
  

 

Abstract— Adaptive robot hands have changed the way we 
approach and think of robot grasping and manipulation. 
Traditionally, pinch, fingertip grasping and dexterous, in-hand 
manipulation tasks were executed with fully actuated, rigid 
robot hands and relied on analytic methods, computation of the 
hand object Jacobians and extensive numerical simulations for 
deriving optimal and minimal effort grasps. However, even 
insignificant uncertainties in the modeling space could render 
the extraction of candidate grasps or manipulation paths 
infeasible. Adaptive hands use underactuated mechanisms and 
structural compliance, facilitating by design the successful 
extraction of stable grasps and the robust execution of 
manipulation tasks, even under significant object pose or other 
environmental uncertainties. In this paper, we propose a 
methodology for the automated extraction of dexterous, in-
hand manipulation strategies / primitives for adaptive hands. 
To do so, we use a constrained optimization scheme that 
describes the kinematics of adaptive hands during the grasping 
and manipulation processes, an automated experimental setup 
for data collection, a clustering technique that groups together 
similar manipulation strategies, and a dimensionality reduction 
technique that projects the robot kinematics to lower 
dimensional manifolds. In these manifolds, control is simplified 
and hand operation becomes more intuitive. In this work, we 
also assess the effect of the extracted manipulation primitives 
on the object pose perturbations. The efficiency of the proposed 
methods is experimentally verified for various adaptive robot 
hands. The extracted primitives can simplify the operation and 
control of the open-source robot hand designs of the Yale Open 
Hand project in dexterous manipulation tasks.  

I. INTRODUCTION 

The state-of-the-art of robot hand designs is still 
dominated by fully actuated, multi-fingered, rigid and 
expensive robot hands that require advanced sensing 
elements and complicated control laws in order to grasp and 
manipulate objects or to interact with an unstructured or 
dynamic environment. As a result, despite the sophisticated 
designs and the numerous studies that have focused on 
dexterous manipulation over the last 50 years, there has not 
been much progress in the field in terms of practical 
applications and robust within-hand manipulation still 
remains difficult to accomplish.  

Adaptive, underactuated robot hands have gained 
popularity in robot manipulation over the past decade, largely 
due to their ability to grasp objects even under significant 
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object pose uncertainties and often in an open-loop manner 
[1]–[5]. The particular hands use underactuated mechanisms 
and elastic joints in order to facilitate the extraction of stable 
grasps, even in the presence of large uncertainties about the 
object. More recently, they have been used to demonstrate 
the potential for robust, dexterous, within-hand manipulation 
[6]–[8]. However, the use of compliant elements in the robot 
structure and the kinematic constraints imposed by the under-
actuation, combined with many of the typical uncertainties in 
unstructured manipulation tasks, make modelling, planning, 
and control with these hands, particularly challenging.      

In this paper, we propose a methodology for the 
automated extraction of dexterous, in-hand manipulation 
strategies / primitives for adaptive robot hands that simplify 
the planning and control process (see Fig. 1). To do so, we 
use a constrained optimization scheme that describes the 
behavior of these hands during the grasping and manipulation 
processes, providing intuition about the mechanics of the 
problem. Then we synthesize an automated data collection 
procedure and a learning scheme that uses: a) a clustering 
technique to group together similar manipulation strategies 
and b) a dimensionality reduction technique to project the 
robot kinematics to a lower dimensional manifold. In the 
low-d manifold, the control problem is simplified and the 
hands’ operation becomes more intuitive. The proposed 
methodology also assesses the effect of the extracted 
manipulation primitives on the object pose perturbations and 
the effect of the object size on the extraction of representative 
and generalizable manipulation primitives.  
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Fig. 1. Example of manipulation primitives derived for the 
simulated version of the Yale Open Hand model T42. The 
first Principal Component (PC) is responsible for performing 
equilibrium point manipulation tasks, while the second PC 
pulls the object inside the grasp. The yellow line is used to 
depict the object orientation.  
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In order to validate the efficiency of the proposed 
framework, we present extensive experimental work that 
focuses on controlling various adaptive robot hands using the 
identified primitives to manipulate a range of sensorized, 3D 
printed objects. The extracted manipulation primitives can 
simplify dexterous, in-hand manipulation with adaptive 
hands and allow an intuitive operation of the Yale Open 
Hand devices [9] or other similar devices.   

