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Post-Contact, In-Hand Object Motion Compensation
With Adaptive Hands

Minas V. Liarokapis, Member, IEEE, and Aaron M. Dollar, Senior Member, IEEE

Abstract— In this paper, we present a methodology based on
constrained optimization methods for estimating and compensat-
ing for post-contact parasitic object motions for underactuated,
compliant robot hands and for deriving stable, minimal effort
grasps to try to minimize these movements. To do so, we compute
the object motions for different hand designs, object shapes, and
object sizes and we synthesize appropriate robot arm trajectories
that eliminate them, even in hands with complex flexure-based
compliant members. The effectiveness of the proposed methods
is validated using a seven DOF robot arm (Barrett WAM) and a
range of compliant underactuated robot hands (Yale OpenHand
models T42PP, T42PF, and T42FF).

Note to Practitioners—During precision fingertip grasps, adap-
tive hands tend to move the object upon contact, to an equilib-
rium configuration determined by the elasticity of the mechanism
and the forces exerted on the hand-object system. Such a behavior
may be undesired for certain tasks (e.g., when grasping a full
glass of water, the in-hand object perturbations may spill the
water). In this paper, we propose a methodology for adaptive
hands that derives stable minimal effort grasps, computes the
post-contact parasitic object motions, and eliminates them using
compensatory motions of a robot arm.

Index Terms— Adaptive hands, grasping, kinematics, manipu-
lation, underactuated mechanisms.

I. INTRODUCTION

ADAPTIVE, underactuated, and compliant robot hands
[1]–[3] have been heavily investigated in recent years,

for both robust grasping [4]–[7] and dexterous in-hand manip-
ulation [8]–[11] (e.g., equilibrium point manipulation, flip 
and pinch, stick and slip, and finger gaiting). The motivation
behind these efforts comes from the fact that the reduced
number of actuators and constraints of these mechanisms can 
significantly simplify the grasping and manipulation process,
relaxing at the same time the computational complexity and
the required control effort. Indeed, these hands can often 
be reliably used for stable grasping even in an open-loop
fashion and without performing any in-depth grasp synthe-
sis (e.g., selection of appropriate contact forces or optimal
contact points). However, due to the underactuation and the
use of mechanical compliance, the hand-object system often 
reconfigures during the grasping process as force is applied.
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Fig. 1. Post-contact, parasitic object motion and object motion compensation
examples. First row: example of a symmetrical grasp. Second row: arbitrary
nonsymmetric grasp.

In this paper, we propose a complete scheme for perform-
ing grasp synthesis and post-contact, parasitic object motion
compensation for adaptive hands. In particular, we derive a
set of optimal contact points and forces that facilitate the
execution of optimal minimal effort grasps (e.g., prior to
manipulation), and lead to the minimization of both the post-
contact parasitic object motion and the hand power consump-
tion, as well as appropriate compensatory motions of the
arm that eliminate the imposed parasitic object motions (see
Fig. 1). The proposed scheme is based on constrained opti-
mization methods and models that describe the kinematics of
underactuated hands during grasping, even when they utilize
complex flexure joints based on elastomer materials. The effi-
cacy of the proposed methods is validated through extensive
simulated and experimental paradigms with a redundant robot
arm (Barrett WAM) and different adaptive robot hands of the
Yale OpenHand project (models T42PP, T42PF, and T42FF).
A few related studies have focused on providing stable grasps
and performing grasp quality and/or force optimization for
underactuated hands. In particular, Mavrogiannis et al. [12]
presented an optimization scheme for deriving task-specific,
force closure grasps for underactuated, synergistic robot hands.
For doing so, they used the soft synergy model proposed by
Bicchi et al. [13] for modeling the kinematics and the force
distribution, as well as a task compatibility index [14], [15] to
derive appropriate grasping postures. Ciocarlie et al. [16], [17],
proposed constrained optimization frameworks for compliant
underactuated robot hands that take advantage of a quasistatic
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Fig. 2. Simulated paradigm of the wrist offset calculation procedure for the
model T42FF of the Yale OpenHand project, reaching a sphere with a radius
of 30 mm.

equilibrium formulation to find a set of design parameters that
optimize stability across a set of different grasps.

