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Abstract� In this work, we investigate a mechanics-inspired 

framework for describing fingertip-based planar within-hand 

manipulation with an underactuated robotic gripper. In 

particular, this framework leverages fundamental mechanics 

properties of the hand-object system, including basic terms such 

as local contact curvature as well as more complex features 

including the grasp matrix and manipulability metrics. These 

are extracted using a simple visual approach and then in real-

time used for predicting planar manipulation modes: namely 

rolling, dropped, stuck, and sliding. Given a desired cartesian 

motion for the object, a supervised learning model predicts these 

four manipulation modes before they occur, allowing us to either 

avoid or trigger these different behaviors. Since we utilize 

strictly fundamental properties of the grasp matrix, finger 

Jacobians, and contact curvatures, we are able to demonstrate 

prediction transferability between different grippers using our 

original classifier. In particular, a Random Forests classifier 

trained on one gripper successfully predicts manipulation modes 

for grippers with different fingers with 84% accuracy, compared 

to just 56% from an approach in previous work. Overall, we find 

that the features designed in our approach better describes 

fingertip manipulation when precise gripper models are not 

available. 

I. INTRODUCTION 

 Practical implementation of dexterous within-hand 
manipulation (WIHM) in physical robotic systems is a major 
challenge due to unknown or inaccurate mechanics model 
parameters (e.g. forces, coefficient of friction, exact contact 
scenario, etc.).  In traditional approaches with rigid, high 
degree-of-freedom (DOF) hands (e.g. [1], [2]), the system is 
highly overconstrained due to the contacts and the closed 
kinematic chain, which greatly reduces the controllable 
degrees of freedom. Alternatively, this overconstraint can be 
mitigated through underactuated hands [3], [4], which are 
underconstrained before contact and will inherently 
reconfigure to passively adjust to contacts, noisy control, and 
external disturbances [5]. However, due to their adaptability, 
deriving accurate hand models is difficult since finger 
equilibrium, contact forces, and kinematics must be solved 
simultaneously in order to account for reconfiguration [6]�[8]. 

In our previous work, we have shown that robust, planar 
WIHM is possible, without detailed hand or object models, 
using basic visual servoing techniques and no additional 

 
 

sensing [9], [10]. Additionally, in follow-on work, we leverage 
this robust and simple control for data-driven approaches to 
improve understanding of the hand-object system, especially 
for difficult-to-sense modes of operation during WIHM, such 
as when the object is sliding, stuck, about to drop, or exhibiting 
rolling contacts (normal) [11]. This preliminary work explored 
predicting modes of manipulation in real-time by using visual 
and proprioceptive actuator data extracted during object 
manipulation. However, the features used during this 
preliminary effort were not particularly generalizable and the 
learned models were unable to be transfer to similar grippers � 
as in most machine learning cases, it was system dependent. 

Our main contribution in the current work is that we 
demonstrate a mechanics-inspired feature set that captures 
elemental properties of the hand-object system, that at least 
partially generalize across different grippers as key features 
when link lengths and finger geometries change. This 
approach is advantageous for tasks that may require different 
hands to successfully complete, e.g. fingertip geometries or 
transmission ratios, where one prediction model can be trained 
to work over various hand designs. Experimentally, using 
cartesian movement intent and certain mechanics-inspired 
features extracted only from visual information from one hand, 
we show that the classifier developed is able to successfully 
predict manipulation modes when transferred between 
grippers with different physical dimensions. This work 
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Fig. 1. Features extracted from vision to construct the finger 

Jacobian and the grasp matrix, determined by effective link 

lengths, joint configurations, and the contact and object frames.  
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encompasses features agnostic to the exact dimensions of the 
hand system, which provides additional insights to the 
importance of the proposed features after training is 
conducted. From this mechanics-inspired approach, we seek to 
answer the following research questions: 

1.) Can a mechanics-inspired supervised learning model 
predict modes of within-hand manipulation? 

2.) Is this approach generalizable between similar 
physical gripper specifications? That is, can we train 
this model with one gripper, test with others, and 
maintain a high accuracy in mode prediction? 

