering real-time, model-based cdniwo
planning very difficult. The modal approach, howeve
represents the motion of the flexure as a lineankgpation of
limited number of shape functions that serve asasisbfor
describing the shape of the flexure.

This paper introduces a simple, modal model fongta
flexure motion, based on the assumption that threature of
the flexure is a smooth function, and can be apprated by a
low-order basis of orthogonal polynomials. Thisgelet model
describes the shape of a flexure hinge accurateyugh that
the Jacobian and Hessian of the kinematics cansed to
predict the generalized force and stiffness of &otic
mechanism. Consequently, it can be used as a dgnepose,
rather than special-purpose, model for planar flexaints.

We will proceed in the following order: First, tisenooth
curvature model will be introduced, and the metleédaking
derivatives to find force balance and stiffnesd Wwé shown.
The accuracy of the model will be briefly demontgtda by
comparing the exact solution of Bernoulli's rectalag elastica
problem to the solution obtained by the smooth atume
model. Then, we will demonstrate how this model barused
to accurately predict the in-plane stiffness oflexdre-based
serial link chain to forces at multiple points aorthe
manipulator. Lastly, the results of the smooth ature model
will be cross-checked by finite element beam models
approximating the same model and the same loadinditions.

NOMENCLATURE
s Arc length along the flexure
x(9) Flexure curvature profile

o(9) Flexure angular profile

X(s) Flexurex profile

y(s) Flexurey profile

7(9) The torque profile along the flexure.

L Flexure length

E, I Flexure elastic modulus & bending moment
Xiips Yiips Ptip Flexure tip position and orientation

g=1[de, 01, 02]" Generalized flexure coordinates

fy, §, T, The force and moment on the flexure tip

U The elastic energy of the flexure

The Jacobian of some point on a rolpot,
The Hessian of some point on a rolt,

K The generalized stiffness matrix of a robot
The compliance of a robot at some pojnt,

+—>
Moment arm
normal to load

(8)=F,(X()-%p)

Moment,z(s) & y Deflection
\
\
\

Beam Arc Lengths & x Deflection

Figure 2. The moment profile of a beam undergoémgd deformation due to
a vertical load.

A BETTER MODAL BEAM MODEL
Bernoulli's Beam Bending Model

Bernoulli's model for flexible beams posits thae thlastic
deformation of a beam in bending can be modeledaas
continuous rotation of the beam about some neatta. The
curvature of the beam(s), is the derivative of the beam angle
¢(s) as a function of the arc leng#,,

dé _ (=70
9 K=

1)
Herez(s) is the torque exerted on the beam at any poime.xXT
and y profile of the beam can be found by integrating th
angular profile,

‘;—Z = cos(s)) %)
Y= sing(9) 3)
ds

These equations, taken together as a system, Hieultlito
solve because the torque on a beam loaded at thesea
function ofx(s) andy(s).

K (f, sin@)-f, cos@)+f,)/El
e “ @
s| X cos@)
y sin(@)

The torque profile can be thought of as a tip mdmgplus an
end load, multiplied by the projected distance rairto the
direction of applied tip loadf f,), as shown in Fig. 2 for the
simple case of a beam undergoing a purely vertaad. To
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describe the beam profile without solving this etm we can
make a few simplifying assumptions. First, as Rigllustrates,
the variation of the torque with the length of theeam is fairly
smooth, because the profile of the beam is smobils, it
would be reasonable to approximate the torque,hemde the
curvature, as having a linear or quadratic prafea function of
beam length. This model will be reasonable as lasgthe
flexure force and curvature of the flexure are $mabugh that
the bending profile is smooth.

Model Order Choice

The model presented in this paper approximates the

curvature of a bending beam as a three-parametengoial
function of arc length. The primary reason for tbi®ice was
the insight that at minimum, three parameters aedad to
independently describe the behavior of a flexuiatjahe tip
position &y, Yip) and orientationgg,. These three values can be
used to describe a flexure joint in Denavit-Harengbnotation,
as a transformation from one link to the next. bkes sense,
then, to include at least three parameters inléh@ife model. It
also makes sense to avoid the inclusion of any parameters,
because a larger number of parameters would gesrahat
there will be some internal degrees of freedomhim flexure
that do not result in any motion of the rigid linkswhich it is
attached. As a result, the equations of motion diddve an
extremely ill-conditioned mass matrix as a restilhaving to
simulate internal vibrational modes of the flexure.