However, these studies did not analyze the effect of the
applied contact forces on the post-contact parasitic object
motions and did not study the reconfiguration of the hand-
object system. Su et al. [18] proposed a grasp strategy for
underactuated hands that facilitates a single trial grasping (no
regrasping is necessary) when there is uncertainty in the object
pose. To do so, they proposed a robust grasp planning scheme
that can cope with object position errors and they performed
a contact/force sensors-based grasp adaptation taking into
consideration in their analysis the compliant characteristics of
the underactuated mechanism. Chen et al. [19] presented an
adaptive/compliant reach-to-grasp strategy for multifingered
robot hands, in order to improve their grasping performance
under object pose uncertainties. This paper utilizes a spatial
virtual spring framework, in order to formulate an adaptive
grasping control methodology that achieves local adjustments
of the robot fingers without resorting to the arm motion.
Prattichizzo et al. [20] proposed an object motion-decoupled
internal force controller for stable grasping with compliant
multifingered hands, while Malvezzi et al. [21] proposed an
internal forces controller that guarantees zero motion of the
object. These studies focused only on deriving stable grasps
and eliminating object motions for compliant robot hands
without dealing with underactuated pinch grasps, without
considering the post-contact parasitic object motion and the
reconfiguration of the hand-object system, and without using
the whole arm-hand system to compensate for these motions.
Finally, in [22], we presented preliminary results on estimating
and compensating for post-contact in-hand parasitic object
motions of symmetric grasps.

The remainder of this paper is organized as follows.
Section II focuses on the grasp synthesis and post-contact
parasitic object motion estimation methods, analyzing how
we can derive stable, minimal effort grasps and how we
can compute appropriate robot arm trajectories that accurately
eliminate the parasitic object motions. Section III presents
the simulated and the experimental paradigms prepared with
a redundant robot arm (Barrett WAM) and various adaptive,
compliant, and underactuated robot hands designed within the
Yale OpenHand project, while Section IV concludes this paper
and discusses the future directions.

Fig. 3. Example of the parasitic motion that is imposed on the object during
a pinch grasp of a sphere with a radius of 30 mm. The fingertip and object
center positions are denoted with black solid (initial) and dotted (final) circles.

II. METHODS

In this section, we present the reconfiguration estimation
and the post-contact parasitic object motion compensation
methods.

A. Prepositioning the Robot Arm End-Effector

To secure a stable, minimal effort grasp we need to prepo-
sition the robot arm end-effector appropriately, for the robot
hand to be able to optimally grasp the desired object with
the fingertips. Given the fact that we want our grasp to be
as robust as possible, we choose during the grasp planning
process to optimize a specific grasp quality metric [14]. The
chosen metric for the simple hands examined is the distance
between the contact (cc) and the object geometric centroid (cg)
(used also in [22] and [23]), which is given as

QDC = ‖cc − cg‖. (1)

To reach the desired contact points, we start closing the
robot fingers by applying an increasing load at the individual
finger motors, until the distance between the two fingertip
positions equals a dimension of the object (e.g., the diameter
of a sphere or a side of a cube). In order to compute the
kinematics of the fingers in the plane relatively to the motor
loads, we use the smooth curvature model [24] that provides
accurate forward kinematic (FK) estimations.

Upon computing the configurations of the fingers at which
the distance between the fingertips equals an object dimension,
we can compute the distance from the contact points to the
base frame of the hand (arm wrist), which is also the offset
that the robot arm wrist should have from the object to
accordingly preposition the hand and allow it to reach the
desired contact points. A simulated paradigm of the proposed
method is presented in Fig. 2. An example of post-contact
parasitic object motion is presented in Fig. 3, for the case of
model T42FF while grasping a sphere.

It must be noted that we need to preposition the hand for it
to reach the desired contact points, because the underactuation
of the examined hand designs restricts the motion of their
fingertips in specific submanifolds of the 2-D space, limiting
the feasible configurations.

Moreover, in this paper we hypothesize that we have
an analytical description of both the robot and the object
structures (3-D models), as well as knowledge of the object
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properties (e.g., weight, stiffness, and friction between the
fingertips and the object surface). The object shape and pose
information can be easily derived using appropriate vision
schemes. Such knowledge allows us to solve at each instance
of the grasping process the FK of the hand and detect contact
with the object surface, halting the corresponding finger motor.
Upon contact, the loads of the motors are partially transformed
into contact forces.

