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ABSTRACT 

 Robot manipulators having elastic links or flexure joints 
have a number of advantages, especially in simplifying the 
control of contact with other objects. However, current 
simplified parametric models of flexure motion do not 
accurately predict the behavior of these mechanisms under large 
deflections. This paper presents a “smooth curvature model” of 
flexure behavior that describes the curvature of a highly flexible 
member such as a flexure joint using a basis of three orthogonal 
polynomials. Using this model, we show that it is possible to 
predict the planar stiffness these mechanisms, even in cases 
where the deformation of the hinge is too large for the linear 
Euler-Bernoulli beam bending model. Using both finite element 
methods and the much less computationally expensive proposed 
model, numerical results will demonstrate that it is possible to 
accurately predict the in-plane compliance of a highly flexible 
mechanism in the presence of an external load. The results of 
this work are significant because they demonstrate that the 
behavior of flexure-based robotic mechanisms can be modeled 
quickly and with few parameters, enabling their use in closed-
loop control for situations where collision safety is a concern, 
and rigorous model-based path planning for obstacle avoidance, 
among other applications. 

 
INTRODUCTION 

 
For many years, there has been a general recognition that 

physical or simulated compliance can be used to improve the 
ability of a robot to perform certain tasks, specifically tasks 
involving contact with the environment, such as grasping, 
manipulation, and locomotion [1-5]. Mechanical compliance in 
a robot hand, such as the SDM Hand shown in Fig. 1, simplifies 
control of a robot because contact does not need to be exactly 
predicted or modeled. The robot can simply be commanded to 
collide with an object, and the soft contact will ensure that the 
load is limited by compliance, or balanced between multiple 
contacts through elastic averaging. Another key advantage of 

planned-in compliance is robustness to unforeseen collisions 
with objects in an uncertain environment [6].  

One obstacle to progress in this field is the lack of good 
constitutive models for large-deformation flexure joints. These 
elastic elements are often modeled as Euler-Bernoulli beams 
connecting two rigid bodies. Because the beam bending 
equations are nonlinear for large deformation, approximated 
beam profiles are often used in place of exact solutions [7]. For 
example, a flexure is sometimes modeled as an arc of constant 
curvature [8], or as a single rotational degree of freedom at the 
center of the joint [9]. These methods are capable of estimating 
the gross kinematic behavior, in the sense that the angles 
between the manipulator’s rigid bodies are described; as a 
consequence, these models are useful for inverse kinematics or 
motion planning. However, the obvious drawback to these 
single-parameter models is their inability to predict the 
compliance of a flexure. A one-degree of freedom model will, 
by definition, admit motion in one direction locally, and it will 
be infinitely stiff in any other direction. This problem is shared 
by other, more accurate models such as the family of pseudo-
rigid body models [10]. The remaining alternatives are finite 

      

Figure 1. Left: the SDM Hand, a flexure-based, underactuated robotic hand 
designed by the authors. Right: a computational model of the SDM Hand 

created to study compliant finger behavior 



 2 Copyright © 2010 by ASME 

element methods [11], or modal methods [12-13]. Rather than 
having too few degrees of freedom, finite element methods 
describe the bending of a continuum beam with many degrees 
of freedom, rendering real-time, model-based control or 
planning very difficult. The modal approach, however, 
represents the motion of the flexure as a linear combination of 
limited number of shape functions that serve as a basis for 
describing the shape of the flexure. 

This paper introduces a simple, modal model for planar 
flexure motion, based on the assumption that the curvature of 
the flexure is a smooth function, and can be approximated by a 
low-order basis of orthogonal polynomials. This elegant model 
describes the shape of a flexure hinge accurately enough that 
the Jacobian and Hessian of the kinematics can be used to 
predict the generalized force and stiffness of a robotic 
mechanism. Consequently, it can be used as a general-purpose, 
rather than special-purpose, model for planar flexure joints. 

We will proceed in the following order: First, the smooth 
curvature model will be introduced, and the method of taking 
derivatives to find force balance and stiffness will be shown. 
The accuracy of the model will be briefly demonstrated by 
comparing the exact solution of Bernoulli’s rectangular elastica 
problem to the solution obtained by the smooth curvature 
model. Then, we will demonstrate how this model can be used 
to accurately predict the in-plane stiffness of a flexure-based 
serial link chain to forces at multiple points along the 
manipulator. Lastly, the results of the smooth curvature model 
will be cross-checked by finite element beam models 
approximating the same model and the same loading conditions. 