The quadratic model of flexure curvature was wnitte a
basis of orthogonal polynomials, namely Legendrgrpomials
that have been translated and scaled to be ortabgaer the
length of the flexure, frors=0 tos=L,

2s—-L
+

6s® —6sL+ L?
L2 2

L3

K(s9) =0, +q, (5)

The parametersy, q;, andg, act as a generalized coordinate
vector describing the shape and the elastic eradrthe flexure.

Flexure Shape

Because a flexure joint serves to connect two rlijiks
together, the critical aspect of the flexure shé#pg must be
captured is the location of the flexure endpoiRrgy, (Yip, @ip)-
The angular profilep(s, g), is the integral of the curvature,

¢(sg)=jk(s_0)ds

_ s s’ -sL 2s® =3s’L +sl?
=q, I+q1 L2 +0q, E

(6)

At the end of the flexurestL), the tip angle is equal tp. This
is a happy side effect of using orthogonal polyragjias all the
higher, non-constant terms must integrate to zero:

Xtip

— 4/} )

Link-to-Link Yip

Coordinate o

Transformation

Figure 3. The relative position and orientatioreath link in a flexure-based
robot can be described by three paramexgysysp, andgip.

4, =#(La)=q, @

The tip position of the flexure can be found byegrating the
cosine and sine of the angular profile,

X,, = [ cosp(s q)ds (8)
Yy = [ Sin@(s a)ds 9)

These expressions are transcendental, so direntla@bn is
very difficult. Rather than trying to use the traesdental
solution, it is better to use a polynomial integdn for cosine
and sine, so that (8) and (9) can be analyticatiygrated. If the
range of flexure bending is limited to 90° or ledbe
interpolating function only has to be accurate odinated
interval. Any good interpolating method (such asei@shev
interpolation [14]) will produce a low order polyméal that can
be used to calculatg, andy, accurately.

Elastic Energy

A Lagrangian model of a machine element can beritest
by generalized coordinate using a shape functiticiwhas just
been computed, and a function describing the enefgthe
system in any configuration. In this case, Berrisulinodel
provides a constitutive description of the energyai bent
flexure:

U@ =5 [K(s ) ds (10)

If the parameterized curvature from (5) is substiduin here,
the resulting energy function is a weighted sumsqtiared
parameters,

El 9> g’
U@ =—|g?+—=+—22
@ 2L (qo

3 5 (11)
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Because the polynomial basis used to represerduiivature is
orthogonal, there are no cross-terms in this eswes

Summary

So far, a model has been developed, based on the

assumption that the curvature of a bending beam lman
approximated using low-order, orthogonal polynomidrhis

modal assumption can be carried forward to find gbsition

and orientation of the beam tip as a function & thodal

coordinates, and also the energy of the beam in eyt

configuration describable by the coordinates. la fbllowing

sections, we will demonstrate how this model camyglied to

accurately describe the deformation and stiffnelsdlexure

hinges.

FORCE AND EQUILIBRIUM
The Principle of Virtual Work

The advantage of describing the deformation oéaLite in
generalized coordinates rather than as a diffeeatjuation is
the applicability of standard tools for robot arsddy For
example, suppose that a manipulator with flexuriitgois
loaded with a forcd, at a pointp. The balance of generalized
forces, F, for any configurationg can be described by
Castigliano’'s theorem looking at the derivativetoé energy
function with respect tqg:

F=0U@+J,@"f (12)

Here J(g) is the Jacobian of the poipt When the right hand
side of this expression is equal to zero, thés an equilibrium

configuration. For a mechanism having multiple fiex hinges,
each hinge will be kinematically described by angfarmation

matrix,

cos@,,) -sin@,) X,
T =|sin@,) cos@,) VY,
0 0 1

(13)

The Jacobian of any point on the mechanism carobeguted
by the product rule, and will involve the partiarivatives of
each transformation with respect to its joint vilés. For the
purpose of modeling a serial manipulator havingtfte joints,
the partial derivatives of (7), (8) and (9) cancoenputed,

99, _ {l ' =0 (14)
0q, 0 i#0

X, P 09,

— = [ sin@(s @) —*ds (15)
aqi 0 - aQi

Figure 4. Bernoulli's rectangular elastica is theve formed by bending a
cantilevered beam to a 90° angle using a compe §sigef,.

