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Object-Agnostic Dexterous Manipulation of Partially
Constrained Trajectories
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Abstract—We address the problem of controlling a partially
constrained trajectory of the manipulation frame–an arbitrary
frame of reference rigidly attached to the object–as the desired
motion about this frame is often underdefined. This may be ap-
parent, for example, when the task requires control only about the
translational dimensions of the manipulation frame, with disre-
gard to the rotational dimensions. This scenario complicates the
computation of the grasp frame trajectory, as the mobility of the
mechanism is likely limited due to the constraints imposed by
the closed kinematic chain. In this letter, we address this problem
by combining a learned, object-agnostic manipulation model of the
gripper with Model Predictive Control (MPC). This combination
facilitates an approach to simple vision-based control of robotic
hands with generalized models, enabling a single manipulation
model to extend to different task requirements. By tracking the
hand-object configuration through vision, the proposed framework
is able to accurately control the trajectory of the manipulation
frame along translational, rotational, or mixed trajectories. We
provide experiments quantifying the utility of this framework,
analyzing its ability to control different objects over varied horizon
lengths and optimization iterations, and finally, we implement the
controller on a physical system.

Index Terms—Dexterous manipulation, in-hand manipulation,
manipulation planning.

I. INTRODUCTION

D EXTEROUS manipulation is often characterized as the
ability to reposition or reorient the object frame with

respect to the hand frame [1]. Much work has addressed such an
issue, providing generalized models that describe object frame
trajectories given joint actuation velocities [2]. In many cases,
however, the object frame is not necessarily the point on the
object in which is desired to control. For example, in the task of
handwriting, the position of the marker tip, which we denote as
the manipulation frame, generally defines the precision of the
inscribed character. In such a scenario, the controlled dimensions
of the manipulation frame are purely translational, where we
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Fig. 1. Partially constrained trajectories of the manipulation frame, e.g.∈ R3,
leave uncertainties in grasp frame planning since the mobility of the mechanism
is subject to constraints imposed by the closed kinematic chain. The proposed
framework utilizes Model Predictive Control to solve for a valid grasp frame
trajectory with any underconstrained reference.

can largely relax the rotational constraint of the marker tip as to
extend the task workspace. In other contexts, it may be required
that purely rotational or even mixed trajectories are desired for
task completion.

In this letter, we build off the observation that many tasks
require control about a partially constrained manipulation frame
trajectory. In such cases, object (or grasp) frame trajectories
in SE(3) can be either difficult or impossible to analytically
compute due to the absence of a one-to-one mapping, especially
in an underactuated system where the hand’s joint configuration
is subject to both, kinematic and energy constraints. We propose
an MPC-inspired control framework that utilizes an object-
agnostic manipulation model and an energy-based propagation
(or system dynamics) model of the hand. We differentiate
between the controlled dimensions and the free dimensions
of the manipulation frame, which can be any combination of
dimensions in SE(3).
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Given a desired manipulation frame trajectory, a bidirectional
initialization assumes the mobility of the hand is sufficient for
the grasp frame to mimic the transformed trajectory for the
next timestep, while leaving the free dimensions constant. By
querying the learned model with this initialization, the resultant
output is evaluated in a system propagation model. We repeat
this process through a receding horizon to build the initial
control trajectory. During this initialization, it is likely that the
trajectory is inaccurate due to the limited mobility imposed on
the mechanism by the closed kinematic chain. This issue is
accounted for by optimizing grasp frame reference velocities
in order to minimize trajectory error. We evaluate executions of
various trajectories (translational, rotational, and mixed) with
different control horizons and optimization iterations, and com-
pare the results. In this work, we largely disregard object stability
analyses due to the use of a compliant mechanism.

The contributions of this letter are twofold. First, we propose
an optimization approach that extends the control capabilities
of a generalized manipulation model, bypassing the need for
task-specific training or modeling. Secondly, we underscore
the advantage of using MPC for in-hand manipulation, which
allows the system to recover from inaccurate system models or
unmodeled contact scenarios.