B. Grasp Stability

According to the grasping literature, a grasp is considered
as stable if it satisfies the force closure property [25]. The
force closure has two different conditions: the object should
be in equilibrium and the friction cone constraints should be
satisfied. The balance equation for generalized forces acting
on the object, is given as

Gf = −fext (2)

where f is the vector of the contact forces, G ∈ R6×mnc is
the grasp matrix, fext is the external wrench applied at the
object center of mass, m is the dimensionality of the contact
model (m = 3 for the Hard Finger (HF) model [12]), and nc

is the number of contact points. The general solution to the
grasping force distribution problem is derived using a force
decomposition model for compliant hands [26]. Such a model
is given as

f = G+ (−fext) + (I − G+G)(Ks�p + Kcδp) (3)

where Ks = (Cs + JhCqJT
h )

−1
is the stiffness matrix that

represents the structure compliance of the hand [27], Kc is
the stiffness matrix of the contact points, Jh is the hand
Jacobian, Cs is the diagonal matrix of the finger-pads and
links compliance, Cq is the diagonal matrix representing the
joints compliance, �p are the virtual displacements of the
fingertips that are caused by the finger joint displacements,
δp are the infinitesimal deformations of the object at the
contact points that depend on the object stiffness, and G+ =
KsGT (GKsGT )

−1
denotes the Ks weighted right inverse of

the grasp matrix that minimizes the potential energy

1

2
δpT Ksδp. (4)

The finger displacements and the object deformations at the
contact points can be easily predicted by the smooth curvature
model [24]. Regarding contact modeling, in this paper we
use the HF model, which imposes for the “friction cone”
constraints the following nonlinear inequalities:

√
f 2
oi

+ f 2
ti ≤ μ fni , i = 1, . . . , nc (5)

where μ is the friction coefficient, fn is the normal force
component, ft and fo are the tangential/shear components
of the contact forces, and nc is the number of the contact
points. The normal forces are constrained to be nonnegative.
The friction coefficient chosen for this study is μ = 0.3
(for contacts between the finger-pads urethane rubber and the
objects ABS). The friction coefficient typically ranges between
0.1 and 1 [25].

C. Grasping Force Optimization

Typically, when the object weight is unknown the user of
an adaptive, underactuated, compliant hand may control it
in an on–off fashion, squeezing the object arbitrarily tight,
without crushing the object and without damaging the fingers
(e.g., due to the underactuation and the mechanical adaptability
of the design). However, this approach is not optimal for two
main reasons: 1) it maximizes the post-contact parasitic object
motion that is caused by the hand-object system reconfigura-
tion and 2) it maximizes the power consumption, as arbitrarily
high contact forces require higher actuator loads.

Thus, in case the object weight is known, a grasping force
optimization can be employed to minimize the levels of contact
forces that should be exerted through the robot fingertips
and to achieve stable, minimal effort grasps. In this paper,
we choose to minimize the norm of the normal contact force
components, which is given as

F(τ ) =
√√√√

nc∑

i=0

f 2
ni

. (6)

Such a minimization combined with the satisfaction of the
friction cone, the joint limits, the object penetration, and
the self-collision constraints leads to the minimization of
the contact force distribution and therefore to an optimal,
minimal effort grasp configuration. Thus, the grasping force
optimization problem is formulated as follows:

τ∗ = arg min
τ

F(τ ) (7)

s.t.√
f 2
oi

+ f 2
ti ≤ μ fni , i = 1, . . . , nc (8)

q− ≤ q ≤ q+ (9)

ci ∈ ∂O, i = 1, . . . , nc (10)

Sh /∈ O (11)

(Cl ∩ Cl−1) ∪ (Cl ∩ Cl−2) . . . (C2 ∩ C1)

= ∅, l = 1, . . . , nl (12)

where τ denotes the generalized forces acting on the system,
q− and q+ denote the lower and the upper joint limits, O is
the space occupied by the object, xcpi

is a vector containing
the coordinates of the i th fingertip of the robot hand that
must lie on the object surface ∂O as described in (10), Sh

is a set of finite discrete points lying on the robot hand links
(i.e., rigid phalanges) that should not penetrate the object, l is
the number of links per finger, and Cl is the convex hull of the
3-D mesh points of the lth phalange. The intersection of these
convex hulls should always be ∅ to avoid intrafinger collisions,
like the one depicted in Fig. 4.

