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to Simplify Dexterous Manipulation

With Adaptive Robot Hands
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Abstract— In this paper, we focus on the formulation of a
hybrid methodology that combines analytical models, constrained
optimization schemes, and machine learning techniques to sim-
plify the execution of dexterous, in-hand manipulation tasks
with adaptive robot hands. More precisely, the constrained
optimization scheme is used to describe the kinematics of adaptive
hands during the grasping and manipulation processes, unsu-
pervised learning (clustering) is used to group together similar
manipulation strategies, dimensionality reduction is used to either
extract a set of representative motion primitives (for the identified
groups of manipulation strategies) or to solve the manipulation
problem in a low-d space and finally an automated experimental
setup is used for unsupervised, automated collection of large data
sets. We also assess the capabilities of the derived manipulation
models and primitives for both model and everyday life objects,
and we analyze the resulting manipulation ranges of motion
(e.g., object perturbations achieved during the dexterous, in-hand
manipulation). We show that the proposed methods facilitate
the execution of fingertip-based, within-hand manipulation tasks
while requiring minimal sensory information and control effort,
and we demonstrate this experimentally on a range of adaptive
hands. Finally, we introduce DexRep, an online repository for
dexterous manipulation models that facilitate the execution of
complex tasks with adaptive robot hands.

Note to Practitioners—Robot grasping and dexterous, in-hand
manipulations are typically executed with fully actuated robot
hands that rely on analytical methods, computation of the hand
object system Jacobians, and extensive numerical simulations
for deriving optimal strategies. However, these hands require
sophisticated sensing elements, complicated control laws, and are
not robust to external disturbances or perception uncertainties.
Recently, a new class of adaptive hands was proposed which uses
structural compliance and underactuation (less motors than the
available degrees of freedom) to offer increased robustness and
simplicity. In this paper, we propose hybrid methodologies that
blend analytical models with constrained optimization schemes
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and learning techniques to simplify the execution of dexterous,
in-hand manipulation tasks with adaptive robot hands.

Index Terms— Adaptive hands, dexterous manipulation, grasp-
ing, underactuated mechanisms.

I. INTRODUCTION

TRADITIONALLY, the planning of fingertip/pinch grasps
and dexterous, in-hand manipulation tasks relied on

fully actuated, multifingered, rigid robot hands that required
the use of analytical models, the computation of the hand
object system Jacobians, and extensive numerical simulations.
However, certain grasping and manipulation tasks involve
dynamic phenomena such as uncontrolled slipping and rolling
that are impractical, difficult, or even not possible to model.
Furthermore, even minor uncertainties in the modeling space
(e.g., perception uncertainties like object pose uncertainties
that are due to sensor noise or other errors) could easily
render the execution of stable grasps or the computation of
a set of realizable dexterous manipulation paths infeasible.
Thus, despite the sophisticated designs and the numerous
studies that have focused on dexterous manipulation over the
last 50 years, there has not been much progress in terms of
practical applications and the execution of dexterous, in-hand
manipulation tasks remains difficult to accomplish.

Over the past decade, a new class of adaptive robot hands
has been proposed to simplify the grasping and manipula-
tion problems. These hands use structural compliance (e.g.,
fingertip, finger pad, or joint compliance) and underactuation
[fewer actuators than the available degrees of freedom (DoF)]
to facilitate by design the extraction of stable grasps and the
robust execution of dexterous, in-hand manipulation tasks.
Adaptive hands can grasp and hold firmly a wide range
of everyday life objects, even under significant object pose
uncertainties and they do not rely on accurate, preplanned
motions or strategies [1]–[5]. For the aforementioned reasons,
most researchers that work with adaptive hands choose to con-
trol them in an open-loop, almost “ON–OFF” fashion without
requiring any sensor feedback. Regarding manipulation, a few
studies have also focused on demonstrating the efficiency of
adaptive hands in executing dexterous, within-hand manipula-
tion tasks [6]–[8]. However, adaptive hands also have certain
limitations and drawbacks. The use of underactuation com-
plicates the planning problem, introducing certain kinematic
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constraints imposed by the cable-/tendon-based transmission,
while the use of compliant elements in the robot hand structure
(e.g., flexure joints based on urethane rubber) complicates
the kinematics and dynamics analysis. These drawbacks when
combined with dynamic phenomena like the uncontrolled
slipping and rolling that typically affect the execution of
in-hand manipulation tasks, make modeling, planning, and
control with adaptive robot hands particularly challenging.
Furthermore, upon contact with the object surface, the hand
object system tends to reconfigure to an equilibrium con-
figuration that depends on the contact forces exerted at the
fingertips and on the hand and object parameters (e.g., finger
link lengths, object geometry, joint stiffness etc.), imposing a
parasitic object motion that cannot be easily modeled.