3.) What mechanics features are most important to mode 
prediction of a planar, underactuated robotic gripper?  

The layout of this paper is described as follows: Section II 
reviews complementary literature to this work, Section III 
presents our methodology for defining modes of manipulation, 
how data is collected and analyzed, and what features are 
extracted during the manipulation, Section IV describes the 
experimental results with a following discussion on feature 
importance, and finally, Section V concludes this paper with 
an additional discussion of future work. 

II. RELATED WORK 

Directly utilizing long studied fundamental mechanics in 
robotic manipulation such as inverse kinematics, grasp 
matrices, and finger Jacobians [12]�[18] requires estimation of 
kinematic and kinetic model parameters, making the 
development of a precise model a challenging endeavor. In 
fully actuated systems, a small error in these parameters during 
a manipulation could result in undesired slippage. This 
problem has been previously addressed by learning friction 
coefficients at the moment of incipient slippage detected 
through tactile sensors [19], [20]. Naturally, this approach 
requires prior exploration by manipulation with an object to 
calculate such parameters, which may be infeasible in time-
sensitive or mission critical tasks. Complementary works have 
approached this question not by estimating physical 
parameters, but through various machine learning techniques 
to estimate grasp stability through tactile sensing [21]�[23]. 
Due to the rigidity of high DOF hands, force sensing in their 
control loop is typically required to maintain grasp stability. 

Unlike fully actuated hands, which would typically require 
an impedance control framework  [24], the passive 
adaptability of underactuated hands allows the grasp to be 
maintained under reasonable external disturbances without 
requiring additional sensing. Because of this compliance and 
adaptation, complexities to the hand model are introduced, 
making accurate models non-trivial to derive for precision 
manipulation. Various techniques for  modeling underactuated 
hands have been introduced in previous works, evaluating 
configurations and torque about each of the joints [6], [7], [25]. 
Yet, precision manipulation through these models is typically 
only done in simulation due to their simplified frictional 
assumptions. Because of the complexities in this frictional 
estimation, reinforcement learning, like that in [26], has 
enabled force control policies to be learned for compliant 
joints. 

Learning policies for manipulation is a well-developed 
area of interest. Historically, hand designed controls have been 

task-specific and do not generalize well to unstructured 
environments. On the other hand, Deep Reinforcement 
Learning has shown to be promising and is currently one of the 
most popular approaches to learning robot control and state 
estimation (e.g.[27], [28]). A large caveat to this approach is 
the amount of data required for training, which is often an 
infeasibly large amount for a physical implementation. 
Simulation is typically used as an attempt to overcome this 
problem.  An approach from [29] addressed this caveat by 
relying on videos from the internet to teach a robot 
manipulation actions. In [30], a framework is developed to 
reduce the amount of training data required for the control 
policy and was shown to be successful when implemented for 
the block stacking task. Other approaches have combined 
imitation learning and reinforcement learning to address this 
problem. This combination requires less reinforcement 
exploration since it is initially guided by a human agent [31].  

Nonetheless, while these approaches have been fairly 
successful, in general, all lack generalizability and 
interpretability once a policy is formed and are dependent on 
gripper specific parameters, like sensor orientation and finger 
geometries. Unlike these works that develop complex control 
strategies, our object manipulation approach uses Precision 
Manipulation Primitives (PMPs) [10],  from simple kinematic 
models to move objects in cartesian directions (x- and y- with 
respect to the base frame). From these primitives, we can move 
objects in random directions using an automated controller and 
learn what mode the object is in, or about to transition into. We 
limit our sensing modalities to a vision only approach, since 
the hand used (Model T42, Yale Openhand Project [4]) does 
not have onboard tactile sensing. Due to the lack of tactile 
sensors, slip (or sliding) detection, as in [32], [33], cannot be 
implemented. We believe that approaching manipulation with 
mechanics-inspired feature sets, which can be extracted solely 
through vision, will allow us to better interpret findings for 
future advancements in manipulation tasks. 