l f.=-34376E1L>

Tip error:
Ax=10.26%
Ay=0.02%
dp=0.07°

Figure 5. The smooth curvature model reproduciegstiape of the
rectangular elastica.

ay,
aq,

(16)

i 09,
= jcos@(s g)) a ds

0

The trigonometric functions in (15) and (16) canimtegrated
by applying a Chebyshev interpolation, as was presly done.
Alternatively, the polynomial expressions resultifpm the
interpolation and integration of (8) and (9) can dieectly
differentiated. The gradient of the energy funcfiam (11) can
be written as a matrix multiplication,

1 0 0Taq
oU@=2Ho 13 0 |q, (17)
0 0 1/5|q,

Finding Equilibrium under Load

To demonstrate that this model accurately capttnes
nonlinear deformation of a flexure in bending, thedal
solution to a canonical problem in nonlinear defation is
presented here. The rectangular elastica probleyagd by
Jacob Bernoulli in 1692 [15], is the problem ofdiimg the
compressive load which, when applied to the tipadbeam,
causes it to bend over to 90°, as depicted in £ig.he exact
solution to this problem is well-known, and it da@ computed
numerically by straightforward integration of (4 a two-point
boundary value problem. The method of solutionoidix the
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Compliance Ellipse Comparison

1 Parameter Model 3 Parameter Model
(constant curvature) (smooth curvature model)
C,,=0.2178 C,,=0.2876

Cpr,=0 C,,=0.0069

g =1.0521 # =0.9882

16 Parameter Model
(finite element model)

C,,=0.2873
C,,=0.0069
6 =0.9896

Figure 6. The tip compliance ellipses of the comistairvature model, the smooth curvature model,aahfl element finite element flexure model.

angle at the tip of the beam to 90°, iterativeliegmating and
choosing the value of compressive load yielding® afigle at
the base of the beam. The value of the compredeiee f,
resulting in this condition can be found as a fioncbfE, | and
L,

f L2

=-34376.. (18)

When this force is applied to the end of the beatné form of
(12), the equilibrium position of the smooth currat model
matches the exact solution within 0.26%xjn0.02% iny, and
0.07° ing. Figure 5 plots the deformed profile of the smooth
curvature beam, with an asterisk indicating the tposition of
the beam tip for the rectangular elastica curve.

STIFFNESS

The previous section briefly demonstrated how theath
curvature model can be used to find the equilibrairape of a
beam under load, even for large angle deformafidve more
critical question is the ability of this model taeplict the
compliance of a manipulator. By looking at the locariation
in net generalized force as a function gyf the generalized
stiffnessK (g) can be written:

K(@=0,0U(@+H,@"f_ (19)

The Hessian of pointp, Hy(q), is the tensor of partial
derivatives ofy(g). As before with the Jacobian, the Hessian of
any point is calculated using the partial derivediof each joint
transformation matrix. The derivatives (14), (15dg16) can
be again taken:

a 2¢tip -

20
dq,0q, (20)

6 Xtip :—j.sin(¢(s, q)) a ¢tip dS_

00,99, 0 —0q,0q, (21)
L a¢tip a¢tip
jcos@(sg))a—wds

0%y, |

s =[cosb(s ) ‘Zq ds-

e (22)
. ¢tip a¢tip
[singp(s D5y g 0

As before, the result of this is a polynomial exgsien for each
partial derivative. The energy Hessian is easiljivéd from
17),

o[t oo
D0V@=7-/0 13 0 (23)
0 0 1/5

Finding the Compliance of a Point on a Robot

Once the generalized stiffness matrix for a syste€iia),
has been found, the compliarCgof a pointp on the robot can
be found using the Jacobian of that point’s coatdis [16],

C,(@=3,(@K (@I, (@) (24)

This could be used, for example, to describe thaptiance
“ellipses” along the surface of a gripper, so thabntroller had
some confidence about how it could move withoutngei
damaged in an accidental collision. As a simplesitation of
how well the smooth curvature model predicts st a
flexure was modeled using a constant curvature m&dethe
proposed three parameter model, and with a 16 elefimgte
element Euler-Bernoulli model, vis. [11]. The camgt
curvature model is essentially the truncation of gmooth
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Compliance ellipses —»

/

Tendon active, -10 N force

Tendon slack, 0 N force

Figure 7. Compliance ellipses for the two-link SDikbers.

curvature model to one parameter. A complete detszni of the
constant curvature model kinematics can be foun@8JinThe
beam parameters were non-dimensionalized, so thatEL =
1. A pure moment was applied to the tip of eacmbédsending
it to 90°. This served as a fair comparison casealiee the
solution to this loading condition is an arc, aphahat the
constant curvature model is capable of reproducing.