In this paper, we focus on the formulation of a hybrid
methodology that simplifies the execution of dexterous,
in-hand manipulation tasks with adaptive robot hands (see
Fig. 1). The proposed methodology is considered hybrid
as it combines in a synergistic fashion, analytical meth-
ods, constrained optimization schemes, and machine learning
techniques to extract task-specific manipulation models and
primitives that simplify the execution of dexterous, in-hand
manipulation tasks. More precisely, a constrained optimization
scheme uses analytical models that describe the kinemat-
ics of adaptive hands and classic conventions for model-
ing quasi-statically the grasping and manipulation problems
(providing insight regarding the problem mechanics). The
constrained optimization scheme is used as a basis for the
development of a “simulation module” that analyzes the
behavior of adaptive hands and gives a good initial estimate
of their grasping and dexterous manipulation capabilities. The
learning module consists of a clustering module that groups
together similar manipulation motions/paths, a dimensionality
reduction technique that projects the robot kinematics to a
lower dimensional manifold when the control problem needs
to be simplified and finally a supervised learning module
that combines classification and regression techniques to map
in a task-specific manner, the desired object trajectories to
the required robot hand actuator trajectories (acting as an
analogous of the inverse of the hand object system Jacobian).
Finally, we propose an autonomous experimental setup that
consists of a 7-DoF robot manipulator, the examined adaptive
robot hands, and object retracting mechanisms that return the
manipulated objects passively to the initial pose. The particular
setup facilitates an autonomous collection of big data sets over
long periods of time.

In this paper, we also focus on accessing the efficiency
and the generalization capabilities of the derived manipulation
models for different objects (e.g., both model objects and
everyday life objects), as well as for different task specifi-
cations. To validate the efficiency of the proposed methods,
we conduct extensive experiments involving various adaptive
robot hands and manipulating a plethora of instrumented,
3-D printed objects and everyday objects. Finally, we introduce
DexRep (www.newdexterity.org/dexrep), an online repository
that hosts easy to use, intuitive manipulation models that
facilitate the execution of dexterous, in-hand manipulation
tasks with adaptive robot hands.

Fig. 1. Different types of user-provided inputs for the proposed methodology.
The user may specify the way that the object will be manipulated either by
providing the desired object trajectory (in 2-D or 3-D space depending on the
hand structure) or by selecting an appropriate object motion primitive (e.g.,
rotation of the object around a desired axis). The presented hand is the T42PP
and is a derivative design of the Yale Open Hand project.

The rest of this paper is organized as follows. Section II
presents the related work, Section III presents the methods
used to formulate the proposed methodologies and discusses
the role of the different modules, while Section IV presents
the experimental setup as well as the robot arm and the
adaptive robot hands used. Section V focuses on the efficiency
and the generalization capabilities of the derived dexterous,
in-hand manipulation models and primitives and discusses the
limitations of the proposed methodology, while Section VI
concludes this paper.

II. RELATED WORK

Dexterous, in-hand manipulation has become increasingly
important as it allows robots to interact with their surroundings
and execute meaningful tasks (e.g., grasping a handle, opening
a door, turning a knob etc.). In [9], dexterity has been described
as the process of manipulating an object from one grasp
configuration to another, while in [10], as the cooperation
between multiple manipulators or fingers, to grasp and manip-
ulate objects. Thus, dexterity has always been associated
with the grasping and manipulation processes and people
tended to characterize as dexterous those robot hands that
have multiple fingers, multiple actuators, and DoF (mostly
fully actuated devices). Such hands are typically rigid, heavy,
and expensive and they require sophisticated sensing elements
and complicated control laws in order to execute efficiently
dexterous tasks. On the other hand, the new class of adap-
tive robot hands offers a simplified and affordable dexterity,
as well as increased robustness and intuitiveness in the exe-
cution of stable grasping and dexterous, in-hand manipulation
tasks.