In the case of elastic pin joints, the intrafinger collisions can
also be represented with much simpler inequality constraints
as in (9). In the case of flexures, such simple joint limits
are hard to be defined, thus we use (12). It should be noted
that (10) and (11) require an analytical description of the object
geometry. For the simple case of an object that has a primitive
shape (e.g., a cylinder) (10) and (11) can be represented by
a series of inequality constraints. In the rest of this paper,
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Fig. 4. Reconfiguration of the hand-object system is interrupted by a collision
between the proximal and the distal phalanges of each finger.

we denote all these constraints with the abbreviation RHC
(robot hand constraints).

D. Joint Elasticity

In this section, we describe the modeling process for
adaptive robot hands with spring loaded pin joints as well
as for adaptive hands implemented with flexure joints based
on elastomer materials. For the case of simple elastic
pin joints, the configuration of the hand at equilibrium is
found by minimizing the energy of the hand-object sys-
tem. The potential energy of the hand is expressed as
follows:

V (q) = 1

2
qT Kq (13)

where q is the vector of the joint angles and K is the stiffness
matrix that represents the pin joint compliances. For the case
of flexure joints, the smooth curvature model [24], [28] can
be used. The particular model provides estimations of the
kinematics of robots equipped with planar flexure joints and
is based on the assumption that the curvature of elastic beams
during bending is smooth and can be approximated by low-
order polynomials. The flexure joint bending is described
with three generalized coordinates instead of one that is used
for the pin joints. The proposed model provides a set of
homogeneous transformations between the robot rigid links,
as well as the derivatives of the kinematics (e.g., Jacobian and
Hessian matrices).

Once again the configuration of the hand-object system at
equilibrium is found via a minimization of the potential energy
of the system V (q), as reported in [24]. Using the smooth
curvature model, we can derive the finger poses relatively to
the tendon displacements or the tendon loads, as well as to
accurately represent the effect of any external forces acting
on the robot structure. An example of external force acting
on the system is the kinetic friction force that depends on the
object weight and the friction between the object surface and
the environment. The problem is formulated as a constrained
energy minimization.

More precisely, let τ denote the generalized forces acting
on the system, f the vector of the forces applied at a specific

Fig. 5. Forces acting on the hand-object system. The contact points are
denoted by fc1 and fc2, fkin is the force of the kinetic friction, and w is
the weight of the object. The simulated hand is the model T42FF that has
two flexure joints per finger and the object grasped is a rectangle with a side
of 60 mm.

point p on the robot (e.g., contact points), JT
p be the Jacobian

of the particular point coordinates, and ∇q V the gradient of
the total internal energy of the robot. Then, the equilibrium
configuration of the hand-object system can be found by
minimizing the following function:

E(τ ) = −∇q V (q) + JT
p f . (14)

It must be noted that the vector of forces f incorporates
also the effect of friction between the grasped object and the
supporting surface. More precisely, the force of kinetic friction
is a reaction force that depends upon the magnitude of the
“pulling force” of the reconfiguring hand-object system that
pushes the object along the table surface and typically within
the grasp (see Fig. 5).

At this point, we would like to distinguish between three
types of contact forces that can be exerted by the robot
fingertips. These forces are as follows:

1) fmin: The minimum contact forces required to achieve a
minimal effort grasp, given the object weight;

2) fe: The minimum contact forces required in order for the
hand-object system to reach an equilibrium configuration
at which the reconfiguration stops;

3) fmax: The maximum contact forces that can be exerted
on the object and that are mainly bounded by the torque
limits of the finger actuators\motors.

The relationship between these forces is typically given as

fmin < fe < fmax. (15)

It must be noted that the set of forces fe leads to a hand-
object system configuration where the system is no longer
underconstrained and at which the loads of the motors are par-
tially transformed into equivalent contact forces at the contact
points. At this configuration, no additional reconfiguration of
the object/object system is possible.
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Fig. 6. Simulated paradigms of the post-contact reconfiguration and of the
imposed parasitic object motion for robot hands with various stiffness ratios
RS = SD/SP , between the distal (SD ) and the proximal phalanges (SP ).
Different stiffness ratios result in different total reconfigurations of the fingers
and, consequently, in different object displacements. The simulated objects
used are spheres with radii 10, 30, and 50 mm, respectively. The initial and
the final configurations appear superimposed to facilitate comparison.

E. Parasitic Object Motion Estimation

As we have already noted in the previous sections, in this
paper we have complete knowledge of the object parameters.
Thus, we can derive a set of minimal contact forces that will
result in a stable, minimal effort grasp of the examined object.
Such grasps are quite valuable for a series of applications,
as they lead to minimal power consumption of the system
(e.g., important for UAVs that rely on the same battery for
operating both their motors and a gripper) and to minimal
post-contact, parasitic object displacements.

