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I. MOTIVATION

The dexterous capabilities afforded to humans by our hands
is unparalleled to that of other species, allowing us to complete
an array of daily manipulation tasks with ease [[L]. As an
illustration, let’s examine the task of inserting a key into a lock.
First, the hand must successfully acquire a stable grasp on the
key, properly selecting contacts and maintaining them online
via proprioceptive and tactile feedback. Once stable, the key
is reconfigured within-hand via coordinated finger motions—
balancing forces while making and breaking contact during
a finger gaiting process. Upon reorientation, the hand-object
system then evaluates how forces must be applied by the key
into the lock tumbler for successful insertion and rotation.

This task decomposition serves as a single elaboration of the
complex manipulation tasks humans mindlessly complete daily;
seamlessly combining sensing, planning, and control. Numerous
other tasks can be similarly decomposed, e.g. washing dishes
[2]], inserting batteries [3]], or preparing food [4]. In emphasizing
this narrative, service robots of the future must be able to
complete a similar array of “everyday” tasks as that of a human,
which has been unrealized by robots to date. In this research
statement, I will elaborate on what we feel is a promising
approach towards establishing these capabilities for hands and
the role we believe compliance will play in this process.

Research Overview: Complex robots complicate control;
keep designs simple and exploit emergent behavior. To this end,
we propose to investigate how simple hands with compliant
behavior can be leveraged to complete complex manipulation
tasks. In our work, we (1) demonstrate the extent by which
we can observe, plan, and control parasitic object motion [5]
for in-hand manipulation solely through vision, i.e. without
tactile sensors or joint encoders, and (2) propose fast, online
multi-modal planning and control approaches for fixed-contact
and fluid-contact scenarios with online adaptation for recovery.

II. BACKGROUND

The fingers on hands can be conceptualized as a group of
serial-link manipulators that must work in unison with one
another; acquiring and modulating forces to maintain a stable
grasp. Traditional works investigated how to do this with rigid,
high-DOF end effectors [6]. However, these systems quickly
became overly-complicated as they relied on tactile sensors,
joint encoders, and advanced control/modeling architectures.
Often, their utility in real-world scenarios were plagued by
modeling inaccuracies, ultimately leading to task failure.

This complexity can be alleviated by thoughtful design.
Within the past decade, soft, compliant, and underactuated

hands have garnered much support within the robotics com-
munity, as these mechanisms are able to “absorb the slack™ in
modeling inaccuracies [[7 18, 9]]. This classification of hands
has shown to be particularly beneficial for grasping and online
learning as they require less planning, less control, and little
to no sensing in a more inexpensive package [10]. More
explicitly, the kinematic reconfigurability of these mechanisms
have turned the traditional position + force balancing problem
into either a position or force control problem. While beneficial
for grasping, in-hand manipulation, however, has seen little to
no progress in the previous decade.

Estimated models, either analytical or learned [11], can
be better leveraged when feedback is available. Closing the
control loop through an external source, i.e. vision, can provide
valuable information without complicating hand design. To this
end, individual properties of the system, e.g. object poses,
joint angles, contact phenomena, etc., are tracked while the
passive adaptability of the hand innately modulates forces
appropriately [12]. Formally, [13] has shown that visually
extracted, mechanics-based features can sufficiently define the
state of a hand-object system and we use this finding to support
our approach with this sensing modality.
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Fig. 1: (a) In-hand models that control virtual frames along an arbitrary
trajectory can facilitate (b) completion of complex tasks such as cup stacking.

III. EXTENDING DEXTEROUS CAPABILITIES OF HANDS

1) Fixed-contact manipulation: The traditional linear re-
lationship between actuator motion and object motion, i.e.
the Hand-Object Jacobian [14], does not generally exist for
compliant hands [15]]. Thus, as an initial investigation [L6], we
were interested in developing a representation that estimates
this non-linear, compliant response. The model formulated,
which utilizes geometric features extracted through vision, is
generalized in terms of the estimated internal energy of the
system, as determined by the compliant joint springs. It solves
an optimization problem for the equilibrated next-state joint
configuration, given: (i) an object-agnostic contact triangle
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Fig. 2: (a) By visually tracking the cube online, our multi-modal planning and control algorithm is able to successfully achieve any object pose in SO(3), (b)
even with undesired perturbations. To the best of the author’s knowledge, this is the first work in the literature to accomplish such capabilities against gravity
and without a support surface. The success of our method can be largely attributed to the “inflated” modal transfer regions with online feedback from vision.

