
  

 Abstract— In this paper we investigate a series of candidate 
regular planar mesh geometries in terms of their suitability for 
utilization as mesh primitives for constructing compliant robotic 
structures. In prior work, we established a framework of 
compliant, articulate robotic meshes, termed Modular Active 
Cell Robots (MACROs), created from contractile Shape 
Memory Alloy linear-actuators (Active Cells). In this paper, we 
examine how to utilize these MACROs and other mesh-like 
robots in large regular or semi-regular topologies. We evaluate 
axial strains and stiffness characteristics for a range of MACRO 
meshes created using different mesh-primitives, which are 
drawn from known regular space-filling lattice geometries. We 
then describe the implications of these results on the design of 
MACRO structures, including the tradeoffs between different 
primitives for various structural performance properties.  
 

Index Terms—Cellular and Modular Robots, Networked 
Robots, Simulation and Animation 
 

I. INTRODUCTION 

Discrete material robots lie at the exciting intersection of 
disparate disciplines, aiming at the construction of large-scale 
robotic mechanisms from groups of discrete, simple, and small 
robot units. These systems aim towards creating high degree-
of-freedom articulable structures from homogeneous 
components, especially for resource-starved environments, 
including adjustable cranes for space applications, 
deconstructible architecture in harsh climates, and other 
applications (e.g. [1], [2]). 

A subclass of discrete material robots are mesh-like robots, 
where homogeneous components interconnect to create 
meshes, each leveraging the actions and motions of 
neighboring robotic components. In prior work, we proposed 
a class of such systems called Modular Active Cell robots 
(MACROs) [3], consisting of compliant electro-mechanically 
deformable meshes. The components of the meshes are simple 
contractile Shape-Memory Alloy linear-actuators called 
Active Cells, and passive nodes [4]. We demonstrated the 
feasibility of using MACROs to create simple robotic 
mechanisms, and proposed a robust modeling, simulation and 
control strategy for actuating large instances of MACRO 
meshes [5].  

In this paper, we investigate the use of MACRO meshes to 
design robotic mechanisms, focusing specifically on a useful 
design parameter applicable to all periodic meshes: the mesh 
primitive (Fig. 1(a)-(c)). A considerable literature exists on the 

effect of meshing and mesh refinement for optimizing material 
properties and engineering design. We take inspiration from 
these approaches and apply them to our modular robotic 
system, which differs from existing work by focusing on 
meshes that are physically realized using Active Cells, and 
where both internal actuation as well as external forces 
contribute to the resulting behavior of a given mesh structure. 

We study several mesh primitives by simulating the 
deformation performance of large MACRO meshes created 
from each primitive, measuring bulk parameters such as linear 
strain and axial compressive stiffness. We demonstrate the 
effect of the choice of mesh primitives in constructing 
MACRO meshes through a series of simulations, establishing 
the design tradeoffs incurred for each primitive type.  

The rest of the paper is structured as follows: first, we 
situate our system within the literature of mesh-like and 
discrete material robots, and geometric studies for a source of 
mesh primitives (Section II). Next, we describe the MACRO 
system, including the components of the meshes, and brief 
overview of prior modeling and control research of such 
systems (Section III). Then we discuss mesh primitives in 
some detail, including the selection of primitives both 
applicable to MACRO meshes and of interest from a 
geometric perspective (Section IV). In Section V, we describe 
simulations of MACROs from the selected mesh primitives, 

 

Fig. 1. A series of MACRO meshes using different mesh primitives in 
periodic pattern (a)-(c). In the MACRO framework using hardware 
components (d), each of the mesh primitives generate meshes with a set of 
design tradeoffs in strains from internal actuation and compliance properties 
in response to externally applied loads. Individual MACRO components (e), 
including custom SMA-based linear actuators (Active Cells) and molded 
polyurethane nodes. 
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including the results of material property measurements. Next, 
we discuss the design implications of our testing (Section VI). 
Finally, we conclude with a summary of findings and future 
directions of research. 

II. RELATED WORK 

Mesh-like systems are common in nature and in engineered 
systems, with physical or virtual links and nodes depending on 
the application [6]. Several engineered systems also use 
conceptual links and nodes to formalize the process of design 
and control, such as formation control of mobile robots [7], 
coverage control [8], etc. Decentralized solutions tend to 
produce lower computational cost as the scale of problems 
increases, using a known communication framework while 
allowing mesh nodes and edges to move [9]. For some 
applications, the physical shape of the mesh is an important 
consideration, such as in tensegrity structures and spatial 
mechanisms [10].  