Upon deriving a set of contact forces, we are able to
predict the object motion and the imposed reconfiguration of
the underactuated robot fingers, using (14) and the smooth
curvature model [24], as described in [29]. The forces acting
upon the system are the motor loads, the contact forces exerted
on the object, and the resisting force imposed by the friction
between the object and the supporting surface. These forces
trigger a reconfiguration of the underactuated compliant robot
fingers, which leads the hand-object system to an elastic
equilibrium configuration.

Thus, the problem of deriving the post-contact parasitic
object motion for the case of adaptive, underactuated, and
compliant robot hands, can be formulated as

τ∗ = arg min
τ

E(τ )

s.t.

RHC (16)

where RHC are the robot hand constraints described
in (8)–(12). The velocity of the object is extracted from the
robot fingertip velocities using the grasp matrix G. It should
be noted that in the case of nonsymmetrical grasps, there

Fig. 7. Simulated paradigm of the parasitic object motion compensation
procedure using the Barrett WAM—-Yale OpenHand model T42 robot arm-
hand system. The examined task involves grasping of a sphere with a radius
of 20 mm. A compensatory motion of the arm can eliminate the parasitic
object motion, securing a stable grasp. The initial and the final configurations
of the arm-hand system appear superimposed to facilitate comparison.

is a coupled rotation and translation in the parasitic object
motion that requires a significantly more complex compen-
satory motion of the robot arm. This coupled rotation and
translation is caused by the unbalanced fingertip contact forces
and the nonsymmetric contact rolling between the two fingers
and the object.

In Fig. 6, we present various examples of post-contact
parasitic object motion estimation using simulated models of
the examined adaptive robot hands with different parame-
ters. More precisely, the examples concern a series of sim-
ulated model T42FF underactuated robot hands with different
stiffness ratios between the proximal and the distal joints.
The hands are depicted while grasping and they are imposing
parasitic object displacements to spheres with radii of 10, 20,
30 40, and 50 mm. Different stiffness ratios lead to different
elastic equilibrium configurations and thus to different post-
contact, parasitic object motions.

F. Deriving Compensatory Robot Arm Motion

Having estimated the parasitic object motion, we can eas-
ily derive an appropriate compensatory motion of the robot
arm (wrist) end-effector, using the robot arm Jacobian Ja .
To eliminate the parasitic object motion, we need the robot arm
end-effector velocity to have equal but of opposite direction
velocity with the object, at each time instance of the grasping
process (see Fig. 7). Let vee be the desired velocity of the
robot arm end-effector. Then, we can derive the arm joint space
velocities that are given as

q̇ = J+
a vee (17)
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Fig. 8. Exemplar finger structures of the models T42FF (left) and T42PP (right).

Fig. 9. TrakSTAR (Ascension Technologies) magnetic motion capture system
and a rectangular sensorized, 3-D printed, rectangular object. The trakSTAR
system is equipped with an MRT and 8 model-180 magnetic sensors that have
a diameter of 2 mm. In this paper, we use a single sensor to capture the pose
of the examined objects.

where J+
a is the robot arm pseudoinverse (in this paper we

use a redundant seven DoF robot arm), which is given by the
following expression:

J+
a = JT

a (JaJT
a )

−1
. (18)

An appropriate motion of the whole arm-hand system can
successfully compensate for the parasitic object motion. More
results for both symmetric and nonsymmetric grasps are
presented in the following section.

III. RESULTS AND EXPERIMENTS

In this section, we present both the simulated and the exper-
imental paradigms prepared with the Barrett WAM robot arm
and the compliant underactuated robot hands. For the com-
putation of the kinematics of the underactuated robot hands,
we used the freeform manipulator toolbox [24], the SynGrasp
toolbox [30], and the Robotics Toolbox [31] in the MATLAB
(MathWorks) interactive simulation environment.

A. Apparatus

In this paper, we use the seven DoF Barrett WAM
robot arm [32] and different adaptive robot hands of the
Yale OpenHand project. The hands are the models T42PP,
T42FF, and T42PF. Model T42 is an open-source, two-
fingered, compliant, underactuated, tendon-driven robot hand

TABLE I

YALE OPENHAND MODEL T42 ROBOT HANDS PROPERTIES

that has two motors (a dedicated motor for each one of the
two robot fingers) and two phalanges per finger.

