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Abstract— Substantial advancements to model-based rein-
forcement learning algorithms have been impeded by the
model-bias induced by the collected data, which generally
hurts performance. Meanwhile, their inherent sample efficiency
warrants utility for most robot applications, limiting potential
damage to the robot and its environment during training.
Inspired by information theoretic model predictive control and
advances in deep reinforcement learning, we introduce Model
Predictive Actor-Critic (MoPAC)†, a hybrid model-based/model-
free method that combines model predictive rollouts with
policy optimization as to mitigate model bias. MoPAC leverages
optimal trajectories to guide policy learning, but explores
via its model-free method, allowing the algorithm to learn
more expressive dynamics models. This combination guarantees
optimal skill learning up to an approximation error and reduces
necessary physical interaction with the environment, making it
suitable for real-robot training. We provide extensive results
showcasing how our proposed method generally outperforms
current state-of-the-art and conclude by evaluating MoPAC for
learning on a physical robotic hand performing valve rotation
and finger gaiting–a task that requires grasping, manipulation,
and then regrasping of an object.

I. INTRODUCTION

Robotic systems are expected to operate in increasingly
unstructured and dynamical environments. Aside from the
difficulties evident in perception, decision making, and
planning, precisely controlling robots still remains difficult,
as they must operate under non-linear, contact-rich conditions.
Traditional approaches to this problem include methods of
optimal control [1], [2], but require that a model of the robot
and its environment is known a priori, which generally cannot
be guaranteed.

In this direction, model-based reinforcement learning
(MBRL) approximates iteratively the dynamics model of
the environment while planning actions through trajectory
optimization [3]–[8], commonly using Model Predictive
Control (MPC) [9]–[11]. Though sample-efficient, MBRL
has been heavily impeded by the bias in the learned model–
as optimal control methods will generally continue to exploit

Computations performed on the Lichtenberg cluster of TU Darmstadt
and the Yale HPC Grace cluster. This work has been partially funded by
the RoboTrust, Skill4Robots projects and NSF Grants IIS-1752134 & IIS-
1900681. Dr. Chalvatzaki is funded by the DFG EN Program (CH 2676/1-1).

1Department of Mechanical Engineering & Materials Science, Yale Uni-
versity, USA. ({andrew.morgan, aaron.dollar}@yale.edu).

2Intelligent Autonomous Systems, Technische Universität
Darmstadt, Germany (daljeet.nandha@stud.tu-darmstadt.de,
{georgia, carlo}@robot-learning.de,
mail@jan-peters.net).

∗Authors contributed equally.
†Code available: https://github.com/dnandha/mopac.

Penta-Valve Round-Valve

Finger Gaiting

(a)

(b)

time

MoPAC (ours)

MBPO

Fig. 1: (a) Complex robot skills, like in-hand manipulation, are difficult to
acquire and perform with conventional methods. (b) MoPAC is suitable for
training an underactuated hand to efficiently learn such tasks, like finger
gaiting, compared to other state-of-the-art techniques.

known regions of the learned dynamics without exploring
outwards to new, unrevealed states [12]–[14]. Model-free
reinforcement learning (MFRL), on the other hand, has
achieved impressive results in learning complex skills through
deep neural networks [15]–[19], offering high performance.
However, unlike their MB counterpart, the lack of an internal
model makes MF algorithms data-hungry, suffering from poor
use of samples; as the complexity of the task increases, so
does the number of samples required to learn the optimal
policy [20]–[22]. This disadvantage makes modern deep
MFRL methods inappropriate for learning tasks on physical
robots [23]–[25], as the increased amount of necessary
interactions is likely to damage the system.

We believe that the effective combination of these RL
paradigms will enable the learning of complex skills on real
robots [26], [27]. In this paper, we address this challenge
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by investigating optimal methods of guiding policy learning,
while also learning the model dynamics. Intuitively, having
interweaving MB-MF components can potentially allow
scheduling of separate solutions according to different phases
of learning, i.e. MB when action planning is required, and
MF when additional exploration is needed.