The study of meshes in isolation from physical systems is 
also a considerable field, especially from a geometric 
perspective. This is patently found in truss design [11], 
topology optimization [12], shape optimization [13], finite 
element analysis [14], and others. 

Increasingly, modular and cell-based robots are using 
network formulations similar to our own methods. Micro-
architectured “smart” materials and discrete materials extend 
this formulation to approximate and enhance naturally 
occurring as well as processed materials [15], [16].  

It is well recognized in all these fields that the shape and 
topology of physical meshes contribute significantly to their 
behavior, including stiffnesses and deformations. Our own 
work attempts to extend this knowledge to the case of 
internally actuated meshes, where the stiffness and 
deformation properties can be dynamically adjusted by 
applying power to the boundary of the meshes. We believe that 
electronic control methods for mesh shape control as well as 
the topology and geometry used in the design of the mesh can 
work together to affect physical properties that would not be 
easily possible with either approach alone.  

III. THE MACRO SYSTEM 

Modular Active Cell Robots (MACROs) are discrete 
material robots consisting of deformable meshes created from 
Active Cells and passive compliant nodes. MACROs are 
structural robots, designed to provide shape-changing ability 
to a robotic material. The shape-change in a MACRO mesh is 
caused by internal actuation of the active elements in the mesh, 
as well as an ability to respond to environmental forces. The 
edges of the mesh consist of scalable custom linear-actuators 
made from SMA coils and passive springs: Active Cells [4]. 
The nodes of the MACRO mesh consist of passive, compliant, 
elastomeric torsional joints, which can attach to two or more 
Active Cells depending on the number of arms molded into the 
node. The individual components of the MACRO system are 
shown in Fig. 1(e). It should be noted that a MACRO consists 
of electrical components to power and actuate the robotic mesh 
in addition to the mesh of cells and nodes itself; however, since 
in this paper we focus on the mechanical performance of 
various mesh connectivity patterns, we refer to MACROs and 
meshes interchangeably.  

MACROs are activated by voltages set at two or more 
nodes of the mesh. Each passive compliant node also provides 
access to external power, and all nodes are electrically 
conductive to neighboring cells: two cells mechanically 
connected at a passive node are electrically connected as well. 
Clearly, as the size of the MACRO grows, the number of nodes 
increases depending on the connectivity of the mesh. It would 
be impractical to define the robotic structure with necessary 
wire access to every internal node of the mesh. Thus, in all our 
work, we use the boundary nodes only in providing currents to 
the system and controlling the shape of the MACRO. 

The modularity of MACROs is evident in terms of the 
electrical and mechanical connectivity of multiple meshes. 
Two MACRO meshes, each with a mechanical connectivity 
configuration, electrical connections and power inputs, can 
connect to each other along the boundary of each mesh. This 
is useful for separating mechanical behavior of a complex 
mechanism into discretized modules that perform a specific 
single task. For example, a simple MACRO-based slider-
rocker mechanism can consist of three MACRO modules: a 
rocker, a connecting rod, and a slider (shown diagrammatically 
in Fig. 2). Each of these meshes connect in series along 
specific boundary nodes of the mesh, and are electrically 
isolated from each other. During operation, the connecting rod 
and rocker can be actuated to create a pair of rigid links, while 
the slider can be actuated periodically to give oscillating 
motion.  

We have provided hardware demonstrations of the 
MACRO concept by fabricating Active Cells and passive 
nodes and using boundary-node activation to cause observable 
deformations. It is important to note that the fabricated cells 
and nodes do not represent the only instantiation of the 
MACRO framework for creating mesh robots. In fact, the 
choice of SMA-based cells is itself a design choice on our part. 
The generalized MACRO framework applies equally well to 
any mesh robot having actuated edges and passive compliant 
nodes.  

While it is possible to study the behavior of MACRO 
meshes in hardware, from a practical standpoint, this becomes 
unwieldy as the scale of the structure grows. Thus, we have 
characterized the SMA-based Active Cell in some detail and 
modeled the behavior of resultant MACRO meshes given 
boundary-node voltages and connectivity configurations. This 
model was validated against hardware trials [3], and the 
modeling and simulation of electrical and mechanical response 
of the system was established to be an adequate substitute for 
the hardware instances in terms of the low-bandwidth bulk-
properties of any given MACRO. 

 

Fig. 2. Diagram of a simple multi-module MACRO. The slider-rocker’s 
initial rest position is shown in gray. The actuated position is shown in black. 
Each individual MACRO can be actuated separately, and can be constructed 
from different mesh primitives.  
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Since one of the purposes of a MACRO mesh is to provide 
specific deformations, we identify two avenues of providing 
deformation control:  

• The mechanical connectivity of the mesh components 
during the construction of the mesh.  