III. METHODS 

In this work, we utilize a modified Model T42 from the 
Yale Openhand project to study planar WIHM. Modifications 
to this model include a rounded fingertip, adjustable extension 
springs on the proximal links, and an internal pulley system to 
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��This hand model 
has two, two-link opposable fingers, where each finger is 
powered by a single Dynamixel RX-28 motor. As a tendon 
driven mechanism, the flexion force is provided by the motors 
and the return force from the passive springs connected to each 
of the joints. Two additional (urethane rubber, durometer 30) 
distal and proximal links with similar frictional coefficients 
and of different lengths are designed for experimental testing 
(see Fig. 2, 5), to test the research questions presented in the 
motivation of this work. All external, visual sensing is 
completed through the use of an overhead camera detecting 
ArUco ��������������������������
�����
�
���inks. Link-joint 
relationships are then calculated for data representation.  

In planar manipulation, four mutually exclusive modes, 
which are dependent on the state and the intended motion of 
the object, are identified of which can occur:  

1.) Drop - The hand-object configuration is in a state where 
the object is just about to drop and will drop shortly 

5824



  

thereafter from the commanded next cartesian workspace 
location. 

2.) Stuck - The object is no longer able to move in the 
commanded cartesian direction due to the hand-object 
configuration of the gripper, or the joint has reached a 
physical hard stop.   

3.) Sliding - The object exhibits a sliding contact with respect 
���������
������ distal link. Note: this mode only occurs on 
the tested rectangular prisms.  

4.) Normal - The object is manipulable �
��

�������
�������
workspace while maintaining a rolling contact, and 1-3 
are not satisfied. 

A.  Feature Design and Motivation 

While previous work [11] relied on raw, unstructured 
sensor data to train a mode predicting classifier, this work 
leverages the inherent structure of equations describing 
physical phenomena. Specifically, we make use of Jacobian 
based manipulability metrics [34], [35], finger and object 
curvatures at contact [36], and the singular values of the grasp 
matrix. These proposed features are generalizable in that they 
aggregate many terms into composite values which do not 
relate directly to the specific dimensions of the links of the 
hand - rather they convey higher level behaviors and properties 
of the entire hand-object system, allowing features to be 
transferable.  

 First, we make use of a modified manipulability measure 
[35] that requires a-priori knowledge of joint limits. This 
metric is positively unbounded in regions of the kinematic 
finger workspace where joint motions have the greatest effect 
on the cartesian motion of the end effector, and has a lower 
bound of zero in regions where the effect is negligible due to 
either kinematic singularities or joint limits. Inspired by 
����
������� ��
�

��� �������� �	� ��

�����
�
�� [34], 
Vahrenkamp���
���������������	���
���������
��������
�����
�����
function, which scales the manipulability measure between 0 
and 1 depending �
�������

��������
�
������
����pper and lower 
limits. The penalty function is defined as ����� where � can 
be used to tune how quickly manipulability drops off near the 
joint limits. Visual representations of the following parameters 
are presented in Fig. 1. We know that our Jacobian, ��, 
represents the map from joint velocities to cartesian velocities. 
That is,  

	
� � � ��
��� 
where 
 represents the finger number, 	
� � � ����


��� ��, and ��� �
�����


������. We can represent ��
 in the planar case as, 

������ � 
 ������� � ������ ������������ � ������ ������ � 
where  �� � �
���

���
��, 
��� � �� �����, 

��� � 
  !"�����, 
���� � �� ���� � ����, and
���� �  !"���� � ����. The 
manipulability measure, #� ,  as defined by Yoshikawa is then,  

#� � $%&'(��
���) � *%&'����* � ����* !"
�����*
 
The penalty function, ������,  from Vahrenkamp can be 
represented as, 

������ � + � &,-
�
��.���/0
 � 
 ��/01 ����/02 � ��/0�
(��/02 �
 ��/01 )�

3

04�
� 

where ��/02  and ��/01  represent the maximum and minimum joint 

limits for each joint, 5, and each finger, 
, respectively. We can 
then calculate the penalized manipulability measure for each 
finger individually by, 

#�6789:;<7= � �*%&'����* 
Kinematic workspaces for these two manipulability measures 
are presented in Fig. 3.  