Significant research effort has also been put into developing
simple, minimalistic devices for robust grasping and dexterous,
in-hand manipulation. In [7], it has been demonstrated that a
reduction in the number of hand actuators and constraints can
relax the control effort and simplify the execution of dexterous
manipulation tasks. Odhner et al. [11] proposed an open-loop
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methodology for adaptive hands that is inspired by humans and
that facilitates the execution of flip and pinch tasks facilitating
picking up objects from a table surface. Mason et al. [12]
proposed a learning scheme for performing object recognition,
object in-hand localization, and grasp evaluation (e.g., using
grasp rejection when needed), using a minimalistic approach
that they call “grasp first—ask questions later.” In [13],
extrinsic dexterity was introduced as the ability of simple
hands to perform dexterous manipulation tasks using extrinsic
to the hand object system resources (e.g., resources like gravity
and external contacts). The grasping and regrasping actions
performed were open-loop yet surprisingly robust. Regarding
grasping and dexterous manipulation planning, the traditional
approach involves analytical methods and constrained opti-
mization schemes for performing grasp synthesis, computation
of the hand object system Jacobians, extracting stable but
also minimal effort grasps, maintaining the force closure
properties of the grasp, and respecting task specifications
and constraints. Such a work can be found in [14]. In this
paper, the authors propose a methodology for planning in-hand
manipulation tasks with multifingered hands, considering task
constraints and deriving stable grasp configurations. Similar
approaches have also been used in the grasping literature [15].
Van Hoof et al. [16] proposed a reinforcement learning
methodology for acquiring new dexterous, in-hand manipula-
tion capabilities/skills for adaptive robot hands equipped with
tactile sensors that does not rely on dynamic or kinematic mod-
els. Kojima et al. [17] proposed a machine learning scheme
that predicts whether a grasp with a multifingered hand is
stable or not. This scheme was later on used in a learning
framework that facilitates dexterous, in-hand manipulation
with a multifinger hand equipped with appropriate tactile sen-
sors [18]. Regarding vision-based approaches, Hang et al. [19]
presented a framework for grasp planning and in-hand grasp
adaptation using a combination of visual, tactile, and pro-
prioceptive feedback. The particular work facilitates robust
fingertip grasping, accounting for the weight of the object,
possible slipping, and external disturbances, and enabling the
execution of finger gaiting tasks.

In [8], we presented preliminary results on the formulation
of a methodology that combines constrained optimization
schemes and machine learning techniques for deriving manip-
ulation models that account for dynamic phenomena and that
can simplify the execution of dexterous, in-hand manipulation
tasks with adaptive hands, while in [20], we focused on the
extraction of a representative set of manipulation primitives
that offer an intuitive yet dexterous control of adaptive robot
hands. In this paper, we combine all the work done in [8]
and [20], in order to propose a unified, user-oriented method-
ology that facilitates the execution of dexterous manipulation
tasks in an intuitive and simplified manner (see Fig. 2). To do
so, we provide new results and analyses and we discuss in
detail the role and the use of different components. It must
be noted that the proposed methodology benefits from a
synergistic interaction between the different submodules (e.g.,
dimensionality reduction and model training) that improves
the overall efficiency of the system.

Fig. 2. Example of a dexterous manipulation task (equilibrium point
manipulation) executed with the Yale Open Hand model T42PF. Four instances
of the task are depicted. Such hand capabilities can extend the dexterous
workspace of robot arms.

Regarding the extraction of motion primitives, several stud-
ies have focused on projecting the human or robot kinematics
in lower dimensional manifolds where both the motion analy-
sis of the human hand and the control of the robotic devices
are simplified. Santello et al. [21] and Bicchi et al. [22] first
demonstrated that the control of the human hand posture
involves only a few postural synergies, concluding that the
first two principal components (PCs) account for more than
80% of the total variance. In the robotics literature, motion
primitives have been used for simplifying grasping [23]–[26]
and dexterous manipulation [27], [28] but also for deriving
new bioinspired hand designs [29].

III. METHODS

A. Methodology Overview

In this section, we present an overview of the proposed
methodology. The proposed hybrid framework consists of
two separate modules, the offline training phase and the
online execution phase. For the offline training phase of the
framework, the various steps are as follows.

1) The simulation module explores all the feasible manipu-
lation paths for a given hand object combination, provid-
ing a good first guess to the autonomous experimental
platform.

2) The feasible manipulation paths are executed by the
autonomous data collection setup that gathers real
manipulation data that will be used for model training
and extraction of primitives. Such data include also
dynamic, difficult to model phenomena like uncontrolled
slipping and rolling.
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Fig. 3. Simplified representation/visualization of the structure of the proposed methodology. Blue arrows are used to denote the direction of the offline,
training process, while orange arrows are used to denote the interactions of the expert user with the different submodules of the methodology. The expert user
assesses the “behavior”/efficiency of the dexterous manipulation models and primitives and the results of the clustering technique, refining the selections when
needed. Regarding the training process, the simulations module provides a good first guess of the feasible manipulation paths to the autonomous experimental
setup that conducts the experiments in an unsupervised manner. The raw manipulation data are clustered using the K -means clustering algorithm into groups
of similar manipulation strategies that can be then used for model training or for dimensionality reduction. The model training results to task-specific (hand-
specific, object-specific, and grasp-specific) dexterous manipulation models that map desired object trajectories (input) to the corresponding motor trajectories
that guarantee the execution of the desired task (output). The dimensionality reduction results to representative manipulation primitives that represent some
primitive manipulation capabilities of the adaptive gripper/hand and that facilitate the execution of dexterous tasks in an intuitive and simplified manner. Both
approaches can be used to control a wide variety of adaptive robot hands and the expert user is then again responsible for assessing the capabilities of the
system and refining the training process (e.g., retraining the manipulation models to achieve better generalization to new tasks) to achieve better results.