Various works try to mix the benefits of MB and MF
methods. For example, [28] proposes the use of trajectory
optimization for guiding the policy search by exploring high-
reward regions. In [29], the authors propose a MB method
which learns an ensemble of models and optimizes a meta-
policy objective over all models. [30] proposes the initializa-
tion of MFRL algorithms from learned model dynamics, for
combining the sample efficiency of MB methods with the task-
specific performance of MF approaches. Many works study
the use of MB methods for accelerating the learning of MFRL.
The latter can be extended into MB methods by sampling
from a model (or model ensemble to increase stochasticity)
[11], [31], [32]. MBPO [14] uses branched rollouts in an
actor-critic setting to exploit the learned dynamics for model-
based policy optimization. [33] proposes an extension to
MBPO, by performing model rollouts of specific horizons,
while optimizing the policy objective with back-propagation
through time.

In this work, we introduce Model Predictive Actor-Critic
(MoPAC)–an algorithm that seamlessly combines the sample
efficiency of MBRL, with MF actor-critic methods for
improved exploration. To ensure exploitation of the learned
policy, we propose the use of model predictive rollouts,
a method that inherits properties of model predictive path
integrals [10], capitalizing on the free-energy of the learned
system and leveraging the information theoretic constraint
in the MB simulations. Our novel method is theoretically
sound, as we provide a bound on the performance of trajectory
optimization through MPC, when approximating the dynamics
model and the value-function, that potentially allows planning
for longer time-horizons. Moreover, the maximum entropy
objective [24] in the policy optimization counterbalances the
exploitation of model predictive rollouts with exploration
on the real environment, enabling the learning of more
expressive model dynamics, together with approximating
the optimal policy. Our empirical results, both in simulated
control tasks and on a physical robotic hand that performs
in-hand manipulation, showcase the accelerated learning
that MoPAC offers against representative baselines, evincing
its effectiveness for learning complex skills on real-robot
platforms.

II. PRELIMINARIES

We consider Reinforcement Learning [34] for solving
control problems modeled as finite-horizon Markov Decision
Processes (MDPs)M = 〈S,A,R,P, γ〉, where S is the state
space, A is the action space, R : S × A × S → R is the
reward function, P : S × A → S is the transition kernel,
and γ ∈ [0, 1) is the discount factor. We define a policy
π ∈ Π : S×A → R as the probability distribution of the event
of executing an action a in a state s. A policy π induces a

value function (VF) corresponding to the expected cumulative
discounted reward collected by the agent when executing
action a in state s, and following the policy π thereafter:
Qπ(s, a) , E

[∑∞
k=0 γ

kri+k+1|si = s, ai = a, π
]
, where

ri+1 is the reward obtained after the i-th transition. Solving
an MDP consists of finding the optimal policy π∗, i.e. the
one maximizing the expected cumulative discounted reward.

Trajectory Optimization designs a trajectory that minimizes
some measure of performance. MPC is such a technique that
optimizes a cost function over a finite time-horizon, while
taking into account the system dynamics. The cost function is
optimized w.r.t. a control variable, yielding the optimal control
value for a given state with consideration of the predicted
future states. In essence, MPC provides a locally optimal
policy or sequence of actions (up to horizon H), based on
the following optimization problem:

πMPC(s) = arg max
π0:H−1

E[

H−1∑
t=0

γtr(st, at) + γHrf (sH)]

at = πt(st), s0 = s

(1)

where the states evolve according to the transition dynamics
of the MDP, i.e. st+1 = f(st, at). From each optimized
sequence resulting from the optimization process of MPC (of
length equal to horizon H), the first action is applied to the
agent, and the procedure is repeated again at the next time
step. The term rf (sH) denotes the terminal reward.

In the context of MBRL, [35] combines MB trajectory
optimization with VF estimation. [36] uses model predictive
path integrals [37] in a Q-learning setting, and [38] shows
that combining MPC with VF approximation yields optimal
policies, however considering the true dynamics.

III. PERFORMANCE BOUND UNDER IMPERFECT MODEL

Coupling MPC with a VF, that propagates global infor-
mation, optimizes action sequences for longer time horizons,
while being less prominent to approximation errors than
greedy action selection [38]. In this work, we design an
actor-critic algorithm that will benefit from the integration of
trajectory optimization for acquiring optimal control policies,
together with the learning of stable VF approximations
provided by modern deep actor-critic algorithms, e.g. soft
actor-critic (SAC) [24]. To do so, we extend the bound of
[38] by incorporating the approximation error when learning
the dynamics model.