Next, we propose a feature based on the grasp matrix[16], 
[37], a matrix which is most commonly used in manipulation 
mechanics to relate the velocity of the object to the velocity of 
the fingertip at the location of contact. Based on the directions 
of the normal vectors of the contacts, the grasp matrix can be 
constructed from the geometry of the hand-object system alone 
- no knowledge of contact forces or friction coefficients is 
required. Our inspiration for using the grasp matrix comes 
from the observation that its minimum singular value has a 
lower bound of zero, regardless of the pertinent dimensions of 
the hand or the object [38]. Because of this, it is invariant 
across systems of different physical dimensions. In particular, 
this lower bound represents cases where contact force normal 
vectors align on the surface of an object, creating a condition 
where force closure is impossible. In other words, this term 

       
 
 
 
 

Fig. 2. Classification mode prediction from left to right: normal, drop, stuck, and sliding on three different gripper variants (top corner). 

Cartesian velocity references, or commanded motion of the object from the PMPs, are denoted by arrows in the top right-hand corner.  

 
 

 

 

Fig. 3. Manipulability workspaces for three fingers used in 

experiments with (Left) from Yoshikawa, and (Right) from 

Vahrenkamp after penalty. Darker region indicates less 

manipulability.  

 LPSD                                                                   LPLD             LPSD                                      SPLD 

(1) 

(2) 

(3) 

(4) 

(5) 
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can be used to signal the likelihood of dropping the object. We 
can formulate the relationship for the grasp matrix, >, of a two-
contact, planar grasp as, 

?@ � >AB 

where ?@ � �ACD/ ACE/ F�� and AB � �ABGH/ ABGI/ ABJH/ ABJI��, and 

where ACD, ACE, F are � and � forces on the object, and torque 

about the perpendicular axis, respectively. We denote AB;H and AB;I for single contact on finger 
, as the � and � forces applied 

from the contact. Assuming a point contact with friction, we 
then formulate a basis, KB;, representing the contact friction 

model on finger 
. It is also necessary to extract the position 
vector,
LB; ,  of the 
th contact frame, ��, and its offset 

rotation,
MB;, with respect to the object frame, N. So,  

KB; � 
 O+ PP +P PQ MB; � 
 R�� 
��S;� � !"
��S;� !"
��S;� �� 
��S;� T LB; � 
 �LB;DLB;E�    
where �S; � 
�B; �
�@, where
�B;, �@ are the angle offsets of 

the contact and object frame, respectively. Finally, we can 
calculate the two-contact grasp matrix, >, by calculating,  

U�VWX;YG� � R MB; P��L�
� L�
��MB; +T Z 
[\D\ 

> � 
 ]U�VWXGYG� KBG U�VWXJYG� KBJ^ 
 Z 
[\D_ 

B. Automated Data Collection 

Generating training data for within-hand manipulation 
without simulation is a labor-intensive process, as the object is 
easily dropped and must be manually placed back between the 
fingers. Additionally, stalling the motors in a stuck case often 
causes the motors to overheat, which ceases data collection 
and requires a system reset. To streamline this process, we 
fabricated an automated object resetting system and an 
autonomous hand controller, which commands the hand with 
randomly generated cartesian velocity references, specified by 
the PMPs, and then observes the result. In this way, we are able 
to streamline data collection by reducing human interaction. 
The object resetting system consists of a crane and a 
stabilization beam, both actuated by hobby servos. The crane 
lifts the object back to an appropriate starting height between 
the fingers, after it has been dropped or stuck. The stabilization 
beam snaps the object into a known orientation by mating 
neodymium magnets on the object with one on the end of the 
beam. This system allows an object to be repeatedly grasped 
from the same initial position and orientation with respect to 
the gripper. The resetting system is shown in Fig. 4. 