II. RELATED WORK

1) Analytical Modeling for Manipulation: Many works have
approached dexterous manipulation with various levels of
analytical modeling–from contact models [3] and fingerpad
curvature models [4], to hand kinematic models [5] and whole
hand-object system models [2]. Many powerful relationships
have been formulated with such mathematical rigor. Although,
the accuracy and efficacy of these models is highly subject to
model parameters, which may be known a priori in structured
settings, or may need to be estimated during manipulation via
sensors on the hand, e.g. to leverage slip [6]. Some of these
problems are nullified when using underactuated, adaptive hands
that inherently reconfigure to uncertainties such as noisy control
inputs or modeling errors [7]. Nevertheless, dexterous manipu-
lation with such hands remains difficult to model as the output
space is typically of higher dimension than the input space.

2) Learning for Manipulation: To overcome uncertainties in
the analytical models, learning for manipulation–both model-
based [8], [9] and model-free approaches [10]–has become
popular as this approach is able to intrinsically estimate model
parameters without user intervention. Consequentially, data for
such approaches generally becomes too large to collect physi-
cally and must be done in simulation [11]. This caveat can be
mitigated by relaxing the control dimensionality and constraints
of the task, e.g. using a soft, compliant, or underactuated hand.
While these hands are difficult to explicitly model, various works
have introduced methods for closing the control loop through
vision [12], [13] or through tactile sensing [14]. These works,
however, focus mainly on the motion of the object/grasp frame
and not on a generalized manipulation frame attached to the
object.

3) Control for Manipulation: Control for manipulation has
been similarly approached from various avenues–with methods

based purely on kinematics [15], tactile sensing [16], and vi-
sual servoing [17], [18]. It is also possible to combine sensing
modalities for additional control, e.g. for grasp adaptation [19].
However, each control approach is contingent on which sensing
modalities are available. For example, underactuated hands are
typically not equipped with joint encoders or tactile sensors,
therefore, vision has become popular. In [20], joint configuration
estimation was achieved through the use of particle filters and vi-
sion, therefore allowing more advanced control without the need
for joint encoders. Regardless of these previous approaches, no
works have embedded MPC with learning for controlling spatial
trajectories with an underactuated hand.

III. LEARNING THE MANIPULATION MODEL

In this section, we present an approach to learning the manipu-
lation model of an underactuated hand through an energy-based
perspective [12]. Throughout this letter, we assume all hand and
object motions are quasistatic and the weights of the objects
used are negligible–disregarding the need to explicitly model dy-
namics or object-specific properties, e.g. inertias. Moreover, we
leverage a compliant end effector as these mechanisms are bene-
ficial for maintaining stability of the hand-object system during
manipulation, mitigating concerns of losing contact [7], [20].

A. The Grasp Frame

The establishment of the grasp frame generalizes the geo-
metric properties of an arbitrary object within a grasp [21].
Fundamentally, it portrays the local geometry of the object and
standardizes the representation of the object frame (Fig. 1, 2).
We will reference the object frame as being one in the same as
the grasp frame, as we expect object weights to be negligible.
Assuming a single non-rolling contact is maintained on each
fingertip of a hand with k fingers, let us define contact points
P = p1, . . . , pk where pi ∈ R3, ∀i ∈ {1, . . . , k} with respect
to the hand frame. Noteworthily, with non-rolling contacts,
any 3 points in P can explicitly define the grasp frame. For
simplicity, let’s assume p1, p2, and p3 are used. Then, we can
define the grasp frame pose, X ∈ SE(3), by Gram-Schmidt
orthogonalization,

X = [Gx,Gy,Gz|Go] ∈ SE(3)

Go =
1

3
(p1 + p2 + p3)

Gx =
p2 − p1
||p2 − p1||2

Gz =
(p3 − p2)× Gx

||(p3 − p2)× Gx||2
Gy = Gz × Gx

(1)

In this formulation, Gx,Gy , and Gz represent the directional
vectors about the x, y, and z axes, respectively, with reference
to the origin, Go. Using the same object contact points, we can
calculate the contact triangle relationship,