Theorem 1. Let the approximation error of the dynamics
model be εf = |f̂(s, a)− f∗(s, a)|, the approximation error
of the VF be εV = maxs|V̂ (s) − V ∗(s)|, and the terminal
reward of (1) be rf (sH) = V̂ (sH), then the performance of
the MPC policy in (1) with the learned dynamics model is
bounded by:

J(π∗)− J(πMPC) ≤ 2γHεV
1− γH + rmax

1− γH

1− γ εf . (2)

Proof is provided in the Appendix. As the contribution of
the model error increases with the horizon, H →∞ leads to
the upper bound

J(π∗)− J(πMPC) ≤ rmaxεf
1− γ . (3)



Algorithm 1 Model Predictive Actor-Critic

1: Initialize parameters θ, ρ, ψ, ψ̄, φ, φ̄
2: Initialize D, Denv , Dmodel . initialize experience buffers
3: φ̄← φ, ψ̄ ← ψ . initialize target parameters
4: for each iteration do
5: Denv ← Denv ∪ {st+1, at, st}, at ∼ πθ(st)
6: for N epochs do
7: Train model fρ on Denv: ρ← ρ− λf∇ρJfρ
8: end for
9: for M model predictive rollouts do

10: Sample st uniformly from Denv
11: Perform MPR (Alg. 2) from st
12: Add transitions to Dmodel
13: end for
14: for G gradient steps do
15: Update parameters using data D ← Denv∪Dmodel
16: ψ ← ψ − λψ∇ψJVψ . VF update
17: φ← φ− λφ∇φJQφ . Q update
18: θ ← θ − λθ∇θJπθ . policy update
19: ψ̄ ← τψ + (1− τ)ψ . target VF update
20: φ̄← τφ+ (1− τ)φ . target Q update
21: end for
22: end for

As expected, the performance error between the optimal
policy and the MPC policy is affected by the model approxi-
mation error εf , given a prediction horizon H . As we will
show in the following, the maximum entropy exploration of
SAC [24] can acquire more expressive dynamics models by
visiting unmodeled transitions in the environment; together
with the approximation of the VF, we can leverage the bound
of (2) to acquire near-optimal trajectories for policy learning.

Model-based monotonic improvement, as proven by [14],
can be achieved when learning the dynamics model together
with the policy. Namely, the authors give an upper-bound in
the performance gain obtained when applying the learned
policy to the learned dynamics model, compared to applying
it on the real MDP (i.e. the true dynamics). Their finding is
summarized in the following lemma.

Lemma 2. Let the expected TV-distance error of the tran-
sition probability distributions be bounded by εf and the
policy divergence be bounded by επ. Then the following
bound holds:

J(π)− Ĵ(π) ≥ −
[

2γrmax(εf + 2επ)

1− γ2
+

4rmaxεπ
1− γ

]
. (4)

This lemma is directly applicable to our proposed algorithm.
Its combination with our Theorem 1 suggests that sufficiently
low errors in model learning and policy approximation can
yield near-optimal performance.

IV. MODEL PREDICTIVE ACTOR-CRITIC

We introduce Model Predictive Actor-Critic (MoPAC), an
algorithm that leverages the theoretical guarantees provided by
Theorem 1 and Lemma 2. MoPAC has three main interacting
components: (i) model learning from environment transitions,
(ii) model predictive rollouts for acquiring samples from
optimal trajectories, and (iii) soft updates using a maximum
entropy objective for policy learning over a mixture of model
and environment data. Algorithm 1 summarizes our approach.