• The application of boundary-nodal voltages in any 
given mesh to actuate specific groups of Active Cells 

The latter is explored in concurrent research through the 
development of a robust, simple and scalable control strategy 
for setting nodal voltages that minimizes the error between the 
shape of a MACRO mesh and a given shape it is meant to 
approximate [5]. 

In this paper, we study the former approach using the 
computational MACRO model. We study the effect of a 
specific design variation in constructing meshes: the 
connectivity configuration. It is possible to construct arbitrary 
connections of Active Cells and nodes as a MACRO mesh, and 
then use electronic control to provide motion to match shapes 
as desired. However, there are two complications with this 
naïve approach. First, access to only the boundary-nodes to 
control the shape (positions and relative distances between 
nodes) of the entire mesh can be an under-defined or over-
defined problem depending on the number of nodes and edges 
in the mesh, and it is possible that the desired shape requires 
actuation in an uncontrollable and unobservable direction. 
Second, some shape changes might be possible but require 
high currents to flow across nodes to undergo extreme edge 
contractions in one connectivity configuration, while requiring 
virtually no effort to maintain shape for another connectivity 
configuration; for example, it is far easier to approximate an 
irregular triangle using a triangular mesh configuration than 
using a rectangular mesh configuration. 

IV. MESH PRIMITIVES 

The MACRO framework applies the following constraints 
on a mesh configuration: 

• Polygons enclosed by cells in the mesh are regular at 
rest. The edges of the framework are identical. Thus, 
each shape formed by the cells are polygonal and 
regular while at rest. During actuation, the regularity of 
the polygons will, in general, change, but if all cells are 
at identical states, the resulting polygons will remain 
regular. 

• Polygons enclosed by cells tile edge-to-edge: Since 
connections between adjacent polygons enclosed by 
cells can only happen at the passive nodes, the edge-to-
edge constraint is implied.  

• Vertex transitivity: All vertices of the mesh of a given 
MACRO are connected to identical number of cells. 
While not strictly required by the framework, this is a 
useful generalization for rapid fabrication since only 
one type of molded node need be used for a given 
MACRO. A complex mesh that requires non-transitive 
vertices to account for geometric needs can be 
considered as a MACRO consisting of two or more 
MACRO modules, each of which has vertex 
transitivity.  

Mesh primitives are defined to be small structures of 
Active Cells and nodes that is the “unit cell” of a mesh, i.e. the 
mesh can be described as a periodic tiling of this mesh 
primitive within a specific boundary profile. In general, the 
mesh primitive can be described by a few adjacent polygons 
enclosed by cells in the mesh. 

The combination of the constraints above imply that mesh 
primitives must be connected in uniform tiling patterns. There 
are three mesh primitives that are uniform regular tilings of the 
plane and use a single polygon in their structure: the hexagon 
primitive, the square primitive, and the triangle primitive (Fig. 
3). We refer to these as the simple mesh primitives. 

There are eight mesh primitives that are uniform semi-
regular tilings of the plane, i.e. they use more than one regular 
polygon in their structure (Fig. 4). We refer to these as the 
hybrid mesh primitives. 

We construct large MACRO meshes using simple and 
hybrid mesh primitives, simulating their behavior when 
actuated using a simple voltage setting along the boundary of 
these meshes. The key issues we attempt to resolve using this 
research are:   

• The significance of differences between the different 
mesh primitives for design applications 

• The impact of mesh primitive choice on shape change 
capability for a given amount of power input to the 
MACRO mesh 

• The impact of mesh primitive choice on stiffness (or 
compliance) of the MACRO mesh 

The series of simulated trials of each large mesh instance 
as well as the results of the physical measurements, are 
described in the following section. 

 

Fig. 3. The 3 uniform-regular tilings of the plane [17]. Each of tilings are used 
as simple mesh primitives.  

 

Fig. 4. The 8 uniform-semi-regular tilings of the plane [17]. Two of these 
tilings are used as “hybrid” mesh primitives (Hybrid 1 and 2).  
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V. TEST OF MESH PRIMITIVES AND RESULTS 

In each of the simulated trials, we select one of the mesh 
primitives, and tile a square on the plane that is 15x15 cells in 
length (Fig. 5). When the primitive has irregular boundaries, 
the number of primitive instances used in the tiling is 
computed for each primitive to minimally cover the test square 

sample. For each mesh primitive, the number cells and nodes 
are listed on TABLE I. The table also includes a simple pair of 
equations for generating the number of primitive instances 
required to generate a tiling pattern to fit a square sample size. 