T = (||p1 − p2||2, ||p2 − p3||2, ||p3 − p1||2) ∈ R3 (2)

representing the distance between fingertips in contact with
the object, where T = (T1, T2, T3). It is important to note that
this formulation generalizes object geometry but not necessarily
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Fig. 2. Left: The tendon transmission of an underactuated finger is dependent
on pulley and spring parameters. Right: Object geometry can be generalized by
evaluating the triangle relationship, T , between the contacts, and offsetting the
manipulation frame,M, from the grasp frame, X .

object dynamics. Additional generalization of object dynamics
will be addressed in future work.

B. Learning From the Energy Model

Underactuated systems can be modeled in terms of energy,
where the joint configuration, q ∈ R

∑k
i=1 ji , of a hand that has

ji joints per finger, equilibrates such that the internal energy of
the system is minimized. We represent the actuation position as
a, where dim(a) < dim(q) in an underactuated system. Given
an actuation velocity, ȧ, and the grasp frame, Xt, at time t, the
energy-based propagation model (or system dynamics model)
provides a prediction for the next step of the grasp frame pose,
Xt+1. This transition is calculated given a tendon transmission
constraint,

raiȧi = rpiq̇pi + rdiq̇di (3)

and the contact triangle constraint, Tt = Tt+1. Thus, we can find
the equilibrated joint configuration of the hand, q∗ by,

q∗ = argmin
∑

i

Ei(qi) s.t. (2), (3) (4)

where Ei is the potential energy of the ith finger,

Ei(qi) =
1

2
(kpq

2
pi + kdq

2
di) (5)

Here, rpi, rdi, and rai are the radii of the pulleys on the proximal
joint, distal joint, and actuator, respectively, on finger i (Fig. 2).
Similarly, ˙qpi, ˙qdi, and ȧi are the rotational velocities about the
same joint on the same finger.

This energy-based propagation model enables efficient data
collection in simulation, and has shown to easily transfer to a
physical system [12]. By predefining various contact relation-
ships in T and applying a random actuation input, ȧ, we observe
the grasp frame transition from Xt to Xt+1, thus calculating
Ẋ ∈ se(3) by taking the element-wise difference. With a 15-
dimensional input feature, sn = (Xn, Ẋn, Tn), and an output
feature, ȧn, we build the training set,

S = {sn}n=1:N , R = {ȧn}n=1:N

where N denotes training sample size. With these action-
reaction pairs, we create a Random Forest Regression model,

g : (X , Ẋ , T ) −→ ȧ (6)

that maps the current pose of the grasp frame, the desired
grasp frame velocity, and the contact triangle relationship to
an actuation velocity. This learned model will be further utilized
in the proposed control framework.

IV. CONTROL FRAMEWORK

For the continuation of this work, the main control process is
illustrated in Fig. 3 and is notated as follows:
� t denotes the current time and t+ n denotes n steps into

the future (e.g.Mt+3 is the predicted manipulation frame
∈ SE(3) in three timesteps)

� dotted variables represent the change from t, one timestep
forward (e.g. Ẋ = [Xt −Xt+1] ∈ se(3))

� barred variables represent the initialization guess during
the bidirInit(·) process, which has not yet been executed
by the propagation model (e.g. X̄t+1 ∈ SE(3))

� primed variables have been executed by the propagation
model and are the resultant configuration after (iter) opti-
mization iterations (e.g.M′

t+3(25) if iter = 25)

A. Model Predictive Control

The proposed control framework utilizes Model Predictive
Control (MPC) with an optimizer based on Stochastic Hill
Climbing as to extend the task workspace. MPC is advantageous
for manipulation, as the next control input is optimized after
each system step. This property helps mitigate error caused
by inaccurate propagation models or when unmodeled contact
scenarios occur, e.g. rolling or slip.