NOMENCLATURE 
 

 
s Arc length along the flexure 
κ(s) Flexure curvature profile 
φ(s) Flexure angular profile 
x(s) Flexure x profile 
y(s) Flexure y profile 
τ(s) The torque profile along the flexure. 
L Flexure length 
E, I Flexure elastic modulus & bending moment 
xtip, ytip, φtip Flexure tip position and orientation 
q = [q0, q1, q2]T Generalized flexure coordinates 
fx, fy, fφ The force and moment on the flexure tip 
U The elastic energy of the flexure 
Jp The Jacobian of some point on a robot, p 
Hp The Hessian of some point on a robot, p 
K The generalized stiffness matrix of a robot 
Cp The compliance of a robot at some point, p 

 

A BETTER MODAL BEAM MODEL 
 

Bernoulli’s Beam Bending Model 
 

Bernoulli’s model for flexible beams posits that the elastic 
deformation of a beam in bending can be modeled as a 
continuous rotation of the beam about some neutral axis. The 
curvature of the beam, κ(s), is the derivative of the beam angle 
φ(s) as a function of the arc length, s, 
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Here τ(s) is the torque exerted on the beam at any point. The x 
and y profile of the beam can be found by integrating the 
angular profile, 
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These equations, taken together as a system, are difficult to 
solve because the torque on a beam loaded at the end is a 
function of x(s) and y(s). 
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The torque profile can be thought of as a tip moment fφ plus an 
end load, multiplied by the projected distance normal to the 
direction of applied tip load (fx, fy), as shown in Fig. 2 for the 
simple case of a beam undergoing a purely vertical load. To 
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Figure 2. The moment profile of a beam undergoing large deformation due to 
a vertical load. 
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describe the beam profile without solving this equation, we can 
make a few simplifying assumptions. First, as Fig. 2 illustrates, 
the variation of the torque with the length of the beam is fairly 
smooth, because the profile of the beam is smooth. Thus, it 
would be reasonable to approximate the torque, and hence the 
curvature, as having a linear or quadratic profile as a function of 
beam length. This model will be reasonable as long as the 
flexure force and curvature of the flexure are small enough that 
the bending profile is smooth. 
  
Model Order Choice 
 

The model presented in this paper approximates the 
curvature of a bending beam as a three-parameter polynomial 
function of arc length. The primary reason for this choice was 
the insight that at minimum, three parameters are needed to 
independently describe the behavior of a flexure joint: the tip 
position (xtip, ytip) and orientation, φtip. These three values can be 
used to describe a flexure joint in Denavit-Hartenberg notation, 
as a transformation from one link to the next. It makes sense, 
then, to include at least three parameters in the flexure model. It 
also makes sense to avoid the inclusion of any more parameters, 
because a larger number of parameters would guarantee that 
there will be some internal degrees of freedom in the flexure 
that do not result in any motion of the rigid links to which it is 
attached. As a result, the equations of motion would have an 
extremely ill-conditioned mass matrix as a result of having to 
simulate internal vibrational modes of the flexure.  

The quadratic model of flexure curvature was written in a 
basis of orthogonal polynomials, namely Legendre polynomials 
that have been translated and scaled to be orthogonal over the 
length of the flexure, from s=0 to s=L, 
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The parameters q0, q1, and q2 act as a generalized coordinate 
vector describing the shape and the elastic energy of the flexure. 
 
Flexure Shape 

Because a flexure joint serves to connect two rigid links 
together, the critical aspect of the flexure shape that must be 
captured is the location of the flexure endpoint, (xtip, ytip, φtip). 
The angular profile, φ(s, q), is the integral of the curvature, 
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At the end of the flexure (s=L), the tip angle is equal to q0. This 
is a happy side effect of using orthogonal polynomials, as all the 
higher, non-constant terms must integrate to zero: 
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The tip position of the flexure can be found by integrating the 
cosine and sine of the angular profile, 
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These expressions are transcendental, so direct calculation is 
very difficult. Rather than trying to use the transcendental 
solution, it is better to use a polynomial interpolation for cosine 
and sine, so that (8) and (9) can be analytically integrated. If the 
range of flexure bending is limited to 90° or less, the 
interpolating function only has to be accurate on a limited 
interval. Any good interpolating method (such as Chebyshev 
interpolation [14]) will produce a low order polynomial that can 
be used to calculate xtip and ytip accurately. 
 
Elastic Energy 
 

A Lagrangian model of a machine element can be described 
by generalized coordinate using a shape function, which has just 
been computed, and a function describing the energy of the 
system in any configuration. In this case, Bernoulli’s model 
provides a constitutive description of the energy in a bent 
flexure:  
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If the parameterized curvature from (5) is substituted in here, 
the resulting energy function is a weighted sum of squared 
parameters, 
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Figure 3. The relative position and orientation of each link in a flexure-based 
robot can be described by three parameters, xtip, ytip and φtip. 
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Because the polynomial basis used to represent the curvature is 
orthogonal, there are no cross-terms in this expression. 
 