 The automated data collector is controlled through ROS 
and is comprised of several packages that can be categorized 
as either hand control, data collection, or feature extraction. 
Previous descriptions of the PMP control utilized in this work 
have been provided in [9], [10], which provide a cartesian 
velocity reference (intent to move) in cardinal and 
intercardinal directions. Our developed automated controller 
selects a direction at random for anywhere between 0.5 to 2.5 
seconds. This random selection exploits motions and hand-
object configurations previously unobserved from human 
teleoperation, which provides for a higher variance in mode 
location within the workspace and a harder learning problem.  

Experimental data collection is automated through 
parallelized detection nodes, which are triggered when certain 
criteria are satisfied. Once detected, an instantaneous data 
point is recorded preserving the state of our feature set, which 
will later be used for classification. Detection is as follows: 

Drop: The object has moved one centimeter below its 
initial finger configuration or has not been detected for 5 
frames, equivalent to 0.166 seconds. A data point is 
collected for is last known valid configuration. 

Stuck: The cartesian reference of the object has been 
commanded for more than 1.5 seconds without any object 
movement. 

Sliding: The relative distance to orientation change of the 
ArUco marker between the object and the fingertip has 
changed. Detected after 0.5 seconds of movement.  

Normal: All other modes have not been detected within the 
last 5 seconds of manipulation. 

Lastly, feature extraction as described in Sec. IIIA. is 
achieved by the use of an overhead camera and ArUco markers 
attached to rigid links of the gripper (Fig. 1, 5). During a 
manipulation task, properties of the grasp change dynamically 
according to the hand-object configuration, e.g. contact 
curvatures, effective distal link lengths from a changing 
contact location, and joint angles. First, contact location 
between the finger and the object is captured through a KD- 
Tree [39] and vision extracted point clouds. At this point, 
effective distal link lengths are then calculated with respect to 
the contact point location and the location of the proximal-to-
distal joint, accurate within 2mm. These values are normalized 
with the length of the proximal to eliminate dimensionality. 
An example of the effective link length changing is illustrated 
in Fig. 1, where the left link is effectively longer than the right 
due to the location of the contact point on the fingerpad. 
Thereafter, this information is then sufficient to calculate the 
desired Jacobians, contact curvatures (radius of a circle fitted 
at contact that is extracted from a 2D point cloud), and grasp 
matrix as presented in Sec. IIIA. The feature vector, U, used 
for initial classification can be represented as (Table 1), 

U � �`ab�/ `a
c/ 5�/ 5	/ 5�d/ 5	d/ ��A/ �	A/ ��N/ �	N/ e�/ e�
� Z 
[�� 

 
 

 
 

 

Fig. 4. Automated data collector commanded through ROS and 

Arduino. Once the object is dropped, the stabilizing beam 

rotates down, attaching to the object. After stabilization, the 

object is grasped and the system is reset for the next drop case.  

(6) 

(7) 

(8) 
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C. Data Collection 

Four 3D Printed ABS objects are used in our experiments 
(Fig. 6). The object geometries in the manipulation plane are 
as follows: (1) large cylinder, 41mm dia., (2) small cylinder, 
29mm dia., (3) large rectangular prism, 41x60mm, and (4) 
small rectangular prism, 29x60mm. Each object has a hole 
through the center to allow for attachment to the object reset 
crane. Additionally, two small neodymium magnets are 
adhered to opposite ends of the object to allow for attachment 
to the stabilization beam.  

Experimental data was collected with a total of three 
different gripper variants and four different objects (Fig. 5). 
First, training data was collected with a symmetric Model T42 
for normal, drop, stuck, and sliding cases over all four objects. 
We refer to this gripper variant as a dual large-proximal, large-
distal configuration (LPLD).  A total of 3500 data points were 
collected (1000 normal, 1000 dropped, 1000 stuck, 500 
sliding) for the training set, with points being equally 
distributed across each of the objects. Sliding only occurred 
with the rectangular prisms, hence, half the number of data 
points according to the object geometry distribution.  