MPC evaluates the cost of an input over a user defined
prediction/control horizon, kp. This horizon dictates how far in
advance the controller evaluates its trajectory, while maintaining
integrity on any system constraints, e.g. actuation constraints or
energy constraints. In this work, we seek to control a subset
of the manipulation frame’s dimensions (referenced as the con-
trolled dimensions) while allowing the free dimensions to move
as to satisfy the system constraints. The manipulation frame,
M∈ SE(3), is a frame of reference rigidly attached to the
grasp frame, X , which would typically be affixed to a feature
on the object. Let’s define our desired reference trajectory as r,
comprised of m waypoints in the controlled dimensions. We can
define the controlled dimension set as c ⊂ (x, y, z, θR, θP , θY ),
which can be any combination of translational and rotational
components for a desired trajectory. We denote the controlled
dimensions of the manipulation frame asMc.

While accounting for kinematic, energy, and actuation con-
straints, we seek to minimize the error between Mc,t and
r[wt], where wt is the waypoint on r currently closest toMc,t.
Additionally, we impose an extra penalty on how far Mc,t

is from the goal position, rend. We therefore formulate the
cost function J ,

J =

kc∑

i=1

γ||r[wt+i]−Mc,t+i||2 + . . .

σ||rend −Mc,t+i||2 + λ||ȧt+1||2

(7)
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Fig. 3. A.) The manipulation frame, Mt, can be represented by a rigid transformation, T , from the grasp frame, Xt. In Algorithm 2 a bidirectional guess

initializes the model’s input variables by assuming that the next grasp frame pose, X̄t+1, has the same velocity, ˙̄Xt+1, as the underconstrained manipulation frame
trajectory transitioningMt to M̄t+1, which is located on the next trajectory waypoint rm[wt + 1]. B.) While this bidirectional guess serves well for initialization,
kinematic and energy constraints likely limit mobility and may not allow the grasp frame to move desirably. Thus, the resultant pose evaluated in the propagation
model,M′

t+1(0), does not follow the path. The optimization then perturbs the grasp frame velocities of the best trajectory iter times and evaluates the result in
propagation model. This depicts a trajectory convergence with a horizon kp = 3. C.) After optimization, the first actuation input of the best evaluated trajectory is
executed, providing our true next grasp frame pose Xt+1 and our next manipulation frame poseMt+1.

where γ, σ, and λ are weightings that are tuned heuristically to
penalize the trajectory error, trajectory length, and the actuation
input, respectively. In tuning, for example, if it is desired to
increase execution speed, increasing σ and decreasing γ and
λ will do this with the trade-off of likely decreasing trajectory
accuracy.

B. The Manipulation Controller

Using this cost-minimization approach, we formulate the con-
trol process as illustrated in Fig. 3 and as outlined in Algorithm
1. We attempt to optimize a controlled trajectory, Ci, to closely
follow r. These controlled trajectories are constructed with a
chain of kp + 1 nodes, where kp is the prediction horizon. Each
node is referenced in the trajectory chain with zero-based index-
ing, so, Ci.n[2] is the third node. Each node has 3 properties–the
current grasp frame (X ), the grasp frame velocity input evaluated
in the previous node (Ẋ ), and the actuation velocity used by the
propagation model in the previous node (ȧ). Each Ci therefore
has a cost defined by (7) that can be used to compare the utility
of each trajectory.

1) Initializing the Trajectory: Given r, which has the same
dimensionality as c–that can be any combination of dimensions
in SE(3)–the control process begins by constructing the ini-
tial trajectory, Cbest. This process is outlined in lines 1-11 of
Algorithm 1 and is depicted in Fig. 3.A.

To formulate the first trajectory, we rely on a bidirectional ini-
tialization presented in Algorithm 2. This procedure initializes
a first guess for the grasp frame velocity, ¯̇Xt+1, by assuming
that the kinematic constraints of the hand allow for identical
movement about the grasp frame as that of the manipulation
frame. This process begins by computing the closest waypoint,
r[wt], fromMt to the reference trajectory. We make a guess that
the manipulation frame would like to move to the next waypoint
r[wt + 1]while attempting to keep the free dimensions constant.
Through this notion, we calculate a guess for the next state of

the manipulation frame, M̄t+1 ∈ SE(3). A transformation, T ,
can then be computed relating Xt toMt. This process becomes
bidirectional as we apply the inverse of T to M̄t+1 to obtain
a guess for the next state of the grasp frame, X̄t+1. The grasp
frame velocity guess, ¯̇Xt+1, is finally estimated by taking the
element-wise difference between Xt and X̄t+1.