The rest of the paper, is organized as follows. Section II, 
presents the related work on robot grasping, dexterous, in-
hand manipulation and manipulation primitives extraction. 
Section III presents the techniques and methods used in order 
to formulate the proposed methodology, Section IV presents 
the experimental setup used and the robot hands examined, 
Section V presents the extracted manipulation primitives for 
each robot hand, the object ranges of motion for a set of 
exemplary primitives and the relationship between the object 
size and the coefficients of the identified primitives. Finally, 
Section VI discusses the main challenges and the best 
practices for extracting a set of representative manipulation 
primitives in an automated fashion, while Section VII 
concludes the paper and discusses future research directions.  

II. RELATED WORK 

Over the last decades, dexterous manipulation has 
become increasingly important for robots to interact with 
their environment, as it facilitates the execution of dexterous / 
meaningful everyday life tasks. The term dexterity originates 
at the Latin word dexteritas that means skillfulness. Dexterity 
is highly correlated with the functionality of human hand and 
vice versa. Bicchi et al [10] [11]  defined dexterity as “the 
capability of a robot hand to change the position and 
orientation of the manipulated object, from a reference 
configuration to a different arbitrary chosen configuration 
within the hand workspace” and as “the ability of a hand to 
relocate and reorient an object being manipulated among its 
fingers, without losing the grasp”. Li et al [12] describe 
dexterity as the process of manipulating an object from one 
grasp configuration to another, while Okamura et al [13] 
define it as the cooperation between multiple manipulators or 
fingers, to grasp and manipulate objects.  

Thus, dexterity is highly associated with the grasping and 
manipulation processes and people tend to characterize as 
dexterous, robot hands that have multiple fingers, multiple 
actuators and many degrees of freedom. These hands are 
typically rigid, heavy, expensive, complex, they require 
sophisticated sensing elements and complicated control laws 
and although they are indeed dexterous their dexterity 
requires increased computational effort. On the other hand, 
the new class of adaptive robot hands offers a simplified and 
affordable ``dexterity” and robustness in the execution of 
dexterous manipulation tasks. In their case, dexterity is 
directly evaluated (in a qualitative manner) in the object 
space (how efficiently and delicately the objects are 
manipulated) and not by hand design specifications and 
attributes.   

Regarding applications, the classic approach for modeling 
the robot grasping and dexterous, in-hand manipulation 
problems, involves analytical and constrained optimization 
methods for computing the hand and hand-object Jacobians, 

extracting stable grasps, maintaining the force closure 
properties of the grasp and respecting task constraints. Such 
an approach can be found in [14], where the authors 
proposed a methodology for planning in-hand manipulation 
tasks with multi-fingered hands that takes into account all 
possible task constraints and derives stable grasp 
configurations that guarantee the successful execution of the 
desired tasks. Similar methods have been proposed also in 
the grasping literature for synergistic, cable-drive, 
underactuated hands [15].   

Recently, there has been also a significant research effort 
in the development of simple, minimalistic solutions for both 
robot grasping and dexterous manipulation.  In [7], the 
authors provided evidence that a reduction in the number of 
hand actuators and constraints, simplifies the manipulation 
problem and relaxes the required control effort. In [16], a 
human inspired, open-loop manipulation methodology was 
proposed that facilitated the execution of flip and pinch tasks 
by adaptive hands and allowed them to pick objects from a 
table surface. In [17], Mason et al proposed a learning 
scheme that employs sensor data to perform object 
recognition and in-hand object localization or to reject the 
grasp, using a minimalistic approach that the authors call 
“grasp first – ask questions later”. In [18], the concept of 
extrinsic dexterity was introduced and the ability of simple 
hands to perform manipulation tasks using extrinsic to the 
hand resources (e.g., gravity, external contacts, dynamic arm 
motions, parts of the environment etc.) and a set of re-
grasping actions, was demonstrated. Although all re-
grasping actions were open-loop and hand scripted they 
were also surprisingly robust.  