As the results in Fig. 6 demonstrate, the smootkiature
model agrees to with the finite element model tthini0.15%.
The constant curvature model under-predicts theptiante of
the flexure tip by 24% in the direction of maxima@ampliance.
In the direction of minimum compliance, the constaurvature
model fails to predict any compliance, which is esied due to
the fact that there are fewer degrees of freedonménmodel
than there are directions in the plane.

Two-Link Finger Models

To demonstrate that the smooth curvature model bman
used to predict compliance of larger structurespaalel of a
two-link finger from the authors’ SDM Hand [6] wasodeled
in Denavit-Hartenberg form in Matlab. The fingemsasts of
two links connected by flexures, driven by a singledon that
runs through the middle link to the distal link, evh it is
anchored. Figure 7 depicts this hand in two coméijans: at
the left, the tendon is pulled with a force thalkaigye enough to
close the hand. At the right, the tendon is slackthe finger
hangs limp. The compliance of the center of eadth qa the
finger was predicted using (24), and the resulogpliance
ellipses are overlaid onto the images. The redutiie analysis
was compared to a finite element model of the séinger,
using 16 rotational elements to model each flexoirg. Table
1 compares the results from the finite element rhodethe
results from the smooth curvature model. The resullicate
that these two modeling techniques agree closelpredicting
the stiffness of the finger. This is encouraginggduse the vast

Table 1:Finger Compliance, FEM vs. Smooth Curvature
Case Parameter FEM Smooth
Curvature
Tendon Max Compliance| 1.03x10° | 1.03%107
active, Min Compliance | 1.92&10* | 1.92%10*
middle pad "y1ai Axis Angle | 78.251° 78.350°
Tendon Max Compliance| 6.99%10° | 7.00610°
active, distal| Min Compliance | 4.62%10° | 4.62%10°
pad Maj. Axis Angle | 63.865° 63.968°
Tendon Max Compliance| 1.97x10° | 1.97(107
slack, Min Compliance | 1.01%10* | 1.02x10*
middle pad "yiai Axis Angle | -47.399° ~47.397°
Tendon Max Compliance| 1.54&10" | 1.54610"
S'agk' distal M Compliance | 3.14610° | 3.14610°
pa Maj. Axis Angle | -50.971° -50.971°

reduction in the number of parameters needed torithesthe
finger will enable faster, more compact models tlain
hopefully be used to make real-time decisions abwath
planning, grasping and manipulation.

CONCLUSIONS

This paper has introduced a new model for plarexufie
joints that consistently represents the flexur@'st-brder and
second-order behavior, for example, the balancéomfes as
represented by the Jacobian and the stiffnesspassented by
the Hessian. This is extremely important if the Igsia of
flexure-based robotic mechanisms such as the SDM gato
be formalized to a greater degree. There is notesp@ this
paper to exhaustively explore the accuracy of tloeleh the
authors are working on a longer paper that examihes
accuracy of this model in predicting both the defation of the
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flexure under arbitrary end loads, as well as thitya of the
smooth curvature model to predict the first sevdmatkling
modes of an end-loaded flexure. Buckling is an irtgodt
phenomenon to model accurately, especially in gngspnd
manipulation, where a buckling mode could represeway in
which the object can pop or twist out of a gripper.

Another appealing direction of future research le t
examination of “massless” flexure modeling, thatsgidying
how the inertial matrix of a manipulator scalestlzes flexures
become lighter and lighter. It seems possible that small
number of parameters used by the smooth curvatwdeim
could render this model quite useful for dynamiowdation and
inverse dynamics.

As always, a few caveats are in order with this eholirst,
all of the beam models used here are Euler-Berinbethm
models, so they disregard deformation in tensiod sinear.
Users would do well to determine whether their dilexcan be
reasonably modeled using the Euler-Bernoulli modeljf not,
whether correction factors exist for coarse appnaxion. The
biggest thing to keep in mind, however, is that irftexure
hinges also have a great deal of out-of-plane ciam@t. Just as
the constant curvature model under-predicts thepldane
compliance of a flexure, the smooth curvature maueHicts
no out-of-plane compliance whatsoever. Better modadels of
out-of-plane flexure behavior are an appealing diibe of
future research.
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