After the bidirectional initialization guess, ¯̇Xt+1 is evaluated
in the learned model g(·), given the current pose of the node. This
resultant actuation velocity, ȧt+1, is executed in the propagation
model, providing the next state grasp frame pose, X ′t+1(0).
The true grasp frame velocity, Ẋ ′t+1(0) is then calculated by
taking the difference between Xt and X ′t+1(0). These variables
are then added to the trajectory, Cbest and the entire process is
repeated over the entire length of the control horizon, or until
the distance between the manipulation frame and the endpoint
of the trajectory is less than a threshold, ε.

2) Trajectory Optimization: Once the first trajectory is gen-
erated, initialized as Cbest, we construct iter temporary trajec-
tories that attempt to reduce the cost as defined by (7). Here,
iter represents the number of optimization iterations we intend
to compute. This process is depicted in Fig. 3.B and references
lines 13-25 of Algorithm 1.

Given the grasp frame velocity of the node in timestep
(t+ 1) of the best trajectory, Cbest, we perturb its value with
a normal distribution of predefined interval limits. This result,
Ẋ ′t+1(i), where i is the current value of iter, is calculated
in perturb(·)–Stochastic Hill Climbing’s exploration method
(Algorithm 3). The learned model then evaluates this grasp
velocity to form the actuation velocity, ȧt+1. We execute ȧt+1

in the propagation model to determine the next grasp frame state
X ′t+1(i) at optimization iteration i. The resultant node is then
added to Ci and the process continues over the entire prediction
horizon. If the manipulation frame is found to have reached
within some distance threshold, ε, the loop breaks prematurely.
Once a trajectory of kp + 1 in length is computed, we compare
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Algorithm 1: MPC with Stochastic Hill Climbing Optimiza-
tion.

Input: Xt, r, c, kp, T , iter, ε
Output: ȧ
1: Cbest ← Trajectory() � initialize first trajectory
2: Cbest.addNode(Xt, Ẋ0 = 0, ȧ0 = 0) � start node
3: for t = 1 to kp do � prediction horizon

4: ¯̇Xt+1 ← bidirInit(Cbest.n[t].X , r, c)� Algorithm 2

5: ȧt+1 ← g : (Cbest.n[t].X , ¯̇Xt+1, T ) � (6)
6: X ′t+1(0)← Hand.evaluate(ȧt+1) � (4)
7: Ẋ ′t+1(0)← diff(Cbest.n[t].X ,X

′
t+1(0))

8: Cbest.addNode(X ′t+1(0), Ẋ
′
t+1(0), ȧt+1)

9: Mt+1(0)← Hand.manipFrame(X ′t+1)
10: if ||Mc,t+1(0)− rend||2 < ε then
11: break � reached goal
12:
13: for i = 1 to iter do � optimization iterations
14: Ci ← Trajectory() � initialize new trajectory
15: Ci.addNode(Xt, Ẋ0 = 0, ȧ0 = 0)
16: for t = 1 to kp do
17: Ẋ ′t+1(i)←perturb(Cbest.n[t+1].Ẋ )�Algorithm 3
18: ȧt+1 ← g : (Ci.n[t].X , Ẋ

′
t+1(i), T ) � (6)

19: X ′t+1(i)← Hand.evaluate(ȧt+1) � (4)
20: Ci.addNode(X ′t+1(i), Ẋ

′
t+1(i), ȧt+1)

21: Mt+1(i)← Hand.manipFrame(X ′t+1(i))
22: if ||Mc,t+1(i)− rend||2 < ε then
23: break � reached goal
24: if Cost(Ci) < Cost(Cbest) then � (7)
25: Cbest = Ci � better trajectory
26:
27: return Cbest.n[1].ȧ