In [19], a reinforcement learning methodology was 
proposed for acquiring in-hand manipulation skills for 
adaptive robot hands equipped with tactile sensors. The 
methodology does not rely on dynamic or kinematic models 
and it generalizes to new objects without a significant loss in 
performance. In [20] the authors proposed a machine 
learning scheme that can  accurately  predict  whether  a  
grasp  is stable  or  not, facilitating dexterous manipulation  
with a multi-finger hand equipped with tactile sensors [21]. 
Finally, in [8] we proposed a hybrid methodology based on 
a combination of analytical models, constrained optimization 
methods and machine learning techniques for performing 
dexterous, in-hand manipulation with simple, adaptive robot 
hands, by employing task-specific manipulation models that 
account also for dynamic phenomena (e.g., uncontrolled 
slipping and rolling).  

Regarding primitives or synergies, many studies have 
focused on the projection of human and robot kinematics in 
lower dimensional manifolds where the motion analysis and 
control are simplified. Santello et al [22], [23], first 
demonstrated that the control of hand posture involves only 
a few postural synergies (the first two principal components 
describe more that 80% of the variance). In the robotics 
literature, synergies and motion primitives have been used 
not only for grasping [24]–[27] and dexterous manipulation 
[28], [29], but also for deriving new bioinspired robot hand 
designs [30] or design specifications for the development of 
new robotic devices.  
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Fig. 2. A visualization of the structure of the proposed 
manipulation primitives extraction methodology. The 
simulations module explores the feasible manipulation tasks 
using analytical models and constrained optimization schemes 
that describe the behavior of adaptive hands. The automated 
experimental setup gathers real raw data of the identified 
feasible manipulation tasks. The raw data are clustered using 
the k-means algorithm into groups of similar manipulation 
strategies (groups of similar manipulation paths).  A standard 
dimensionality reduction technique (Principal Components 
Analysis – PCA) is used to represent the problem in low-d 
manifolds where control is simplified and intuitiveness of 
operation is maximized.  

III.  METHODS 

A. Methodology Overview 

In order to automate the extraction of dexterous, in-hand 
manipulation primitives we used a combination of 
constrained optimization methods, analytical models and 
machine learning techniques, as well as an automated 
experimental setup that is able to collect “big data” of 
manipulation actions.    

More precisely, the constrained optimization scheme and 
the analytical models (that describe the behavior of adaptive 
hands) are employed by a simulation module that explores 
feasible manipulation paths for each hand design and 
provides some good initial estimates to the automated data 
collection procedure. The automated experimental setup 
gathers data of numerous manipulation trials without 
supervision, detecting unstable grasps or the loss of a 
particular grasp. The raw manipulation data are stored into a 
database and a clustering method (k-means algorithm) is 
used to group together similar manipulation strategies. The 
feature variables used for clustering, are: a) the final object 
pose (3 variables for 2D tasks and 6 variables for 3D tasks) 
and b) the equivalent motor positions at the beginning and 
the end of the manipulation task. The extracted groups of 
manipulation strategies are projected to a lower dimensional 
manifold using a dimensionality reduction technique 
(Principal Components Analysis – PCA). Appropriate 
primitive / synergy matrices are extracted that facilitate an 
intuitive and simplified control of the examined devices in 
dexterous, in-hand manipulation tasks (see Fig. 2).   

B. A Simulation Module  

In order to model the behavior of adaptive hands and 
precompute a range of feasible manipulation paths without 
conducting time consuming experiments, we created a 
simulation module based on the analytical models and the 
constrained optimization methods that we introduced in [8] 
and [31].  

Given the potential energy of the hand ܸሺܙሻ	 (e.g., 

ܸሺܙሻ ൌ
ଵ

ଶ
 for the simple case of spring loaded pin ܙ୘۹ܙ

joints, where q is the vector of the joint angles and K is the 
stiffness matrix that represents the pin joint compliances), 
the problem is formulated as a constrained minimization of 
the function ܧሺૌሻ ൌ െ׏௤ܸሺܙሻ ൅ ۸௣்܎ (f are the imposed 
forces, e.g., contact forces) subject to a set of robot hand and 
task constraints as described in [32]. The particular scheme 
predicts the hand configurations, the fingertips velocities and 
the object pose and velocity using the grasp matrix and the 
hand object Jacobian.   