The flexure joints of models FF and PF are implemented
with elastomer materials (Smooth-On, PMC 780 Urethane
Rubber). More details regarding the examined robot hands
and all the required instructions for their replication can
be found in the Yale OpenHand project website [33]. The
T42 parameters are reported in Table I and the tendon routing
as well as the structures of exemplar fingers are depicted
in Fig. 8. All the models of the robot arms and hands were
incorporated in MATLAB for preparing a series of simulated
paradigms.

To track the motion of the examined objects during the
reconfiguration of the hand-object system, we used the trak-
STAR (Ascension Technologies) magnetic motion capture
system, which is equipped with a medium range trans-
mitter (MRT) and 8 model-180 magnetic sensors with a
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Fig. 10. The sum of the contact forces, the predicted parasitic object motion, and the actual parasitic object motion for a symmetric pinch grasp of a 3-D
printed cylinder with a diameter of 45 mm. The robot hand used is a modified version of the T42PF that has 8 tactile sensors (Takkstrip, RightHand Robotics)
per finger. The fingers are similar to the ReFlex hand fingers [38].

Fig. 11. Images of the symmetric grasp experiments that were conducted with the Barrett WAM—-Yale OpenHand model T42FF robot arm-hand system.
The object examined is a rectangle with a side of 40 mm, which is grasped with and without the parasitic object motion compensation methodology.

diameter of 2 mm (see Fig. 9). The trakSTAR system provides
high accuracy in both position and orientation with 1.4 mm
and 0.5°, respectively. The sampling rate is 80 Hz and the
measurements can be provided in terms of homogeneous
transformation matrices.

B. Parasitic Object Motion Estimation

In Fig. 10, we present the sum of the contact forces, the pre-
dicted parasitic object motion, and the actual parasitic object
motion for a symmetric pinch grasp of a 3-D printed cylinder
with a diameter of 45 mm. The robot hand used is a modified
version of the T42PF with 8 tactile sensors (Takkstrip [34],
RightHand Robotics) incorporated in each finger. To compare
the actual and the predicted parasitic object motion, quantify
their similarity, and express it as a percentage, we used as

a metric the percentage of the normalized mean-square error.
For the experiment presented in Fig. 10, the estimated post-
contact parasitic object motion is a pure translation in the
y-axis, while the predicted x-axis displacement is zero. The
actual parasitic object motion differs from the theoretical due
to friction phenomena and/or design asymmetries in the robot
hand structure. The similarity score in the y-axis is 96.4%,
the maximum error is 0.23 mm, while the maximum error
in the object pose displacement estimation in the x-axis is
0.50 mm.

An experimental paradigm of the Barrett WAM—model
T42FF robot arm-hand system grasping a rectangle with and
without the object motion compensation and with a symmetric
grasp is shown in Fig. 11. Columns 1 and 3 in Fig. 11 present
the initial and final configurations of the post-contact parasitic
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Fig. 12. Experiments of post-contact, parasitic object motion compensation for grasps of everyday life objects. The objects considered are a plastic pear,
a plastic strawberry, a Rubik’s cube, and a bottle of mustard and they are approximated as primitive shapes. All the objects can be found in the YCB object
set [35]. The experiments were conducted with two different versions of the model T42PF robot hand.

Fig. 13. Sum of the contact forces, predicted parasitic object motion, and
actual parasitic object motion for a nonsymmetric pinch grasp of a bottle
of mustard. The object is included in the YCB object set [35]. The mean
estimation accuracy for x , y, and θ is 89.34%. The maximum errors in x , y,
and θ are 0.42 mm, 0.55 mm, and 0.67°, respectively.

object motion without compensation, while columns 2 and 4
present the initial and the final configuration of the hand-object
system for the object motion compensation case.

Experiments with everyday life objects are presented
in Fig. 12. The objects considered are a plastic pear, a plastic
strawberry, a Rubik’s cube, and a bottle of mustard that can
be found in the YCB object set [35]. The hands used are two
different versions of the model T42PF, a standard hand, and a
hand with thinner fingers that are equipped with tactile sensors
and that have stiffer joints. Although we do not have an accu-
rate description of the everyday life objects 3-D models we

TABLE II

ESTIMATION ACCURACY OF THE PARASITIC OBJECT MOTION

ESTIMATION FOR DIFFERENT HANDS, GRASPS, AND
EVERYDAY LIFE OBJECTS

can approximate them with primitive shapes (e.g., cylinders,
spheres, rectangles) of equal dimensions. The accuracy of the
estimations of the proposed methodology for the pinch grasps
with everyday life objects that we presented in Fig. 12 can be
found in Table II.