3) The raw object and motor position trajectories (manipu-
lation data) are clustered to similar manipulation strate-
gies that are task specific (hand specific, object specific,
and grasp specific).

4) The random forests regression technique is employed
to train dexterous manipulation models for all possible
tasks. Such models are equivalent to the inverse of the
hand object system Jacobian, so for a given/desired
object trajectory, they provide the required motor tra-
jectories that will lead to an efficient execution of the
task.

5) PC analysis (PCA) is used in order to project
high-dimensional data to low-d manifolds where the
analysis is simplified and the extraction of simple
and intuitive manipulation models and primitives is
facilitated.

It must be noted that dimensionality reduction is not
always required as for simple grippers (e.g., model T42)
that have only a 2-D control space, the problem is already
simple. This process may be required for hands that have a
high-dimensional control space (e.g., model O). For the online
execution phase of the framework, the various steps are as
follows.

1) The user provides either a desired object position
trajectory or a desired object pose or high-level task

specifications (e.g., object motion around an axis). Alter-
natively, the input can be provided by a perception
system that recognizes new objects in the environment
and identifies their affordances.

2) The user input is classified to the most similar task.
In the case of a desired object position trajectory,
a random forests regression model is used to map input
object trajectories to output motor trajectories that will
execute the desired object motion. In the case of a
desired object position, the current object pose and the
desired object pose are classified to the most proximal,
feasible manipulation path (connecting path), and the
corresponding random forest regression model is used to
generate the appropriate motor trajectory that will move
the object from one to the other. In the case of a desired
object motion (high-level specification), the most similar
manipulation primitive is triggered and the robot hand
is controlled in a low-d manifold (object space).

A visualization of the offline training phase of the proposed
framework is depicted in Fig. 3, while a visualization of the
proposed online execution phase is depicted in Fig. 4. It must
be noted that the role of the expert user that assesses the
behavior of the models and the results of the clustering and
dimensionality reduction techniques is of paramount impor-
tance, for the following two reasons:
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Fig. 4. Simplified representation/visualization of the structure of the proposed methodology for the online execution phase. Blue arrows are used to denote
the direction of the online execution process. The user may provide as input to the system: 1) a desired object position; 2) a desired object trajectory; or 3) a
high-level task description that corresponds to an appropriate manipulation primitive. A random forest classifier is used in order to decide based on the user
provided input, which manipulation primitive or model to trigger.

1) guarantees the generalization capabilities of the frame-
work (e.g., avoiding overfitting of the proposed manip-
ulation models);

2) can lead to a locally optimized behavior of the frame-
work and to an excellent task-specific performance.

B. Simulation Module

The simulation module combines analytical models and
a constrained optimization scheme to describe the behav-
ior of adaptive hands and explore the feasible manipulation
paths for the examined robot hand design without conducting
time-consuming experiments. The module is based on the
constrained optimization (energy minimization framework)
methods that were introduced in [8] and [30].

More precisely, given the potential energy of the hand V (q)
that can be denoted by V (q) = 1/2)qTKq for the simple case
of spring-loaded pin joints (where q is the vector of the joint
angles and K is the stiffness matrix that represents the pin
joint compliances), the problem is formulated as a constrained
minimization of the function E(τ ) = −∇q V (q) + JT

p f , where
f are the imposed forces (e.g., contact forces) subject to the
robot hand and task constraints. The proposed scheme predicts
the hand configurations and the fingertips velocities. From the
derived fingertip velocities, we can easily compute the object
velocity using the grasp matrix G.

An example of the efficiency of the simulation module
is presented in Fig. 5, where we compare the execution of
an equilibrium point manipulation task in simulation and in
the real world with the same adaptive robot hand. The task
focuses on following a predefined trajectory in the object
space and the hand used is the Yale Open Hand model
T42PP. Three different object poses of the trajectory are
depicted (initial, middle, and final). It must be noted that the
simulation module closely matches the real system behavior
but it cannot account for uncontrolled slipping and rolling
that sometimes appear unexpectedly during the execution
of dexterous, in-hand manipulation tasks. Another potential

source of differences between the simulated system and the
real system is the friction of the tendon routing system of
the real hand, since such phenomena are not included in
the simulation module and are not taken into consideration
during the exploration of the feasible manipulation paths. The
simulation module needs to be further improved to include
also such phenomena.