Algorithm 2 Model Predictive Rollouts (MPR)

Input: s0, ρ, ψ̄, πθ , n, ζ, γ, λ . start state,
model parameters, target VF parameters, current policy,
actuation noise, annealing parameter, discount, control
hyperparameter

Output: aMPR, sMPR . MPR trajectory
1: H ← anneal(ζ) . horizon length
2: R← zeros(·) . trajectory reward
3: for t = 0, ..., H − 1 do
4: Sample an initial action from policy at ∼ πθ(st)
5: Sample exploration noise {n0, . . . , nH−1} ∼ n
6: R ← R+ γtr(st, at + nt) . rewards
7: st+1 ← fρ(st, at + nt) . system dynamics
8: end for
9: R← R+ γHVψ̄(sH) . add terminal state reward

10: C = −R . convert to cost minimization
11: β ← min[C]
12: η ←

∑N
i=1 exp(− 1

λ
[Ci − β])

13: w(n)← 1
η

exp(− 1
λ

[C − β]) . import. sampling weight
14: aMPR ← a+

∑N
i=1 w(ni)ni . adjust action sequence

15: sMPR ← fρ(s0, aMPR) . state following optimal action

Model learning. We use an ensemble of N functions to
approximate the model of the environment {fρ1 , ..., fρN }.
Each of these functions is a probabilistic deep neural network
whose purpose is to approximate the system dynamics, namely
the next state of the agent given the current state and action.
Probabilistic model ensembles have been studied as a way
of realizing Bayesian neural networks, for capturing the
epistemic uncertainty when learning complex dynamics, in
order to mitigate overfitting when using a single model [11].
Specifically, an ensemble of models is randomly initialized
within an observable space; hence, each model learns a
different mapping of the dynamics. For generating predictions
from the ensembles, we sample transitions from the elite
networks, i.e. those with the lowest L2-loss in a validation
set, during the model rollouts by sampling uniformly a model
for every simulation.

Model predictive rollouts. Solving the MPC optimization
problem of (1) is prohibitively expensive and hard to obtain
online. This limitation is overcome by the information
theoretic model predictive path integral (i-MPPI) method [10],
a sampling-based algorithm that uses an approximation of the
true dynamics, and is able to optimize both convex and non-
convex cost criteria, thus being applicable to large classes of
stochastic systems and representations. i-MPPI uses the free
energy of the system and relative entropy (KL-divergence)
for providing generalized path integral expressions. Crucially,
it uses importance sampling for acquiring the optimal control
paths. In MoPAC, we use a similar setting for generating
model-based rollouts that will profit from the optimal perfor-
mance guarantees of Sec. III. In our model predictive rollouts
(MPR), we initialize the control sequence employing the
learned policy πθ to sample initial actions. Then, we design a
similar setup as in i-MPPI for creating trajectory simulations
in a specific time horizon H , starting from an initial true state
(Alg. 2). We evaluate the rewards of the rollouts, using also a
VF for the final state (2), and we perform importance sampling



of the optimal transitions over all simulations, along with
an information-theoretic update of the actions’ exploration
noise. Finally, we collect the resulting optimal transitions in
the model-based replay memory Dmodel.

When the approximation error of the learned model is low,
the trajectory optimization on the learned model performed
by MoPAC yields comparable performance as acting on
the real environment (Lemma 2). This remark, combined
with the use of the VF, allows us to obtain near-optimal
performance–up to an approximation error (Theorem 1).
Moreover, using the learned policy distribution for sampling
the initial control sequence, together with the relative entropy
objective, guarantees that we are simulating transitions in a
reasonable area around the learned policy, providing good
trajectories for exploitation, while the underlying actor-critic
explores new transitions.
Soft policy optimization. As the underlying actor-critic
algorithm in MoPAC, we adopt SAC [24] to benefit from
the exploration induced by the soft policy updates based
on the maximum entropy principle, counterbalancing the
effect of the exploitation induced by MPRs. Nevertheless,
MoPAC can be applied to any known off-policy actor-critic
algorithm. In SAC, the training of the policy alternates
between a soft policy evaluation step based on the soft
Bellman backup operator [25], and a soft policy improvement
step that minimizes the expected KL divergence: Jπ(θ,D) =
Est∼D[DKL(π||exp {Qπ − V π})], where Qπ , V π are the
soft Q-function and soft VF of policy π respectively.