Fig. 13 provides the sum of the contact forces, as well
as the predicted and the actual parasitic object motions for
a nonsymmetric grasp of a bottle of mustard. In this case,
the estimation accuracy is only 89.34% in contrast to the
96.53% achieved for the symmetric case. This is due to
the increased complexity of the post-contact parasitic object
motions for nonsymmetric grasps and to the approximation of
the bottle of mustard as a simple rectangle.
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Fig. 14. Images of the nonsymmetric grasp experiments that were conducted
with the model T42PP robot hand. The object examined is a 3-D printed
cylinder with a diameter of 40 mm that was grasped with and without the
parasitic object motion compensation. The yellow marker is used to facilitate
the comparison between the “free” and the “compensation” case. It is evident
that for nonsymmetric grasps, the post-contact parasitic object motion has both
a translational and a rotational component. For the robot arm to compensate
for this complex object motion an appropriate combination of translation
and reorientation of the robot wrist is required. The similarity score for this
experiment was 94.8%.

As it can be noticed, the parasitic object motion estimations
for the everyday life objects and the nonsymmetric grasps are
less accurate but the methodology still manages to compensate
for the imposed object displacements and it provides a rea-
sonable performance. It should also be noted that hands with
stiffer joints (e.g., the T42PF version with the tactile sensors)
produce less parasitic object motion and they can be modeled
more accurately, as their behavior is not easily affected by
friction phenomena.

In Fig. 14, the Barrett WAM–model T42PP robot arm-
hand system grasps a cylinder with a diameter of 40 mm
with and without the object motion compensation and with
a nonsymmetric grasp. The parasitic motion of the object
includes both a translation and a rotation component. The
yellow marker is used to highlight the orientation changes.

It is evident that the proposed methodology works effi-
ciently for both symmetrical and nonsymmetrical grasps. Upon
contact of the fingertips with the object surface, there is a
significant parasitic reconfiguration of the hand-object system
in all the cases. Using the proposed procedure, the object
displacement is eliminated by an appropriate compensatory
motion of the robot arm that may involve a simple transla-
tion (symmetric grasp) or a combination of translation and
rotation components (nonsymmetric grasp). The accuracy of
the estimations is high in all the cases even for nonsymmetric
grasps and the similarity between the estimated and the actual
motion ranges between 86% and 97%, as reported in Table II.

It should also be noted that the proposed methodology
cannot be 100% accurate as it does not incorporate difficult-

Fig. 15. Comparison of the predicted (thick red line) and the actual (thin
colored lines) post-contact, parasitic object motions imposed by the reconfig-
uration of the hand-object system. Five different trials with the model T42PF
grasping a cylinder (d: 30 mm) with a symmetrical grasp are depicted. The
actual experimental data deviate from the “theoretical” object motion, due to
friction terms that cannot be easily modeled (e.g., tendon routing friction and
capstan effect) and modeling inaccuracies (e.g., joint compliance errors).

to-model friction phenomena that take place in the finger
structure (e.g., tendon routing friction and capstan effect [36])
and it does not take into consideration possible asymmetries
in the robot hand structure (e.g., caused by inaccuracies in the
tendon termination). Despite the missing terms, the accuracy
of the proposed approach is quite promising.

Further results are depicted in Fig. 15, where the actual and
the predicted post-contact parasitic object motions are com-
pared. As expected, the predicted (theoretical) object trajectory
for a symmetric grasp is a straight line. In reality, the friction
phenomena in the hand structure (e.g., tendon routing friction)
and other modeling inaccuracies (e.g., joint stiffness modeling
inaccuracies) will always lead to object trajectories that deviate
from the theoretical behavior. Though, it should be noted that
the mean RMS error across all the trials in the object trajectory
is only 0.4 mm for a total object displacement of ∼16 mm.
It can also be noticed that the actual object trajectories are
longer than the predicted trajectories.