For each sample, two experiments are performed in 
simulation, actuating the sample along the x- and y- axis. For 
actuation along the x-axis, nodal voltages are set up on the 
nodes on the left and right borders of the sample such that a 
constant current of 1A flows from left to right. The 
computation of these voltages is described in [3]. Similarly, for 
actuation along the y-axis, nodes along the top- and bottom- 
edge of the sample are set to voltages to drive 1A between 
these two surfaces.  

For each trial (sample and actuation direction), the overall 
actuation stroke is calculated from the rest configuration. 
Additionally, for each trial, the stiffness of the mesh is 
computed by exerting a 1N distributed load along the right/top 
edge (while the left/bottom edge respectively is held with a 
rigid constraint). Thus, a bulk stiffness measure is taken along 
the x- and y- axis for each trial. The measurements are taken 
at the start of actuation as well as at the end of actuation. The 
samples and the measurements for the simulated experiments 
are shown diagrammatically in Fig. 5, while the results of four 
trials are shown in Fig. 6.  

The MACRO modeling and simulation includes an 
element of noise to be physically realistic and account for 
measurement errors. We therefore run 10 trials for each mesh 
primitive and actuation direction, resulting in 20 trials per 
mesh primitive. SMA is a low-bandwidth actuator, and the 
trial length is set at 10s for all meshes, to allow the meshes to 
complete deforming under the constant input power. 

The bulk strain along the x- and y- axis of the mesh for the 
simulated trials are shown on Fig. 7. The results are segmented 
by the mesh primitive types tested.  

The bulk stiffness along the x- and y- axis of the mesh for 
the simulated trials at the start of the trial are shown on Fig. 8. 
The bulk stiffness measurements for the mesh at the end of the 
actuation are shown on Fig. 9. We discuss the results of the 
trials – especially in terms of design implications of mesh 
primitive selection – in the following section. 

VI. DESIGN IMPLICATIONS OF PRIMITIVE SELECTION 

From Fig. 7, mesh primitive selection is shown to produce 
significant variations in bulk strain. The highest strain in both 
x- and y- directions of actuation is observed for the square 

 

Fig. 5. Test conditions used in simulated experiments. (a) Samples sizes and 
actuation conditions. (b) Strain measurements for the samples. (c) Stiffness 
measurements through the application of simulated loads on the boundary of 
the samples. 

 

Fig. 6. The large meshes constructed for each of the five tested mesh 
primitives (top-left: hexagon, top-right: square, bottom-left: hybrid 1, 
bottom-right: triangle). The deformations are in green, while the rest state is 
shown in gray. Each of the selected deformations are shown for actuation 
along the y- axis (current applied between the top and bottom nodes).  

TABLE I PARAMETERS OF SIMULATION TRIALS 

Name # primitives in x- # primitives in y- # nodes in 
mesh 

# cells in 
mesh 

Hexagon 𝒏 =
𝟐(𝒅 − 𝟎. 𝟓)

𝟑
 𝒏 =

𝒅
√𝟑

 218 307 

Square 𝒏 = 𝒅 𝒏 = 𝒅 256 480 

Triangle 𝒏 = 𝟐(𝒅 − 𝟏) 𝒏 =
𝟐𝒅
√𝟑

 285 788 

Hybrid 1 
(33.42) 𝒏 = 𝒅 𝒏 =

𝒅 − √𝟑 𝟐⁄

𝟏 +	√𝟑 𝟐⁄
 286 645 

Hybrid 2 
(3.6.3.6) 𝒏 =

𝒅 − 𝟏
𝟐

 𝒏 =
𝒅
√𝟑

 222 410 

Note: In the equations above d refers to a distance in cell lengths to be tiled 
by each mesh primitive, and n is the number of primitive instances required 
to tile this distance. 

6437



  

primitive, which supports the intuitive hypothesis that 
alignment of cells along the direction of actuation increases 
strain along that direction. Additionally, the square primitive 
produces comparable strains along each axis, which matches 
the symmetric structure of the primitive. 

The bulk strains along x- and y- are not equivalent for most 
of the primitives, however. This is most pronounced for the 
primitives that contain triangular polygons (simple triangle 
and the hybrids). Since triangular polygons are not congruent 
about the two axes of actuation, the bulk strains for the 
primitives are similarly different. In fact, for a single upright 
triangle, the strain along the y-axis (along the “height”) is 
expected to be 62.4% of the strain along the x-axis (along one 
of the sides). For the simple triangular primitive, the strain 
along y- is 5.6±0.6%, whereas the strain along x- is 9.9±0.1%, 
a ratio of ~56.8%. 