V. EXPERIMENTAL RESULTS

A. Simulated tasks

We evaluate MoPAC in the simulated control tasks
of MuJoCo [39] included in the OpenAI-gym li-
brary [40]: HalfCheetah-v2, Ant-v2, Hopper-v2,
and Walker2d-v2. We compare the average return of
MoPAC over 5 trials, consisting of 1, 000 true environment
interactions per epoch, against the baselines SAC [25], MBPO
[14], and MBRL [10]. We decided not to compare with [33]
as the absence of code and a detailed algorithm, makes
the reproduction of their results prohibitive. Here, SAC and
MBPO are trained according to the hyperparameter settings
provided by their respective works, while for MBRL we use
the same settings as MoPAC, namely using horizons 5− 15
with linear annealing for all tasks. The number of environment
interactions per episode is constant across all algorithms. A
batch size of 10, 000 is chosen for the model rollouts in both
MoPAC and MBPO.

Fig. 2 shows the average return of each algorithm per
environment, plotted w.r.t. the number of epochs. In all
environments MoPAC and MBPO outperform both SAC,
evincing the advantage of using model rollouts, and MBRL,
that strongly suffers from poor exploration in the use of
the learned model. Notably, MoPAC learns faster than
MBPO. Specifically, we observe a significant speed-up in the
learning of HalfCheetah-v2 and Walker2d-v2. The
Ant-v2 and Hopper-v2 are more challenging tasks, as
they require more interactions with the environment to learn

their dynamics; in Hopper-v2 we observe a speedup in
learning and convergence, while in Ant-v2 MoPAC learns
faster in the first epochs and ends up with slightly better
performance than MBPO. We expect that by further tuning
the prediction horizons of our MPR, as now we use the same
horizons across all tasks regardless of task-complexity, will
result in increased performance.

B. Robotic tasks

We further underscore the efficacy of MoPAC by comparing
our algorithm with SAC and MBPO on a Yale Openhand
Model Q [41], [42] through two different manipulation tasks–
valve rotation and finger gaiting. The Model Q is an open
source underactuated hand with four two-link fingers and
four total actuators (Dynamixel XM-430). Within the hand, a
single motor actuates two opposing fingers that are coupled
by a differential, allowing passive reconfigurability between
the fingers. Two additional motors actuate the remaining
two fingers individually. The fourth and final motor serves
to rotate the palm of the hand, allowing the two coupled
fingers to reorient perpendicular to the palm axis (Fig. 1).
Being underactuated, the Model Q’s joint configuration cannot
be accurately determined, as with many soft, compliant, or
underactuated hands, this hand is not equipped with joint
encoders or tactile sensors [43]. This inherent compliance suits
the spirit of our evaluations well, as the reconfigurability of
the fingers presents added challenges in sufficiently learning
the dynamics of the environmental interactions.
Valve Rotation. We develop two different valves, the penta-
valve and the round-valve (resembling the geometry of a
door knob), for evaluation (Fig. 1). Each of the valves were
connected to a current-disabled Dynamixel actuator placed
directly below the hand as to measure rotation via the encoder.
Albeit disabled, valve rotation was resisted by the 353.5 : 1
gearbox inside of the actuator, generally limiting rotation
to only large actions from the hand (see twisting of flexure
joints in Fig. 1). Policies were trained for both valves with
each of the three aforementioned algorithms on the physical
system. The goal of this task was to continually rotate the
valve counterclockwise until episode completion (50 actions).
We define a standardized reward function, r(·) = θs′ − θs,
and run each of the algorithms with similar hyperparameters
and epoch lengths (50 interactions per episode, 5 episodes
per epoch, MPR horizons 2− 5 annealed).