C. Clustering Similar Manipulation Strategies 

In order to group together similar manipulation 
trajectories from those identified by the simulation module, 
we perform a clustering of the collected manipulation data 
using as feature variables the final object pose of the object 
(3 variables for 2D tasks and 6 variables for 3D tasks) and 
the equivalent motor positions, at the beginning and the end 
of the manipulation task. The clustering technique that we 
employ is the k-means algorithm [33]. K-means is a vector 
quantization method that partitions n observations into k 
clusters. Upon clustering each observation belongs to the 
cluster with the nearest mean. In this work, different values 
of k have been considered for the different hand designs and 
the results of the clustering algorithm were always evaluated 
by an expert. The role of the expert was twofold: a) to 
evaluate the quality of the data that the clustering algorithm 
uses (e.g., to reject noisy data) and b) to evaluate the 
structure of the extracted clusters. The extracted clusters are 
used by a dimensionality reduction technique in order to 
project the robot kinematics to a lower dimensional manifold 
where control is simplified and the hands operation becomes 
more intuitive.     

D. Dimensionality Reduction  

In order to project the collected manipulation data to a 
lower dimensional manifold, we use the Principal 
Components Analysis (PCA). PCA is a dimensionality 
reduction technique that employs orthogonal transformations 
in order to convert the provided and possibly correlated 
variables into a set of linearly uncorrelated variables called 
the principal components (PC). For an initial n-dimensional 
space the numbers of PCs available are always equal to n 
and they can be used to project the initial data to a manifold 
of fewer dimensions. The 1st PC accumulates always most of 
the variance and is derived so as to account for as much of 
the data variability as possible. Each subsequent PC is 
orthogonal to all previous PCs and has as much of the 
remaining variance as possible. More details on PCA can be 
found in [34]. 
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IV. EXPERIMENTAL SETUP 

A. Robots Used 

1) A Robot Arm for Prepositioning the Hands 

The robot arm used is the Barrett WAM [35]. The WAM 
has 7 degrees of freedom arranged in anthropomorphic 
fashion and is a research oriented, cable-driven, compliant 
robotic manipulator that can support a payload of 3 kg. An 
appropriate, 3D printed wrist coupling of the Yale Open 
Hand project [9] was used  for mounting the examined hands 
at the end-effector of the robot arm.  

2) Robot Hands Examined 

Different hands are used and their most representative 
dexterous, in-hand manipulation primitives are extracted. 
Namely, the examined hands are the Yale Open Hand 
models T42 and O, the GR2 gripper, the P3 gripper, the AS 
gripper and the FG gripper.  

Model T42, is a compliant, underactuated, two-fingered, 
robot gripper that has two phalanges and a dedicated 
actuator for each finger. The T42 can be developed with 
either spring loaded pin joints (denoted with the letter P) or 
flexure joints (denoted with the letter F) implemented with 
elastomer materials (Smooth-On, PMC 780 urethane 
rubber). So a T42FF refers to a version with two flexure 
joints per finger, while the T42PF refers to a version with 
one spring loaded pin (proximal) and one flexure joint 
(distal) per finger.  The Spherical hand is a variation of 
model O and has three fingers (with two phalanges and a 
dedicated motor each), as well as a motor responsible for a 
coupled abduction adduction of two of the three fingers.   

The GR2 gripper is based on linkages and works similarly 
to the T42 robot hand [36]. The P3 gripper is actually a T42 
that has a finger with only one phalange instead of two. Such 
a choice makes the design non-symmetric and changes the 
feasible manipulation workspace.  

The AS gripper uses a steady thumb with an active 
surface (a moving belt) and a finger with two phalanges. The 
moving finger has a set of freely rotating compliant rollers 
that constrain the object in caging grasps, allowing it also to 
be manipulated within the hand (by the belt). Finally, the FG 
gripper is a minimalistic, four-fingered robot hand that has 
two pairs of tendon-driven, underactuated fingers that are 
kept decoupled by an independent, central, rotating axis. The 
hand was developed for finger gaiting tasks, but it can also 
perform equilibrium manipulation tasks, using only the two 
opposing fingers. 