Algorithm 2: bidirInit(·).
Input: Xt, r, c
Output: ¯̇Xt+1

1: Mt ← Hand.manipFrame(Xt)
2: wt ← nearestWaypoint(Mc,t, r)
3: for l in [x, y, z, θR, θP , θY ] do
4: if l ⊂ c then
5: M̄l,t+1 ← r[l, wt + 1]
6: else
7: M̄l,t+1 ←Ml,t

8: T ← getTransform(Xt,Mt)
9: X̄t+1 ← applyInvTransform(M̄t+1, T )

10: ¯̇Xt+1 ← diff(Xt, X̄t+1)

11: return ¯̇Xt+1

the costs of the best trajectory, Cbest, with the cost of the current
trajectory, Ci. If this cost is smaller, we replace Cbest with Ci
and continue this loop until the number of desired iterations is
satisfied.

The algorithm concludes by returning the first actuation input
of the best trajectory, Cbest.n[1].ȧ. This input is then executed

physically (Fig. 3.C) and results in the actual system transition
fromMt toMt+1, and similarly, Xt to Xt+1. Algorithm 1 is
repeated until the trajectory goal is reached.

It is important to note that the algorithm does not require that
each waypoint in r is passed through, as it may be the case that
some points along the trajectory are infeasible given the con-
straints of the system. To account for this, only the initialization
step attempts to follow a waypoint, while the optimization steps
minimize the trajectory cost by staying within a close distance
and extending towards the end goal.

Algorithm 3: perturb(·)
Input: Ẋt

Output: Ẋ ′t+1

1: δx, δy, δz ← translationalLimit
2: δθR , δθP , δθY ← rotationalLimit
3: for i in [x, y, z, θR, θP , θY ] do
4: Ẋ ′t+1 ← Ẋt + rand.uniform(−δi, δi)
5: return Ẋ ′t+1

V. EXPERIMENTATION

The proposed control framework was instantiated on a 3-
fingered underactuated Yale Openhand Model O. Physical mod-
ifications to the readily available open source design include a
rounded fingertip and pulleys/bearings within the finger as to
reduce friction in the tendon’s transmission. Each finger, com-
posed of two links, is actuated by a single Dynamixel XM-430
motor with return forces supplied by springs at each of the joints
(Fig. 2).

The learned model in (6) was trained with a dataset of size
300,000 over 50 different contact triangles, T , by evaluating the
input-output relationship after random actuation of the energy
model in (4). A Random Forest model of tree depth 10 and forest
size of 30 was trained, which accounted for joint limits and
actuation constraints. Due to the different values in T used for
training, the learned model was able to generalize over different
object geometries, which is beneficial as it enables adaption
to undesired contact scenarios where the relational geometry
between the fingertips change, e.g. rolling or slip, as previously
presented in [12].

A. Translational Trajectory Control

We implemented translational control, i.e. c = (x, y, z), in a
simulated environment (Fig. 2) while varying the control horizon
and number of optimization iterations as to tune the controller.
This test, presented in Fig. 4, tracks the x, y, z position of the
manipulation frame over time in an attempt to trace the letters
‘GRABLAB’. Depicted in different colors, three different-sized
objects were used in experimentation, with properties presented
in Fig. 5. Each letter was 20 mm in height and 10 mm in width
and was written within the x− y plane. Letters were comprised
of a number of goal points–squares (start), circles (intermediate),
and stars (end)–with 50 waypoints in between each goal.

Fig. 4(A) depicts a test correlating accuracy to varying horizon
lengths and optimization iterations. Generally, we note that as
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Fig. 4. Translation control, c = (x, y, z), of the manipulation frame depicting the reference trajectory in the x− y plane (Red), and the trajectories of Obj. 1
(Green), Obj. 2 (Yellow), and Obj. 3 (Blue). A.) We trace the letters ‘GRABLAB’ while varying control horizons and optimization iteration lengths. As we increase
the number of iterations, the manipulation frame trajectory becomes more accurate. We see that with fewer iterations, the manipulation frame is not able to follow
the desired trajectory. B.) When the control horizon increases, subsequently, the number of optimization iterations must as well to realize similar trajectories. C.)
Tracing the word ‘GRABLAB’ with the most precise control horizon/iteration pair (horizon of 3 and 100 iterations).