C. Grouping Together Similar Manipulation Strategies

The K -means clustering technique [31] is used to examine
the collected manipulation data and group together similar
manipulation strategies/trajectories. The vector of the input
variables consists of the final object pose (three variables for
2-D tasks and six variables for 3-D tasks) and the equivalent
motor positions, at the beginning and the end of the manip-
ulation task (two time instances). The K -means is a vector
quantization methodology that partitions n observations into
k clusters. After clustering each observation belongs to the
cluster with the nearest mean. Different values of k have
been considered and results have been evaluated by an expert.
The role of the expert was to evaluate the quality of the
data that the clustering algorithm uses (e.g., to reject noisy
data) and assess any physical meaning of the structure of
the extracted clusters. The extracted clusters are used by
the random forest regression technique to train manipulation
models and by a dimensionality reduction technique to project
the robot kinematics to a lower dimensional manifold where
analysis is simplified.

D. Projection of Robot Data to Low-D Manifolds

The dimensionality reduction method used is the PCA [32]
that employs orthogonal transformations in order to convert
the possibly correlated input variables into a set of linearly
uncorrelated variables, the PC. Given an initial n-dimensional
space, a number of PCs available are always equal to n and
they can be used to project the initial data to manifolds of
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Fig. 5. Comparison of simulated and real-life execution of a dexterous
manipulation task (equilibrium point manipulation) with the Yale Open Hand
model T42PP. The two hands follow a predefined trajectory in the object
space depicted with a black line. Three different object poses of the path are
depicted. The simulated hand closely matches the behavior of the real hand.

fewer dimensions. The first PC accumulates always most of
the data variance. The second PC is always orthogonal to
the first, the third to the second, and so on. Thus, every
succeeding PC has as much of the remaining variance as
possible. In this paper, the PCA method is used to project
the collected manipulation data to low-d manifolds, where
control is simplified and manipulation planning becomes more
intuitive for the user. The low-d space can be used either
to extract a representative set (synergy set) of manipulation
primitives or to solve the regression problem that will derive
task-specific, in-hand manipulation models (equivalent to the
hand object system Jacobian) [8]. The interactions of the
dimensionality reduction technique with the other modules
are provided in Fig. 3, where the structure of the proposed
methodology is thoroughly discussed.

In this paper, we use the term synergy set (S) to denote the
representative set of manipulation primitives and the term PC
to denote each manipulation primitive of the set. It should also
be noted that in the case of manipulation primitives extraction,
if we do not split the manipulation data with the clustering

technique, grouping together the similar manipulation strate-
gies and we choose instead to project all the data to a common
low-d space, then the primitives derived will be limited (e.g.,
as many as the dimensionality of the original space) and will
represent some sort of average behavior of the hand during the
execution of dexterous manipulation tasks, neglecting other
meaningful and potentially useful behaviors. Thus, by using
the clustering methods and splitting the collected data into
groups of similar manipulation strategies, we allow a mech-
anism with a limited number of actuators to have several
manipulation primitives instead of the limited number of prim-
itives that would be typically derived. Regarding manipulation
models, the regression problem can be solved in the low-d
space of the robot kinematics where the analysis is simplified
and the models can be trained in a task-specific way (see
Figs. 3 and 4). It must be noted that dimensionality reduction is
not always required as for simple grippers (e.g., model T42)
that have only a 2-D control space, the problem is already
simple. This process is of paramount importance for hands
that have a high-dimensional control space (e.g., model O).

E. Task-Specific Manipulation Models Training

To account for the first type of user-provided input presented
in Fig. 1, we use the random forests regression method and we
train all the possible dexterous, in-hand manipulation models,
in a task-specific manner, using the data of each group of
similar manipulation strategies as they were derived by the
clustering algorithm.

The random forests classification and regression techniques
were proposed by Ho [33] and Breiman [34]. Random forests
are ensemble classification and regression methods based on a
combination of multiple decision trees. The final classification
decision of a forest is always the most popular class among
the individual classifiers. The final regression estimation of
a forest is the mean value of the independent estimations
of various trees. In this paper, the random forest regression
technique is used to train all the identified, task-specific
manipulation models and the random forest classifier is used to
trigger the appropriate task-specific manipulation model based
on the user-provided input (a priori knowledge of the task
specifications), or alternatively based on features received from
a perception system (e.g., in the case of new objects and tasks
encountered during the autonomous operation of the system).

IV. EXPERIMENTS

In this section, we present the experiments conducted to val-
idate the efficiency of the proposed methods and we describe
the apparatus used.