All hands were created by the GRAB Lab at Yale 
University and are depicted in Fig. 3. The designs of models 
T42 and O are distributed in an open-source fashion, through 
the Yale Open Hand Project website [9].  

 
Fig. 3. The examined robot hands are depicted. All hands have been developed by the GRAB Lab at Yale University. Models T42 and 
O are freely distributed through the Yale Open Hand project website [9]. 

 
Fig. 4. The setup used for data collection. The frame is created 
with a set of T-slotted profiles of the Industrial Erector Set 
(80/20). The blue 3D printed camera holder has a pulley 
attached for repositioning the object (using the dedicated 
motor in the middle of the image). The red base of the hand is 
a 3D printed wrist coupling of the Yale Open Hand project [9].  
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B. Automated Data Collection Procedure  

For the 2D tasks we created a vision based experimental 
setup that uses a frame based on T-slotted profiles of the 
industrial erector set and a dedicated actuator for 
repositioning the object to its initial configuration. The 
frame supports the wrist coupling mechanism of the Yale 
Open Hand project [9]  and the 3D printed base of the 
camera. The camera base, has a pulley incorporated that 
facilitates the repositioning of the objects at the center of the 
field of view of the camera (initial pose). The setup is 
depicted in Fig. 4.  

For the execution of 3D, in-hand manipulation tasks we 
attach the examined hand at the end-effector of the Barrett 
WAM robot arm (see Fig. 6) and it reaches a precomputed 
grasp configuration (with a certain wrist offset from the 
object). The developed frame is once again used for 
repositioning the objects. Each experiment starts with the 
hand grasping the object at specific contact points. Upon 
contact that hand starts exploring the identified by the 
simulation module, feasible manipulation tasks. For each 
task, after the execution is completed, the hand releases the 

object and the repositioning mechanism drives the object 
back to its initial configuration. All steps described are 
repeated until all feasible manipulation tasks have been 
explored.  

C. Object Motion Tracking 

In order to capture the motion of the objects in planar 
manipulation tasks we used a simple web camera (Creative 
Senz3D) that shoots RGB video with an HD 720p resolution 
(1280x720). The object motion tracking was implemented 
using the fiducial markers based methodology of the Aruco 
library [37]. The developed module provides the complete 
pose of the object for 2D tasks (x, y, theta). All the scripts 
required for object detection were developed in Python and 
were incorporated in our grasp planning framework.  

In order to capture the motion of the objects during 3D, 
dexterous, in-hand manipulation tasks, we used the 
trakSTAR (Ascension Technologies) magnetic motion 
capture system. The trakSTAR system is equipped with a 
medium range transmitter (MRT) and eight model-180 2mm 
diameter magnetic sensors, it is characterized by high 
accuracy in both position and orientation, it provides a 
sampling rate of 80 Hz and it derives the poses of the 
sensors in the format of homogeneous transformation 
matrices with respect to the global reference frame.  

V. DEXTEROUS MANIPULATION PRIMITIVES 

A. Manipulation Primitives & Synergy Sets 

Having identified a set of representative clusters in the 
manipulation data we use the Principal Components 
Analysis (PCA) method to project each group to a lower 
dimensional manifold where control is simplified. The 
dimensionality of the original space is equal to the number 
of actuators per hand and is 2D for T42PF, T42PP, P3, GR2 
and AS and 4D for model O / Spherical hand and FG.   

 The extracted manipulation synergy sets for T42PF 
Takktile are depicted in Fig. 5. The first primitives execute 
equilibrium point manipulation tasks. Hands that have 
similar structure and kinematics have also similar 
manipulation primitives (as seen also in Table I) and some 
small differences are due to differences in the stiffness of the 
joints and differences in the link length ratios.  

 
Fig. 6. The Barrett WAM - Yale model FG arm hand system, 
while grasping a tennis ball with a precision grasp.    