Experimental results to these tasks, depicted in Fig. 2(e-
g), illustrate the benefit of our MoPAC algorithm compared
to baselines. Notably, the reward convergence of the round-
valve was less than that of the penta-valve, generally due
to the increased difficulty in estimating the task’s dynamical
hand-object nature, since the round-valve requires grasping
before rotation. Due to the design of the hand’s flexure joints,
the motors are decreasingly able to provide rotational torque
the more a finger is actuated, i.e. off-axis torsion limits the
amount of force the finger-contacts can transmit to rotate
the object. This further leads to a grasping and rotational
action that, if enacted with rigid joints instead of compliant
ones, would result in a reward from the valve rotation, but
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Fig. 2: Experimental results comparing MoPAC to other baselines in both MuJoCo environments (a-d) and robotic manipulation tasks (e-g). Results on
MuJoCo tasks are averaged over 5 separate experiments, while for the robotic manipulation tasks we learn a single policy and average its performance on 5
evaluation runs. All plots show the 95% confidence intervals. The automated object reset system is depicted in the bottom right.

does not necessarily happen with flexure joints. Generally,
the function of mapping grasping force and palm orientation
to valve rotation must first be inferred by the dynamics model
in order to sufficiently learn the task.

Albeit in some ways easier to estimate, hand-object
dynamics of the penta-valve is also not deterministic, as
the fingers interact with both the fingerpad (rubber) and side
of the finger (plastic), where slipping can occur. This task
noted a higher converging reward comparatively, as it was
not required that the valve be grasped for rotation, dismissing
off-axis torsion constraints. Towards the beginning of training,
the hand utilized the two independent, non-rotational fingers
to achieve a greedy reward, i.e. small movement given the
valve configuration, but soon thereafter noted that retreating
the fingers into a non-actuated position generally benefited
the cumulative reward as to limit interference with the valve.
Finger Gaiting. In addition to the valve rotation assessment,
we further challenged our algorithm with the task of finger
gaiting–a task requiring coordinated movement between the
opposing finger pairs in the hand. Here, the hand is not only
expected to maintain a stable grasp on the object during the
entire episode, but to rotate the object about the palm axis of
the hand (Fig. 1). We incorporated a similar reward function
as in the previous section, r(·) = θs′palm − θspalm , but now
the object is not constrained to only reorient along the reward

axis, being free to move in SE(3) space. In this evaluation,
we utilize the apple (Obj. #13) from the YCB Object and
Model Set [44] as to maintain standardization of the task.

The episode starts with a stable grasp acquired by the two
individually driven fingers, with the coupled fingers close
to, but not touching, the object. We monitor the pose of the
object during manipulation via an AprilTag [45] attached to
the bottom of the apple, and detected by an external camera.
Subsequently, the reward of an action can be calculated
through this setup, in addition to detecting when the hand
drops the object. When a drop is detected, the episode is
ended and the object is systematically reset via an automated
object reset system (Fig. 2). This system consists of an object
crane that controls a tether routed through the center of the
hand. During reset, the object lifts the object into the palm
of the hand as to stabilize, and then slowly lowers the object
into the starting position.

In this evaluation, we note similar curves to those in the
valve rotation task (Fig. 2). Specifically, we see MoPAC
outperform the two other algorithms, reaching convergence
faster with fewer environment interactions. Intuitively, this
quality is increasingly advantageous for tasks where system
reset cannot be completed quickly or autonomously–although
it was possible in this experiment, object reset required about
12 seconds and slowed the learning process. Training for



the valve rotation tasks took ∼ 2 hours for each valve and
each learning algorithm, whereas training for finger gaiting
took ∼ 5 hours. Notably, if we were to stop training upon
MoPAC convergence, significant time can be saved, which is
especially desirable when increasing task complexities.

VI. CONCLUSIONS

Transferring the advances of deep RL into real-world
robotic problems is challenging. Deep model-free RL (MFRL)
methods, though able to learn complex skills, typically require
an excessive amount of interactions with the environment,
making their applicability prohibitive for robotics. On the
other hand, model-based RL (MBRL) approaches learn
the dynamics model and select actions through trajectory
optimization techniques; albeit sample-efficient, they suffer
from local optima. In this work, we proposed Model Predictive
Actor-Critic (MoPAC), a method seeking to combine the
advantages of deep MF actor-critic methods with the data-
efficiency of MB approaches. In particular, MoPAC introduces
model predictive rollouts, inspired by information-theoretic
model predictive path integrals, based on the principles of
the dynamics free-energy and on an information-theoretic
constraint for collecting samples through trajectory optimiza-
tion. MoPAC uses a MFRL actor-critic algorithm for policy
improvement and model learning, and it uses the model for
performing the model predictive rollouts to collect additional
samples for guiding policy learning. The core advantage of
MoPAC is that, though MB rollouts favor policy exploitation
through planning using the model, the MFRL actor-critic
encourages efficient exploration for policy optimization and
model learning.