Testing data was collected by equipping the hand with two 
different asymmetric finger configurations.  These two gripper 
configurations are referenced as: (1) single large-proximal 
large-distal with a single small-proximal large-distal (SPLD), 
and (2) a single large-proximal large-distal with a single large-
proximal small-distal (LPSD) (Fig. 5). A total of 1750 points 
were collected with four objects from these two variants, with 
a balanced half collected using the large cylinder and small 
prism for the LPSD setup, and the other half collected with the 
small cylinder and large prism for the SPLD setup. Test data 
is effectively half for each mode of the training data.  

IV. EXPERIMENTAL RESULTS 

A. Classification Results 

Our first interest was to obtain the best classification score 
with all 12 features described in feature vector,  U, 10 of which 
are extracted from vision and 2 of which from the controller 
(Table 1). In our supervised learning approach, we utilized 
TPOT and  Scikit-learn [40]  tools to evaluate two different 
prediction models: Random Forests (RF) and Support Vector 
Machines (SVM). For reference, a 5-fold internal cross 
validation score, provided by TPOT, for the training data using 
a Random Forests classifier is found to be 89.2%. This 
classification score describes prediction accuracy when the 
classifier is trained and tested with our 3500 LPLD data points, 
which is the training data for our following analysis. 

In our analysis, the SVM classifier was evaluated with both 
a linear and radial kernel to explore two different learning 
approaches. Therefore, in total, 3 different predictive models 
were trained, each using the 3500 data points from the LPLD 
setup and all 4 objects. The classifiers were then individually 
tested using the 1750 data points from the two combined SPLD 
and LPSD setups. Classification results in Table 2 show that 
the RF classifier outperformed the others with a classification 
rate of 84.6%, less than a 5% decrease from the cross-
validation score. The two SVM classifiers fell marginally 
below with a classification rate of 79.5% for the linear kernel, 
and a classification rate of 82.8% for the radial kernel.  

 Our best classification model, Random Forests, will serve 
as the basis for the rest of our analysis. We find that we are 
best able to classify the drop case with over 94% accuracy, 
whereas stuck classifies correctly 88% of the time. We note 
that our main prediction confusion comes from the 
rolling/sliding distinction, where this prediction is only 77% 
accurate. This follows closely with intuition; since tactile force 
sensing is not a feature, it is difficult to predict sliding 
explicitly. Additionally, sliding does not occur for each of the 
objects, which decreases the number of training points we 
were able to use to train the classifier for this specific case. 
Interestingly, if we consider a two-class prediction, drop 
versus the three other modes, we see the classification rate rise 
to 96.3%. This concept can be further exploited for future 
applications that requires the gripper to maintain manipulation 
capabilities without dropping the object. 

It is in our interest to understand where, within the 
workspace, certain modes are most likely to occur, regardless 
of physical gripper dimensions. Fig. 7 presents these regions 
for the testing and training data, where each point represents 
the center of the object when the mode was realized in data 
collection. We notice that not only does the workspace 
becomes smaller with the SPLD and LPSD setup, which is to 
be expected, but the mode regions appear to be more 
overlapping and less discernable compared to the training data, 

 
 

Fig. 6. Four ABS objects used in the experimental analysis 

                  

           
 

Fig. 5. Three gripper variants from left to right: LPLD (symmetric), LPSD (asymmetric), and SPLD (asymmetric). Dimensions for the 

long proximal, small proximal, long distal, and short distal are 6.7mm, 4.7mm, 4.8mm, and 3.6mm respectively.  
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that appears to be somewhat symmetric about a vertical axis 
through the center of the gripper. We also note that 
misclassifications for the asymmetric test data do not tend to 
occur in any specific object regions in the workspace � it is 
well dispersed throughout. Therefore, simply relying on the 
center of the object, coupled with velocity intent, for mode 
classification, as in [11], is not likely a transferable approach 
to other physical gripper variants.    

B. Feature Importance 

 Likely, the main benefit of our approach, versus others 

described in related works, is the interpretability of feature 

importance measurements presented through the RF classifier 

(Fig. 8). We see in this ranking that the intended velocity, 
eE , 

is the most important feature. This result follows closely with 

intuition given the illustrated regions within the workspace, 

with commanded velocities in the x less likely to move the 

object into another region. We note that some modes directly 

rely on 
eE , where we are typically only stuck when moving 

towards the base of the gripper. We then find that the two sets 

of manipulability measures [34], [35], are the next most 

important, since these describe properties of the finger 

configuration and the ability for the finger to move within the 

workspace. These four features coupled, when coupled with 
eE , are able to classify stuck cases with 96% accuracy.  