---------------------------------- 

 
Fig. 5. The extracted manipulation synergy sets for the case of 
T42PF Takktile. The first primitives concern the execution of 
equilibrium point manipulation tasks (broad & coupled object 
rotation and translation for S1, stronger rotation for S2), while 
the second primitives are pulling the object inside the grasp.  
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It should be noted that if we don’t split the manipulation 
data with the clustering technique (grouping the similar 
strategies together) and we choose instead to project all the 
data to a common low-d space, then the strategies of the 
second synergy sets for T42 disappear and the PCs extracted 
are similar to the PCs of the first synergy set. Thus, by 
splitting the datasets we allow a mechanism with only two 

actuators to have several manipulation primitives instead of 
two that would be typically derived. Regarding the robot 
hands examined, the P3 gripper behaves similarly to the T42 
class of hands. The only difference is that the second PC of 
the extracted synergy set for P3 accounts for only 12% of the 
variance since the one-link finger cannot reconfigure and it 
has only one remaining finger capable of pulling the objects 
towards the wrist. The synergy set of the AS is responsible 
for trapping the object in a caging grasp where the actuator 
of the belt can operate in continuous mode, statically 
rotating the object. The aforementioned pinch and caging 
grasps of the AS gripper are depicted in Fig. 8. The 
identified representative manipulation strategy for the GR2 
gripper is once again an equilibrium point manipulation of 
the object that involves a lot of rolling at the contacts. It is 
not surprising that GR2 has quite different primitive 
coefficients since the design is based on linkages and has a 

Table I. The most representative manipulation primitives extracted for each hand. Only 2 PCs per Synergy set are depicted.  

 
Hands 

Primitives 
S1 - PC1 S1 - PC2 S2 - PC1 S2 - PC2 

T42 PF Takktile [0.7072   -0.7070] [0.7070    0.7072] [-0.4756   0.8797] [-0.8797   -0.4756] 
T42 PP Takktile [0.7319   -0.6813] [0.6813    0.7319] [-0.5889   0.8081] [-0.8081   -0.5889] 

T42 PP [0.7085   -0.7056] [0.7056    0.7085] [-0.4694   0.8829] [-0.8829   -0.4694] 
P3 Gripper [0.6842   -0.7292] [0.7292    0.6842] X X 
AS Gripper [-0.9837   0.1794] [-0.1794 -0.9837] X X 

GR2 Gripper [0.6092   -0.7930] [0.7930    0.6092] X X 
FG Gripper    [0.6488     0.1892      

    0.6951     0.2452] 
    [-0.1526  -0.0925 
     -0.1741   0.9684] 

[0.6888   0.7248] [-0.7248   0.6888] 

Spherical / O    [0.2708     0.4282       
    0.8370     0.2067] 

    [0.4799   -0.7118       
     0.0839    0.5059] 

[0.7024   0.7089] [-0.7089   0.7024] 

 

Table III. Variations of the primitive coefficients for different 
object sizes (diameters) for T42 PF Takktile. 

 
Object Size  

Primitives 
S1 - PC1 S2 - PC1 

30 mm  [0.7072  -0.7070] [-0.4756  0.8797] 
50 mm [0.7119  -0.7015] [-0.4639  0.8859] 
70 mm [0.7060  -0.7082] [-0.5244  0.8515] 
90 mm [0.6975  -0.7165] [-0.4512  0.8924] 

Table II. The ranges of object motion for each object size per identified primitive of the T42 PP Takktile. The translations are reported 
in mm and the rotations in degrees. A graphical representation of the ranges of motion is provided in Fig. 7.  

 
Object Size (diameter) 

Primitives 
S1 - PC1 S1 - PC2 S2 - PC1 S2 - PC2 

x y theta x y theta x y theta x y theta 
30 mm  -64,64 0,-36 -46,46 0,0 0,-34 0,0 -30,30 0,-17 -50,50 0,0 0,-34 0,0 
50 mm -62,62 0,-22 -40,40 0,0 0,-33 0,0 -27,27 0,-16 -20,20 0,0 0,-33 0,0 
70 mm -67,67 0,-29 -6,6 0,0 0,-22 0,0 -27,27 0,-16 -13,13 0,0 0,-22 0,0 
90 mm -69,69 0,-30 0,0 0,0 0,-14 0,0 -26,26 0,-11 -8,8 0,0 0,-14 0,0 