A. Robot Arm and Hands

The robot arm used during the experiments is the
7-DoF Barrett WAM [35]. The WAM is a research oriented,
redundant, cable-driven, compliant robotic manipulator that
has anthropomorphic kinematics. An appropriate, 3-D printed
wrist coupling of the Yale Open Hand project [36] was used
to attach the hands at the robot arm’s end-effector. The robot
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Fig. 6. Robot hands examined are depicted. All hands have been developed by the GRAB Lab at Yale University. The two-fingered model T42 and the
three-fingered model O are freely distributed through the Yale Open Hand project website [36].

Fig. 7. Experimental setups that were developed to automate the data collection procedure for 2-D and 3-D tasks. The experimental setup for the 3-D
tasks (left) and the 2-D tasks (right).

hands examined are the Yale Open Hand model T42, the Yale
Open Hand model O, and the Yale FG gripper. All the hands
have been developed by the GRAB Lab at Yale University.

The Yale Open Hand models are disseminated in an
open-source fashion through the website of the initiative [36].
All the hands examined are depicted in Fig. 6. The model
T42 is a two-fingered, compliant, underactuated, robot gripper
that has two phalanges and a dedicated actuator per finger. The
T42 robot hand can be developed with either spring-loaded pin
joints (denoted with P) or flexure joints based on urethane
rubber (denoted with F). For example, a T42FF refers to
a version with two flexure joints per finger. The spherical
hand/model O is a three-fingered robot hand that has two pha-
langes and a dedicated motor per finger, as well as a dedicated
motor for the coupled abduction/adduction of two of the three
fingers. Finally, the model FG is a four-fingered robot hand
that has two pairs of underactuated fingers with two phalanges
per finger. The two pairs of fingers are kept decoupled by
an independent, central, rotating axis that facilitates finger
gaiting. The hand can also perform equilibrium manipulation

tasks [37]. The elastomer material used for the development
of the flexure joints in all hands is urethane rubber (Smooth-
On—PMC 780).

B. Automated Data Collection

For planar, 2-D manipulation tasks the experimental setup
consists of a frame based on T-slotted profiles of the industrial
erector set, a dedicated actuator that repositions the object
to its initial pose, and a vision-based system that tracks
the object using fiducial markers and a simple web camera.
The examined hands are attached to the frame using a wrist
coupling mechanism of the Yale Open Hand project [36],
while the camera is mounted on the frame using a 3-D printed
holder. The camera holder has also a pulley incorporated that
facilitates the repositioning of the objects at the center of the
camera field of view (initial pose), using a dedicated motor.

For the execution of 3-D in-hand manipulation tasks, the
examined robot hand is attached at the end-effector of the
7-DoF Barrett WAM robot arm (see Fig. 7). The arm prepo-
sitions the examined hands to reach a precomputed, optimal
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configuration that has a certain wrist offset from the examined
object. From this configuration, the adaptive robot hands (that
tend to move on specific submanifolds of 3-D space during
unconstrained flexion) are able to achieve the desired contact
points that maximize the stability of the initial grasp. The
frame developed is once again used for repositioning the
objects to their initial pose, after each manipulation trial. Upon
grasping, the hand starts exploring the feasible manipulation
paths for a specific object, based on the initial estimates
(first guess) provided by the simulation module. All the
steps described are repeated continuously until all feasible
manipulation paths for a given hand, object and initial grasp
combination, have been sufficiently explored.

C. Object Motion Tracking

In planar manipulation tasks, the object tracking is accom-
plished using a simple web camera (Creative Senz3D). The
vision-based motion tracking scheme was implemented using
fiducial markers of the Aruco library [38] and the OpenCV
library [39]. To capture the object motion in 3-D tasks,
we used the trakSTAR (Ascension Technologies) magnetic
motion capture system. The trakSTAR is equipped with a
medium range transmitter (MRT), eight model-180 2-mm-
diameter magnetic sensors, is characterized by high accuracy
in both position (1.4 mm) and orientation (0.5°), provides a
sampling rate of 80 Hz, and derives the sensors poses in terms
of homogeneous transformation matrices. Unstable grasps or
the loss of a grasp can be detected by sudden accelerations
of the object motion tracking measurements and the task
execution can be terminated. All the scripts and the code
required for object detection were developed in Python and
were incorporated in our grasp planning framework imple-
mented in Robotics Operating System. The objects used in the
experiments conducted in this paper are 3-D printed cylinders
of diameters of 30, 50, 70, and 90 mm, a plastic pear that has
an irregular geometry, and a 40-mm sphere.

V. RESULTS

In this section, we present the manipulation models and
primitives derived, the performance of the manipulation mod-
els, as well as results from the experiments conducted.