Summary 
 

So far, a model has been developed, based on the 
assumption that the curvature of a bending beam can be 
approximated using low-order, orthogonal polynomials. This 
modal assumption can be carried forward to find the position 
and orientation of the beam tip as a function of the modal 
coordinates, and also the energy of the beam in any bent 
configuration describable by the coordinates. In the following 
sections, we will demonstrate how this model can be applied to 
accurately describe the deformation and stiffness of flexure 
hinges.  

FORCE AND EQUILIBRIUM 
 

The Principle of Virtual Work 
 
The advantage of describing the deformation of a flexure in 

generalized coordinates rather than as a differential equation is 
the applicability of standard tools for robot analysis. For 
example, suppose that a manipulator with flexure joints is 
loaded with a force fp at a point p. The balance of generalized 
forces, F, for any configuration q can be described by 
Castigliano’s theorem looking at the derivative of the energy 
function with respect to q: 
 

p

T
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Here Jp(q) is the Jacobian of the point p. When the right hand 
side of this expression is equal to zero, then q is an equilibrium 
configuration. For a mechanism having multiple flexure hinges, 
each hinge will be kinematically described by a transformation 
matrix,  
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The Jacobian of any point on the mechanism can be computed 
by the product rule, and will involve the partial derivatives of 
each transformation with respect to its joint variables. For the 
purpose of modeling a serial manipulator having flexure joints, 
the partial derivatives of (7), (8) and (9) can be computed, 
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The trigonometric functions in (15) and (16) can be integrated 
by applying a Chebyshev interpolation, as was previously done. 
Alternatively, the polynomial expressions resulting from the 
interpolation and integration of (8) and (9) can be directly 
differentiated. The gradient of the energy function from (11) can 
be written as a matrix multiplication, 
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Finding Equilibrium under Load 

 
To demonstrate that this model accurately captures the 

nonlinear deformation of a flexure in bending, the modal 
solution to a canonical problem in nonlinear deformation is 
presented here. The rectangular elastica problem, posed by 
Jacob Bernoulli in 1692 [15], is the problem of finding the 
compressive load which, when applied to the tip of a beam, 
causes it to bend over to 90°, as depicted in Fig. 4. The exact 
solution to this problem is well-known, and it can be computed 
numerically by straightforward integration of (4) as a two-point 
boundary value problem. The method of solution is to fix the 

fx

90

 
Figure 4. Bernoulli’s rectangular elastica is the curve formed by bending a 

cantilevered beam to a 90° angle using a compressive force fx. 

 

 

Figure 5. The smooth curvature model reproducing the shape of the 
rectangular elastica. 
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angle at the tip of the beam to 90°, iteratively integrating and 
choosing the value of compressive load yielding a 0° angle at 
the base of the beam. The value of the compressive force fx 
resulting in this condition can be found as a function of E, I and 
L, 
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When this force is applied to the end of the beam in the form of 
(12), the equilibrium position of the smooth curvature model 
matches the exact solution within 0.26% in x, 0.02% in y, and 
0.07° in φ. Figure 5 plots the deformed profile of the smooth 
curvature beam, with an asterisk indicating the true position of 
the beam tip for the rectangular elastica curve.  

STIFFNESS 
 
The previous section briefly demonstrated how the smooth 

curvature model can be used to find the equilibrium shape of a 
beam under load, even for large angle deformation. The more 
critical question is the ability of this model to predict the 
compliance of a manipulator. By looking at the local variation 
in net generalized force as a function of q, the generalized 
stiffness K(q) can be written: 
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The Hessian of point p, Hp(q), is the tensor of partial 
derivatives of Jp(q). As before with the Jacobian, the Hessian of 
any point is calculated using the partial derivatives of each joint 
transformation matrix. The derivatives (14), (15) and (16) can 
be again taken: 
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As before, the result of this is a polynomial expression for each 
partial derivative. The energy Hessian is easily derived from 
(17), 
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Finding the Compliance of a Point on a Robot 
 

Once the generalized stiffness matrix for a system, K(q), 
has been found, the compliance Cp of a point p on the robot can 
be found using the Jacobian of that point’s coordinates [16], 
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This could be used, for example, to describe the compliance 
“ellipses” along the surface of a gripper, so that a controller had 
some confidence about how it could move without being 
damaged in an accidental collision. As a simple illustration of 
how well the smooth curvature model predicts stiffness, a 
flexure was modeled using a constant curvature model [8], the 
proposed three parameter model, and with a 16 element finite 
element Euler-Bernoulli model, vis. [11]. The constant 
curvature model is essentially the truncation of the smooth 

 
Figure 6. The tip compliance ellipses of the constant curvature model, the smooth curvature model, and a 16 element finite element flexure model. 
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curvature model to one parameter. A complete description of the 
constant curvature model kinematics can be found in [8]. The 
beam parameters were non-dimensionalized, so that E = I = L = 
1. A pure moment was applied to the tip of each beam, bending 
it to 90°. This served as a fair comparison case because the 
solution to this loading condition is an arc, a shape that the 
constant curvature model is capable of reproducing. 