Our model predictive rollouts are backed up by a perfor-
mance bound, which guarantees that sufficiently low errors
in the value function, and model approximation, yields
near-optimal performance. We empirically demonstrate the
efficiency of MoPAC in providing accelerated policy learning
for simulated control tasks against representative baselines.
Furthermore, we showcase the applicability of MoPAC for
learning challenging in-hand manipulation tasks with a four-
fingered robotic hand. In the future, we will study ways
of principally adjusting the mixing of the MB-MF samples
across the training process, but also ways of scheduling the
MB over the MF method according to the learning progress,
and vice versa.

VII. APPENDIX

Proof of Theorem 1. Let the performance of applying policy
π̂ from MPC using the approximated model f̂ be denoted as
V̂ and the performance gain of applying the optimal policy
π∗ on the perfect model f∗ be V ∗ over a planning horizon
H . The performance error for any given starting state s is

V ∗(s)− V̂ (s) =
∑
s∼f∗

[

H−1∑
t=0

f∗(st, at)γ
trt + γHV ∗(sH)]

−
∑
s∼f̂

[

H−1∑
t=0

f̂(st, at)γ
trt + γH V̂ (sH)]. (5)

Adding and subtracting
∑
s∼f̂ [

∑H−1
t=0 f̂(st, at)γ

trt +

γHV ∗(sH)]in (5) yields

V ∗(s)− V̂ (s) = γH
∑
s∼f̂

[V ∗(sH)− V̂ (sH)]

+
∑
s∼f∗

[

H−1∑
t=0

f∗(st, at)γ
trt + γHV ∗(sH)]

−
∑
s∼f̂

[

H−1∑
t=0

f̂(st, at)γ
trt + γHV ∗(sH)]. (6)

Since the value function error is upper-bounded by
maxs|V ∗(s) − V̂ (s)|= εV , we can bound the following
relations as∑

s∼f∗
[

H−1∑
t=0

f∗(st, at)γ
trt + γHV ∗(sH)] ≤

∑
s∼f∗

[

H−1∑
t=0

f∗(st, at)γ
trt + γH V̂ (sH)] + γHεV (7)

∑
s∼f̂

[

H−1∑
t=0

f̂(st, at)γ
trt + γHV ∗(sH)] ≥

∑
s∼f̂

[

H−1∑
t=0

f̂(st, at)γ
trt + γH V̂ (sH)− γHεV . (8)

Substituting (7) into (6), we have

V ∗(s)− V̂ (s) ≤ γH
∑
s∼f̂

[V ∗(sH)− V̂ (sH)] + 2γHεV

+
∑
s∼f∗

[

H−1∑
t=0

f̂(st, at)γ
trt −

∑
s∼f̂

[

H−1∑
t=0

f̂(st, at)γ
trt

≤ γH
∑
s∼f̂

[V ∗(sH)− V̂ (sH)] + 2γHεV

+ rmax{
∑
s∼f∗

[

H−1∑
t=0

f̂(st, at)γ
t]−

∑
s∼f̂

[

H−1∑
t=0

f̂(st, at)γ
t]}

= γH
∑
s∼f̂

[V ∗(sH)− V̂ (sH)] + 2γHεV + rmax

H−1∑
t=0

γtεf

≤ 2γHεV (1 + γH + γ2H + ...) + rmax

H−1∑
t=0

γtεf

≤ 2γHεV
1− γH + rmax

H−1∑
t=0

γtεf =
2γHεV
1− γH + rmax

1− γH

1− γ εf (9)

≤ rmaxεf
1− γ . (10)

For MPC with imperfect dynamics and prediction horizon
H , the bound (9) holds, showcasing the inevitable error due
to the model approximation. However, this relation can be
upper-bounded by the quantity in (10) considering an infinite-
horizon, H →∞, prediction. The bound of (9) shows that
sufficiently low approximation errors in the VF and the model
can yield near-optimal performance, which is related to the
prediction horizon and the discounted factor.
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