 
Figure 7. Graphical representation of the ranges of object motions during manipulation with the T42 PP Takktile robot hand and 
cylinders of various diameters (30 - 90 mm). Each axis corresponds to a cylinder of different size. Only the first PC of each Synergy 
set is depicted. LL stands for lower limit and UL stands for upper limit.  
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distinct geometry. The model O / Spherical hand and the FG 
gripper have more primitives per synergy set, as they have 
three and four fingers respectively. The first synergy set 
implements finger-gaiting for FG gripper and equilibrium 
point manipulation for model O. The second synergy sets 
use only two of the opposing fingers for both model O and 
the FG gripper, executing once again equilibrium point 
manipulation tasks.     

B. Generalization Across Object Sizes 

Table II presents the relationship between the object sizes 
and the ranges of motion of the object and it appears that a 
hand may have completely different manipulation 
capabilities for different objects. For example, for the S1-
PC1 the theta value for a cylinder with a diameter of 30mm 
has a range from -46 to 46 degrees, while for a cylinder with 
a diameter of 90 mm the rotation component of the 
equilibrium point manipulation process is not available and 
the aforementioned range is eliminated. A graphical 
representation of the ranges of motion is presented in Fig. 7. 
In Table III, we present results on the effect of the object 
size on the values of the primitive coefficients. The 
particular results demonstrate that primitives do not change 
significantly for different object sizes. 

It should also be noted, that it is safe to use primitives 
extracted for smaller objects to grasp larger objects as the 
motion that they will generate will squeeze the objects 
harder without crushing them, due to the structural 
compliance of adaptive hands. Primitives extracted for large 
objects cannot be used for smaller objects since the resulting 
aperture of the hand could easily be bigger than the object 
dimensions. In Fig. 9, we present the model T42PP 
performing an equilibrium point manipulation with a 
cylinder that has a diameter of 50 mm using a primitive 
extracted for a smaller cylinder (d = 30 mm).   

VI. DISCUSSION 

The proposed methodology takes advantage of the passive 
compliance of adaptive hands that simplifies the automated 
extraction of manipulation primitives. In order for a similar 
methodology to be used with rigid robot hands, appropriate 
planning and control schemes should be developed. These 
schemes should guarantee the extraction of stable initial 
grasps, the avoidance of intra-finger, object or environmental 

collisions, the computation of an appropriate set of contact 
forces (to avoid crushing the object) and the stability of the 
hand object system during the manipulation process. All 
these prerequisites are taken care by design in the case of 
adaptive hands. Moreover, it should also be noted that the 
control space of fully actuated, multi-fingered hands is highly 
multidimensional and the partitioning, clustering and 
identification of a representative set of synergies is much 
more challenging.   

VII. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, we proposed a methodology for the 
automated extraction of dexterous, in-hand manipulation 
primitives for adaptive, underactuated and/or compliant 
robot hands.  To do so, we used a combination of analytic, 
constrained optimization and machine learning methods and 
we created a new setup for automated data collection and 
experimentation. More specifically, the constrained 
optimization scheme takes advantage of analytic models that 
describe the bending of spring loaded pin and flexure joints 
and predicts the behavior of adaptive hands during grasping 
and manipulation, providing intuition about the problem 
mechanics. The machine learning scheme uses: a) a 
clustering technique to group together similar manipulation 
strategies and b) a dimensionality reduction technique to 
project the robot kinematics to a lower dimensional 
manifold. In such a manifold, the control problem is 
simplified and the hands’ operation becomes more intuitive 
for the user. During the analysis and the extraction of the 
various manipulation primitives we assessed also the 
feasible ranges of object motion. The efficiency of the 
proposed methods and the applicability of the extracted 
primitives were validated using extensive experimental 
paradigms that involved various adaptive hands grasping a 
series of sensorized objects. A derivative of this work is the 
Yale Manipulation Primitives Database [38], a repository 
that provides a set of representative primitives that simplify 
dexterous manipulation with adaptive hands. Regarding 
future directions, we plan to consider, compare and evaluate 
different types of clustering and dimensionality reduction 
techniques for the extraction of manipulation primitives.  
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