As the results in Fig. 6 demonstrate, the smooth curvature 
model agrees to with the finite element model to within 0.15%. 
The constant curvature model under-predicts the compliance of 
the flexure tip by 24% in the direction of maximum compliance. 
In the direction of minimum compliance, the constant curvature 
model fails to predict any compliance, which is expected due to 
the fact that there are fewer degrees of freedom in the model 
than there are directions in the plane.  
 
Two-Link Finger Models 
 

To demonstrate that the smooth curvature model can be 
used to predict compliance of larger structures, a model of a 
two-link finger from the authors’ SDM Hand [6] was modeled 
in Denavit-Hartenberg form in Matlab. The finger consists of 
two links connected by flexures, driven by a single tendon that 
runs through the middle link to the distal link, where it is 
anchored. Figure 7 depicts this hand in two configurations: at 
the left, the tendon is pulled with a force that is large enough to 
close the hand. At the right, the tendon is slack, so the finger 
hangs limp. The compliance of the center of each pad on the 
finger was predicted using (24), and the resulting compliance 
ellipses are overlaid onto the images. The result of this analysis 
was compared to a finite element model of the same finger, 
using 16 rotational elements to model each flexure joint. Table 
1 compares the results from the finite element model to the 
results from the smooth curvature model. The results indicate 
that these two modeling techniques agree closely for predicting 
the stiffness of the finger. This is encouraging, because the vast 

reduction in the number of parameters needed to describe the 
finger will enable faster, more compact models that can 
hopefully be used to make real-time decisions about path 
planning, grasping and manipulation.  

CONCLUSIONS 
 
This paper has introduced a new model for planar flexure 

joints that consistently represents the flexure’s first-order and 
second-order behavior, for example, the balance of forces as 
represented by the Jacobian and the stiffness as represented by 
the Hessian. This is extremely important if the analysis of 
flexure-based robotic mechanisms such as the SDM hand is to 
be formalized to a greater degree. There is not space in this 
paper to exhaustively explore the accuracy of the model; the 
authors are working on a longer paper that examines the 
accuracy of this model in predicting both the deformation of the 

Compliance ellipses

Tendon active, -10 N force                                                     Tendon slack, 0 N force

Compliance ellipses

Tendon active, -10 N force                                                     Tendon slack, 0 N force
 

 
Figure 7. Compliance ellipses for the two-link SDM fingers. 

Table 1:Finger Compliance, FEM vs. Smooth Curvature 
Case Parameter FEM Smooth 

Curvature 
Max Compliance 1.031x10-2 1.032x10-2 
Min Compliance 1.926x10-4 1.927x10-4 

Tendon 
active, 
middle pad Maj. Axis Angle 78.251° 78.350° 

Max Compliance 6.992x10-2 7.000x10-2 
Min Compliance 4.627x10-3 4.625x10-3 

Tendon 
active, distal 
pad Maj. Axis Angle 63.865° 63.968° 

Max Compliance 1.970x10-2 1.970x10-2 
Min Compliance 1.017x10-4 1.022x10-4 

Tendon 
slack, 
middle pad Maj. Axis Angle -47.399° -47.397° 

Max Compliance 1.546x10-1 1.546x10-1 

Min Compliance 3.146x10-3 3.146x10-3 

Tendon 
slack, distal 
pad 

Maj. Axis Angle -50.971° -50.971° 
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flexure under arbitrary end loads, as well as the ability of the 
smooth curvature model to predict the first several buckling 
modes of an end-loaded flexure. Buckling is an important 
phenomenon to model accurately, especially in grasping and 
manipulation, where a buckling mode could represent a way in 
which the object can pop or twist out of a gripper. 

Another appealing direction of future research is the 
examination of “massless” flexure modeling, that is, studying 
how the inertial matrix of a manipulator scales as the flexures 
become lighter and lighter. It seems possible that the small 
number of parameters used by the smooth curvature model 
could render this model quite useful for dynamic simulation and 
inverse dynamics.  

As always, a few caveats are in order with this model. First, 
all of the beam models used here are Euler-Bernoulli beam 
models, so they disregard deformation in tension and shear. 
Users would do well to determine whether their flexure can be 
reasonably modeled using the Euler-Bernoulli model, or, if not, 
whether correction factors exist for coarse approximation. The 
biggest thing to keep in mind, however, is that most flexure 
hinges also have a great deal of out-of-plane compliance. Just as 
the constant curvature model under-predicts the in-plane 
compliance of a flexure, the smooth curvature model predicts 
no out-of-plane compliance whatsoever. Better modal models of 
out-of-plane flexure behavior are an appealing direction of 
future research.  
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