A. Task-Specific Manipulation Models

In this section, we evaluate the efficiency of the task-specific
manipulation models, in predicting accurate motor positions
for executing desired, 3-D in-hand manipulation tasks. The
manipulation task considered involved random, multidirec-
tional equilibrium point manipulations of a 3-D printed sphere.
Results for model O are presented in Fig. 8. Fig. 8(a) depicts
the results of a model trained using the original, high-d space
manipulation data, while Fig. 8(b) depicts the results for a
manipulation model that was trained in the low-d space of
the manipulation data (derived using the PCA technique).
For the low-d case, the model estimations were backprojected
in the high-d space to control the actual robot hand. As it
can be noticed, the low-d case results are slightly worse

Fig. 8. Estimation results for the model O performing a 3-D in-hand
manipulation task with a sphere that has a diameter of 40 mm. Different
colors denote the different finger motors (the abduction/adduction DoF was
kept locked). Continuous lines: actual motor positions. Dashed lines: estimated
motor positions. Data for a single trial are presented. (a) Manipulation model
was trained using the original, high-d space manipulation data. (b) Manipu-
lation model was trained in the low-d space of the data (derived using the
PCA technique). The estimations were backprojected in the high-d space to
control the actual robot hand.

than the results of the original data. It must be noted that
the similarity scores are the average values over the multiple
rounds of the 10-fold cross-validation procedure. The training
data contained 10 manipulation trials with the same object.
The manipulation model achieved an accuracy of 96.01% for
the original data, 93.86% for the low-d representations, and
82.64% for uncontrolled slipping not previously seen during
training. All results are reported in Table I. The estimation
accuracies are computed using the PRMSE, as described in [8].
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Fig. 9. Examples of 3-D in-hand manipulation tasks executed with the model O and the model FG robot hands. The first row of images contains instances
of the execution of equilibrium point manipulation tasks with a plastic pear. The second row presents a finger gaiting manipulation task executed with the
same plastic pear.

TABLE I

SCORES BETWEEN THE ACTUAL AND THE ESTIMATED MOTOR POSITION

TRAJECTORIES FOR MODEL O FOR THREE CASES: 1) ORIGINAL DATA;
2) LOW-D DATA; AND 3) SLIPPING

Images from the 3-D manipulation tasks conducted with the
model O and model FG robot hands are presented in Fig. 9.
As it can be noticed, the estimation accuracy is quite high and
it can only be affected by an uncontrolled slipping as presented
in Fig. 10. The uncontrolled slipping can lead to a drop in the
estimation accuracy of 10%–15%.

For a similar methodology to be used with fully actuated,
rigid robot hands, appropriate control and planning schemes
of significant complexity should be developed. These schemes
are needed to compute stable initial grasps, to avoid intrafinger,
object or environmental collisions, to compute a set of minimal
contact forces that will lead the robot fingertips to grasp
the object gently (without crushing it) but also firmly, and
to plan the execution of the desired manipulation tasks. All
these prerequisites are taken care by design in the case of
adaptive robot hands, simplifying considerably the execution
of dexterous manipulation tasks. It should also be noted that
in the case of fully actuated, multifingered hands, the control
space is high dimensional and the extraction of a representative
set of primitives becomes much more challenging.

B. Manipulation Primitives

In this paper, we use the term synergy set to describe
the primitive matrices derived by the dimensionality reduc-
tion methods. The manipulation primitives derived for T42PP
Takktile with the PCA method are depicted in Fig. 11. The first

Fig. 10. Estimation results for the model O performing a 3-D in-hand
manipulation task with a sphere that has a diameter of 40 mm. The effect of
“unseen” slipping in the motor positions estimation accuracy is evident. As it
can be noticed, there is a significant drop in the motor positions estimation
accuracy. Continuous lines: actual motor position trajectories. Dashed lines:
corresponding motor positions estimations.

primitive focuses on equilibrium point manipulation, while
the second primitive pulls the object inside the grasp. The
model O or spherical hand and the FG gripper have four
primitives per synergy set, as they have four actuators. The
first synergy set implements finger gaiting in the FG case
and equilibrium point manipulation in the model O case.
The second synergy sets use only two of the opposing fingers
for both models and replicate once again equilibrium point
manipulation tasks (see Fig. 9).
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TABLE II

OBJECT RANGES OF MOTION (PERTURBATIONS) FOR EACH OBJECT SIZE PER PRIMITIVE OF THE T42 PP TAKKTILE.
OBJECT TRANSLATIONS ARE REPORTED IN MILLIMETERS AND ROTATIONS IN DEGREES

Fig. 11. Derived manipulation primitives for the T42PP Takktile gripper.
The first primitive focuses on equilibrium point manipulation of the smallest
cylinder. The second primitive pulls the objects toward the wrist. The letter S
is used to denote a “synergy set” derived from different groups of similar
manipulation strategies.