   Using only the top 6 most important features highlighted 

in orange from Fig. 8, with the same training and test data, our 

classification for RF does marginally worse with a rate of 

82.7%. Interestingly, the linear kernel for the SVM classifier 

performs better with less features, raising from 79.5% to 

81.8%. Lastly, the radial kernel also performs marginally 

worse with fewer features, classifying at a rate of 81.9%.  

C. Summary and Discussion 

 We find that we are able to predict manipulation modes 
with 84.6% classification accuracy using our geometric, 
mechanics-inspired features. Due to the lack of tactile sensors, 
it is difficult to differentiate between normal and sliding 
modes, since this is both object and contact dependent. 
Additionally, object drop detection is also sometimes difficult 
due to lack of force feedback and imperfect understanding of 
contact scenarios. Naturally, the grasp on the object in the 
asymmetric finger case eradicates the axis of symmetry for 
modes in the workspace, making force closure prediction less 

stable. Though, by solely using vision, this classification 
analysis is promising for future implementation and analysis.  

This work was motivated by the lack of mobility exhibited 
by previous machine learning models when transferred to 
different grippers. We can present the significance of this work 
by a final comparison with that in [11], where for all four 
modes, a classification accuracy of 89% was realized from just 
four features. When training a RF classifier with these four 
features using the LPLD training data collected in this work, 
then testing with the SPLD and LPSD setup, we realize a 56% 
classification accuracy, vastly dropping the classification rate 
for a four-mode case and showing significance to our work. 

V. CONCLUSION 

In this work, we described a vision-extracted, mechanics-
inspired feature set that allowed us to successfully predict 
modes of WIHM over various underactuated robotic grippers 
with 84.6% accuracy. Unlike in previous works where the 
feature set is only valid for the target system, we have shown 
that, when using features invariant to the physical dimensions 
of the gripper, we are able to learn a transferrable model to 
predict modes and maintain a high level of prediction 
accuracy. We believe that the presented approach provides 
insights for future research in dexterous manipulation when 
using grippers that are hard to precisely model.  

As future work, we believe that this framework can be 
tested further for hand variants with different spring constants 
(joint compliance), link lengths, and fingerpad curvatures. By 
training such a classifier with unique gripper variants, it is 
likely possible to transfer mode prediction accuracies to a 
wider variety of grippers. Additionally, we believe that 
training and testing with everyday objects will exploit 
interesting feature importance measures, dependent on the 
objects used and the relative geometry of the finger.  

 
 

 

Fig. 8. Feature importance scores reported by the RF classifier. 

Features in orange signify the top 6 features used in feature 

reduction analysis, effectively half of the initial feature vector.  
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       Fig. 7.  Regions identified in experimental collection according 

       to object center for the (Left) LPLD and the (Right) SPLD. 

TABLE 1. FEATURES COLLECTED FOR INITIAL EVALUATION  

Number Feature Set  Notation  

1-2 Min/Max SVD Grasp Matrix `f�3/ `fgD 

3-4 Left/Right Finger Manip. Measure 5h/ 5i 

5-6 Left/Right Penalized Manip. Measure 5hd/ 5id 
7-8 Left/Right Finger Pad Curvature �hj/ �ij 

9-10 Left/Right Object Curvature �hC/ �iC 

11-12 X/Y Cartesian Velocity Reference eD/ 
eE 

TABLE 2. CLASSIFICATION RESULTS BY CLASSIFIER AND 

FEATURES SELECTION 

 Random Forests SVM - Linear SVM � Radial 

All Features 84.6 % 79.5 % 82.8 % 

6 Most Imp. 82.7 % 81.8 % 81.9 % 

    = Normal 

    = Drop 
   = Stuck 

   = Sliding 
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