Fig. 5. Properties for the three objects used in simulation. The transformation,
T , assumes that the manipulation frame,M, and the grasp frame, X , have the
same orientation, but are offset by the positional vector Tp.

the number of iterations increases (horizontal axis), the accuracy
of the manipulation frame trajectory similarly increases. We
note that it is likely that more iterations are needed for longer
control horizons. This observation is evaluated in Fig. 4(B),
where we record similar trajectory errors (0.72 mm mean) while
increasing the number of iterations for longer horizons (5, 7, and
9). We then present the best recorded accuracy for the tracing of
‘GRABLAB’ in Fig. 4(C), with a horizon of 3 and 100 iterations.

Quantitatively, we tune the control parameters by evaluating
manipulation frame trajectory accuracy while fixing the horizon
length to 3 and altering the number of optimization iterations.
We note that in the task of scripting, a trajectory error of less
than 2 mm is sufficient for legibility. Testing up to 100 iterations
(0.45 mm error), the results show that 50 iterations (0.95 mm
error) is sufficient to satisfy the accuracy required by the task,
presented in Fig. 6. For this reason, we will proceed in the next
sections by evaluating trajectories with this configuration.

Fig. 6. With a prediction horizon of 3, the letters ‘GRABLAB’ were traced
with three different objects while varying optimization iterations. The error
experienced during execution was recorded for each of the trajectories. We
identify an elbow point of 50 iterations satisfies the desired task accuracy.

B. Rotational and Mixed Trajectory Control

In addition to a purely translational trajectory about the ma-
nipulation frame, we test the control approach with other par-
tially constrained trajectories, namely, a purely rotational trajec-
tory c = (θR, θP , θY ), and a mixed trajectory, c = (z, θR, θY ).
This choice of trajectories further underscores the diversity of
dimensional combinations which can be inherently accounted
for in this framework, after retuning weighting parameters in
the cost function and scaling the controlled dimensions to char-
acteristic length.



5500 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

Fig. 7. A single trajectory in Rotation Control (left) and a single trajectory in
Mixed Control (right) was executed for 5 trials. The controlled dimensions (top)
follow the trajectory as desired. The free dimensions (bottom) are allowed to drift
to any trajectory that adheres to the system constraints. The start configuration
is denoted with a square and the goal configuration (only in the controlled
dimensions) is denoted with a star.

Fig. 8. Top view of the apple, Rubik’s Cube, and drill from the YCB Object
and Model Set used for physical testing of the control framework.

In each of these tests, the hand was initialized with the same
hand configuration as in Fig. 2, using Obj. 1. With a horizon of 3
and with 50 optimization iterations, a goal trajectory was formed
transitioning M from its current state to a goal configuration.
Five trials were executed, resetting the hand after each trial. We
record the state of the manipulation frame along the execution
trajectory. As presented in Fig. 7, the trajectory ofM was able
to successfully follow the desired control trajectory (0.52± 0.3◦

error for rotations). During this execution, we illustrate how the
free dimensions are able to drift so long as system constraints
are satisfied, and thus do not need to follow the same trajectory
each trial. This concept is depicted in the bottom of the figure,
where we note a trajectory deviation between trials.

C. Physical Translation Control

We employed the devised control framework on a physical
system as to complete the tracing of letters ‘RAL’ with three
different objects from the YCB Object and Modeling Set (Objs.
#23, 72, 77) [22]. In this case, we employed translational con-
trolled dimensions, c = (x, y), scripting in the plane orthogonal
to the palm as to maintain readability of the completed ma-
nipulation. The three objects, depicted in Fig. 8, were tracked
by affixing 6-D pose AprilTags to the object, serving as the
manipulation frame. The pose of the marker was then tracked by

Fig. 9. A 4-camera tracking system records both, the pose of the grasp frame
and the pose of the manipulation frame via attached markers.