C. Effect of Kinetic Friction Force

To investigate the effect of the kinetic friction force in
the reconfiguration magnitude, we conducted multiple exper-
iments involving 3-D printed model objects (cylinders that
are filled with calibrated weights) and everyday life objects
(a heavy bottle of mustard with a weight of 600 g and a plastic
strawberry with a weight of 18 g) using the same robot hand.
Images of the first experiment as well as the magnitudes of the
post-contact parasitic object motions for the different cases are
presented in Fig. 16. As can be noticed, when the object weight
increases the reconfiguration magnitude decreases, as the
kinetic friction force resists the reconfiguration. We should
also clarify that we chose to vary the kinetic friction force by
altering the object weight, because it is technically challenging
to vary the level of friction between the object and the resting
surface (e.g., a table).



10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 16. Effect of the kinetic friction force in the post-contact parasitic object motion magnitude. When we change the weight of the grasped object, the kinetic
friction force increases and the reconfiguration magnitude decreases (for fixed contact forces). In order to increase the weight, we use a set of calibrated
weights that are incorporated in appropriately designed 3-D printed hollow objects. The weights (g) and the magnitude of the reconfiguration (mm) are also
depicted.

Fig. 17. Symmetric pinch grasps of a lightweight object (plastic strawberry)
and a heavy object (bottle of mustard). First row: minimal effort stable grasps.
Second and third rows: maximum reconfiguration poses with friction (the
object lies on the table) and without friction (the object is elevated). White
boxes contain the values of the magnitude of reconfiguration.

Instances of the second experiment are presented in Fig. 17.
The first row in Fig. 17 depicts the minimal effort, stable
grasps for two everyday life objects. The forces required to

stably grasp the plastic strawberry do not impose a parasitic
object motion, while the contact forces required to stably grasp
the bottle of mustard impose a pure translation of the object
of 28 mm. The second and the third rows in Fig. 17 present
the maximum reconfiguration poses of the hand-object system
with friction (the objects are supported on the table surface)
and without friction (the hand-object system is elevated by
the robot arm). The effect of kinetic friction force for the
lightweight plastic strawberry (18 g) is insignificant (the
maximum reconfiguration increases from 22 mm to 23 mm
without friction), while for the heavy bottle of mustard (600 g)
the friction effect is significant (the maximum reconfiguration
increases from 38 mm to 44 mm without friction).

D. Accompanying Video

All the simulated and experimental paradigms conducted
with the model and the everyday life objects are included
in an HD quality video in [37]. During the experiments,
the parasitic object motion compensation is not perfect, due to
the limited precision of the Barrett WAM robot arm and due
to the aforementioned friction phenomena and the possible
asymmetries (e.g., tendon routing asymmetries) in the robot
hand structure. Another factor that causes the shaking of the
object is that we use large contact forces (we do not employ
the grasping force optimization results), in order to maximize
the imposed parasitic object displacements and make the robot
arm compensatory motions more evident.

IV. CONCLUSION

In this paper, we presented a methodology based on con-
strained optimization methods, which derives stable, minimal
effort grasps for adaptive, compliant, and underactuated robot
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hands, estimates the post-contact parasitic object motions,
and derives appropriate robot arm trajectories that eliminate
these parasitic motions, facilitating grasp stabilization. The
methodology takes advantage of models that describe the
kinematics of adaptive robot hands, even when they are
implemented with complex and hard-to-model flexure joints,
and deals with both symmetric and nonsymmetric grasps. The
parasitic object motions have been shown to depend on the
hand and object parameters, the contact forces exerted through
the robot fingertips, and the kinetic friction force that resists
the reconfiguration of the hand-object system. The accuracy
of the proposed methods was experimentally validated through
extensive simulated and experimental paradigms, involving a
redundant seven DoF robot arm (Barrett WAM) and different,
adaptive, compliant, and underactuated robot hands (Yale
OpenHand models T42PP, T42PF, and T42FF). We feel that
deriving stable, minimal effort grasps and compensating for
possible parasitic object motions is a prerequisite of paramount
importance for many practical grasping and in-hand manipu-
lation tasks with underactuated hands.

While this paper represents a good initial step in this area,
a number of follow-up efforts should be performed. First,
while the framework presented applies also to 3-D motions,
only planar hands and movements were examined in the
experimental results shown here. In this respect, we plan to
extend this paper and investigate the accuracy of the pro-
posed methodology for predicting the parasitic object motions
in 3-D space and eliminating them with appropriate compen-
satory motions of the robot arm. To do so, we plan to use other
multifingered hands of the OpenHand project (e.g., Model O).
Other future plans or ours, are the investigation of the roles
of object weight and gravity in the execution of 3-D tasks and
the extension of the proposed methods for complex objects
with known geometry.
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