C. Applicability of Primitives to Different Objects

Regarding generalization of manipulation primitives among
different object sizes, in [20], we report results on the effect
of the object size on the values of the primitive coefficients.
Even for large differences in the object sizes, the primitives
do not change significantly. However, different object sizes
lead to completely different object ranges of motion (object
perturbations during in-hand manipulation). In Table II and
Fig. 12, we report results on the relationship between the
object sizes and the object ranges of motion, for the T42PP
Takktile robot gripper. It appears that the hand manipulation
capabilities depend highly on the object parameters. For
example, for the S1-PC1 of the T42PP Takktile, the theta
value for a cylinder with a diameter of 30 mm has a range
from −46° to 46°, while for a cylinder with a diameter

of 90 mm, the rotation component diminishes (the value is 0).
Regarding generalization of the manipulation primitives, to a
certain extent, it is safe to use for larger objects manipula-
tion primitives extracted for smaller objects, as the motion
that they will generate will squeeze the objects harder but
without crushing them (due to the structural compliance and
the underactuation of adaptive robot hands). On the other
hand, primitives extracted for large objects cannot be used
for smaller objects since the imposed behavior will not lead
to stable grasps (the resulting hand/gripper aperture will be
bigger than required).

D. Limitations

Although the proposed framework has provided some inter-
esting results, it also suffers from some major drawbacks
and shortcomings that need to be addressed in order to
make it practically applicable in everyday life dynamic and
unstructured environments. These limitations are as follows.

1) The models cannot account for uncontrolled, unpre-
dictable slipping and rolling. If the training set does not
contain similar behaviors, the models will not be able to
perform satisfactorily. This is evident in Fig. 10, where
we discuss the effect of slipping.

2) The framework relies on a human expert in the “loop”
that will appropriately select the k value for the clus-
tering algorithm and will check if the results of the
dimensionality reduction of the derived representative
groups of similar manipulation strategies are indeed
representative of a primitive behavior that demonstrates
the capabilities of the examined robot gripper/hand.

3) The simulation module does not take into consideration
complex phenomena like the friction in the tendon rout-
ing of the real robot hand and approximates other com-
plex phenomena like the bending of the flexure joints.
Thus, additional modeling efforts are needed in order to
optimize the behavior of the proposed framework.

It must also be noted that the objects used in this paper
are simple 3-D printed and everyday objects. Some more
complicated types of objects could lead to low success rates.
Examples of such objects are: 1) objects of highly irregular
shape; 2) very heavy objects; 3) object made out of materials
that do not offer good friction coefficients between the robot
fingertips and the object surface; and 4) articulated objects.
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Fig. 12. Graphical representation of the ranges of object motions during manipulation with the T42 PP Takktile robot hand and cylinders of various diameters
(30–90 mm). Each axis corresponds to a cylinder of different sizes. Only the first PC of each synergy set is depicted. LL stands for lower limit and UL stands
for upper limit.

E. DexRep

In this section, we present DexRep, a scientific repository
that aims at simplifying dexterous, in-hand manipulation,
allowing an intuitive operation of adaptive robot hands, like
the Yale Open Hand project devices. We created DexRep to
facilitate the replication of our research by other research
groups and continue improving the derived dexterous manipu-
lation primitives and models, disseminating them online. The
DexRep data repository can be found at the following URL:
http://www.newdexterity.org/dexrep.

VI. CONCLUSION

In this paper, we focused on the formulation of a
hybrid methodology that simplifies the execution of dex-
terous, in-hand manipulation tasks using adaptive robot
hands. The proposed framework combines analytical models,
a constrained optimization scheme, and machine learning
techniques in a synergistic fashion. More precisely, the con-
strained optimization scheme is used to describe the kinemat-
ics of adaptive hands during the grasping and manipulation
processes synthesizing a simulation module that can explore
all the feasible manipulation paths easily and without requiring
time-consuming experiments. The machine learning module
consists of a clustering process that is used to group together
similar manipulation strategies, a dimensionality reduction
technique that is used to either extract a set of representative
manipulation primitives or to provide low-d data for the
training of a representative set of task-specific manipula-
tion models, and a regression process that is used to train
all possible task-specific, manipulation models that act in
an equivalent manner to the hand object system Jacobian
mapping the desired object trajectory (input) to the required
motor trajectories (output). The methodology takes advantage
of data collected using an automated experimental setup in
an unsupervised manner. In this paper, we also assess the
generalization capabilities of the derived manipulation models
and primitives for both model and everyday objects. The
efficiency of the proposed methods is validated through an

extensive set of experimental paradigms involving various
adaptive robot hands. The particular work has led to the
development of the DexRep scientific repository that aims to
provide a representative set of dexterous manipulation models
that will allow an intuitive operation of adaptive robot hands
in dexterous, in-hand manipulation tasks.
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