(Fig. ma), (i1) the current joint configuration, and, (iii) the
actuation input. The principle of energy minimization supports
our underlying theory for this method, where the system wants
to lie in its lowest energy configuration—an idea similar to
manipulation funnels in the literature [8, [17].

Our formulation serves as an estimated state transition model
of the system, which provides for basic offline understanding
of the hand’s response to input. We then extend its utility in
an online Model Predictive Control (MPC) framework that
continually re-evaluates the transition model via a learned
network. Compared to other online MPC methods in the
literature, e.g. [[18, [19} 20], ours was more computationally
efficient and was shown to sufficiently adhere to the constraints
of our task for real-world scenarios.

In-hand manipulation is particularly beneficial for assem-
bly and insertion tasks, reducing system energy that would
otherwise require whole-arm motion. Thus, we utilize our
approach to assist in tight-tolerance (<0.25mm) and open-
world insertion tasks (Fig. [T]b) [21]. Traditionally, precision
manipulators equipped with expensive force/torque sensors
mostly dominated the literature, e.g. [22, [23| 24]]-representing
complicated approaches to a seemingly simple problem. In
our extension, we showed that by combining our MPC control
framework, an external object tracker [25] 26]], and the hand’s
passively compliant nature, we were able to account for any
pose uncertainty between the object and the hole during
insertion, providing a much simpler approach compared to
those previously in the literature. Experiments demonstrated
numerous successful insertions; from tight, industry-relevant
tolerances of 5 different object geometries to delicate stacking,
packing, and plug insertion open-world scenarios.

2) Fluid-contact manipulation: We can use the basis of
our models in fixed-contact scenarios to extend to conditions
where the contacts are always transitioning. Fundamentally,
in-hand manipulation is often simplified by “fixing” contacts to
an object, constraining the system to a single hand-object con-
figuration manifold. This restraint limits the object’s potential
workspace and constrains it according to the kinematics of the
hand. A way to alleviate such restraint is to continually change
contact locations, either through coordinated slip or through
finger gaiting. Unlike slip, finger gaiting can be a quasi-static
process, which in turn helps enforce stability. Guided by this

realization, we were interested in formulating an online multi-
modal planning solution that can reorient objects in SO(3)
within-hand and without a support surface, unlike [27, 8, [28].

To accomplish this research goal [29]], we devised two
main manipulation modes via our energy formulation: x-axis
rotation and z-axis rotation. The method was implemented on
a four-fingered hand and was comprised of a bidirectional
and multi-modal planning solution that solved for contact
transfer regions between the modes. Compared to previous
multi-modal planners, ours was unique in that compliance
afforded an “inflated” transfer submanifold region between
the modes. Ultimately, this realization permitted significant
advancements in reliability to what has been previously possible
in the literature. The final method is showcased by completing
full SO(3) rotations of a cube against gravity and with external,
i.e. human, perturbations (Fig. |Z|) Results are presented in [29].

IV. DISCUSSION AND FUTURE WORK

Our results using simple, compliant hands support the
aforementioned sentiment— complex robots complicate control;
keep designs simple and exploit emergent behavior. We show
that by (i) estimating a forward motion model of the hand and
(ii) visually closing the control loop with a fast, online solution,
we were able to extend in-hand capabilities well beyond
what has been previously possible. Our general approach
is advantageous as we can utilize simple, compliant, and
inexpensive robot hands to study the fundamental building
blocks of dexterous in-hand manipulation.

While the results we describe are promising, there are
several future avenues to investigate. First, theoretical bounds
by which compliant modal transfer regions for planning
can be “inflated” beg several theoretical formulations, rather
than empirical characterizations. Next, models describing
compliance can be realized as differentiable funnels of system
energy. Further formalizing this idea and understanding specific
funnel properties would be an impactful contribution. And,
finally, a promising direction would include studying energy
models for compliant whole-hand caging manipulation [30].

Overall, we believe the culmination of these works elicits a
promising approach to in-hand manipulation. While we have
surely not reached human-level performance, the capabilities
we have been able to demonstrate with simple hands continues
to look promising for general-purpose robots of the future.
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