Fig. 10. Grasp and transformation properties of the apple, drill, and Rubik’s
Cube used in physical experimentation. Tp is the translational offset of the grasp
frame to the manipulation frame in x, y, z directions.

an overhead camera. The control framework relies on knowing
the current configuration of the hand in order to compute the
next actuation input, therefore, we placed 3 additional cameras
around the hand–developing a 4-camera setup that is able to track
the configuration of each finger in addition to the configuration
of the object (Fig. 9). Markers were placed on the back of each
fingertip and a transformation from the finger markers computes
the contact location, and thus the pose of the grasp frame.

The markers were affixed to each object as follows: placed on
the stem of the apple, placed on the bottom of the handle of the
drill, and placed on the top (any) surface of the Rubik’s Cube
(Fig. 8). This generated initial contact triangle relationships and
transformations from the grasp frame to the manipulation frame
as presented in Fig. 10. We employed a prediction horizon of
3 and set iter to 50. As presented in Fig. 11, each letter was
comprised of a set of goal points, which constructed a system of
trajectories approximately 20 mm in height and 10 mm in width.
The task started with the center of the manipulation frame marker
in the square starting position. At this point, a new trajectory was
formed with 50 waypoints providing the path from the current
start location to the first goal point. After the actuation input
was solved through the MPC framework, the hand executed
the result and evaluated how close it was to the goal point.
If the manipulation frame was within a 2 mm threshold, a
new trajectory was formed and the manipulation frame would
attempt to move towards the next goal point until completion.
During this process and after each input execution, the grasp
frame X , the manipulation frame M, and the contact triangle
relationship T were updated as to account for any undesired
rolling or sliding of the contacts. Each letter was traced with
the three aforementioned YCB objects and the execution times
and average trajectory errors were recorded. We noted that the
greatest error was when tracing of the letter ‘A,’ but was only
slightly higher than the letter ‘R’. This is likely attributed to
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Fig. 11. The letters ‘RAL’ were traced with the manipulation frame on a
physical system for 3 different objects (kp = 3, iter= 50). Top: Three example
executions of writing the letters R (traced with the apple), A (traced with the
Rubik’s Cube), and L (traced with the drill) are presented with their associated
goal points. Middle: The path following accuracy for all three objects tracing
letters ‘RAL’. Bottom: The average time and trajectory errors recorded during
execution for all three objects.

the cross-bar tracing that stopped prematurely. Since we did
not greatly penalize the input actuation velocity, i.e. λ was
small, we noted large motions in physical execution, typically
requiring 2-3 actuation sequences to reach from goal point to
goal point. Overall, these executions resulted in clear, discernible
capitalized characters of ‘RAL’.

VI. DISCUSSIONS AND FUTURE WORK

In this letter, we addressed the problem controlling partially
constrained trajectories about the manipulation frame based
on a planning-enabled MPC framework. This work extends
the utility of generalized manipulation models as it is a way
to better satisfy trajectory requirements of various tasks. We
tested this approach by constraining different dimensions of the
trajectory–translational, rotational, and mixed–and we showed
that the controller was able to accurately follow the controlled
dimensions while allowing the free dimensions to drift. We found
that, generally, a horizon length of 3 with 50 iterations was
sufficient for convergence that satisfied our task requirements.
This may not be the case, however, in more complex tasks that
typically operate at the boundary of system constraints. In such
cases, more sophisticated parameter tuning and extension of the
prediction horizon may be necessary for a smooth transition to
a valid configuration.

In future work, we are interested in further defining this
framework for maintaining hand-object stability–which was
largely disregarded in this work since mechanism compliance

generally provided stable grasps. Additional accuracy is also
likely possible while accounting for the mass-related dynamics
of the hand and of the object. By incorporating such compo-
nents, we believe this framework will be extremely valuable for
extending robot manipulation capabilities.
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