From Fig. 8, we can compare the stiffness of the MACRO 
meshes at rest. Intuitively, the stiffness of the meshes are likely 
to be most closely related to the topology of the mesh 
primitives at this time, since they most strongly resemble the 
theoretical tiling at t = 0.  

We observe that the hexagon primitive is the least stiff of 
the tested primitives, along both axes of measurement. This is 
accounted for by the sparse structure of this primitive, as well 
as the high degree of branching. Powering the hexagonal 
primitive along either axis always causes deformation along 
the perpendicular axis as well; the deformed structure of two 
trials of the hexagon primitive are shown on Fig. 10 to 
illustrate this idea.  

The hybrid 1 primitive uses a mixture of squares and 
triangles, and the resultant meshes have comparable stiffness 
to the simple square and triangle primitives. The hybrid 1 has 
strain along y- that is 7.4±0.4% higher than for simple triangle, 
and 2.7±0.1% lower than the simple square.   

The hybrid 2 primitive, using hexagons and triangles, has 
higher stiffness than the simple hexagon primitive due to the 
triangles acting as bracing structures (stiffness increase of 
0.6±0.3% along x- and 2.0±0.1% along y- when compared to 
the simple hexagonal primitive).  

As the meshes deform from internal forces, the stiffness of 
the meshes vary. This is visualized on Fig. 9. Interestingly, 
every primitive has considerably lower stiffness once the mesh 
is activated (compared to stiffness at rest state). This is 

noteworthy because it is unlike most bulk materials, where the 
stiffness increases with compression.  

This unusual phenomenon is a consequence of the way 
MACRO meshes deform and respond to forces. When a 
MACRO is at rest, the cells and nodes are arranged in a regular 
pattern, and the sparseness and connectivity of the components 
contribute to a measure of stiffness of the structure. When the 
structure is powered, the cells increase in stiffness while the 
passive nodes remain equally stiff. Since the nodes have 
considerably lower stiffness than cells (to allow for high 
articulation of the structure), the structure becomes more 
compliant to external forces as the regular patterns become 
increasingly more dislocated. This is the inverse of the 

 

Fig. 8. Compressive stiffness at the start of trial (t = 1s), shown segmented by 
type of mesh primitives. Left plot shows stiffness along x-, right plot shows 
stiffness along y-. 

 

Fig. 9. Compressive stiffness at the end of trial (t = 10s), shown segmented 
by type of mesh primitives. Left plot shows stiffness along x-, right plot 
shows stiffness along y-. 

 

Fig. 10. Start and deformed positions for a small hexagonal mesh actuated 
along x- and y- axes. The hexagon primitive is branched symmetrically along 
the x- and y- axes, and thus power application along either dimension 
collapses the entire structure in a similar fashion. 

 

Fig. 7. Bulk-strain along x- and y-axis, shown segmented by type of mesh 
primitives.  
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presence of grain boundaries in latticed physical materials. 
When grain boundaries are aligned in opposition to external 
forces (boundary nearly perpendicular to applied force), the 
material is in compression and stiff. When grain boundaries 
are aligned to take advantage of shear (boundary in line with 
force), the layers can slide and the material is more compliant. 
Similarly, when an actuated MACRO is in compression, the 
applied force is more likely to deform through nodal torsion 
rather than cell compression. This effect is so pronounced 
(actuated cell stiffness much greater than node torsional 
stiffness), that all primitives demonstrate very low bulk 
stiffness when actuated. 

The combination of these factors contributes to a set of 
design tradeoffs for each mesh primitive type. High strains are 
best obtained from regular simple mesh structures, such as the 
simple square or hybrid 1 primitives. High axial stiffness is 
best obtained from a square or a triangulation, such as simple 
triangle primitive, simple square or hybrid 1.  

In many applications, high compliance is more important 
than strain. In such cases, the hexagonal primitive is 
appropriate. Depending on the tasks a given mechanism needs 
to perform, multiple MACROs with different mesh primitives 
may be appropriate to use. 

VII. CONCLUSIONS 

We have described the use of mesh construction through 
primitive selection as a method of controlling the bulk material 
properties of compliant mesh-robots. Tested mesh primitives 
demonstrate varying strains and compressive stiffnesses along 
the x- and y- axes for identical test conditions: different choice 
of primitives have up to 12% difference in axial strain, and up 
to 355 N/m difference in compressive stiffness.  

In future work, we plan to continue testing more semi-
regular mesh primitives, as well as study the effect of varying 
nodal torsion to affect unactuated vs. actuated mesh instances. 
We also plan to apply the research on mesh primitives to the 
design and control of mechanisms constructed using 
MACROs. 
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