
  

 

Abstract— A new class of simple, adaptive, under-actuated 
and compliant robot hands has recently attracted the interest of 
the robotics community. The under-actuated mechanisms and 
the structural compliance used in these hands facilitate and 
robustify not only grasping but also the execution of dexterous, 
in-hand manipulation tasks. Another significant characteristic 
of the particular hands is that they are able to efficiently grasp 
a wide range of everyday life objects even under significant 
object pose uncertainties. However, these hands, are difficult to 
model due to kinematic constraints introduced by the under-
actuation and the use of complex flexure joints. Moreover, 
adaptive hands tend to reconfigure upon contact with the 
object surface, imposing certain parasitic object motions. In 
this paper, we propose a learning scheme that uses the contact 
force measurements collected from tactile sensors to estimate 
the post-contact reconfiguration of the hand-object system and 
the imposed parasitic object motion. The learning scheme’s 
estimates are compared with “ground truth” data that describe 
the actual motion of the object and that are collected using a 
vision based motion capture system. The proposed learning 
scheme can be used with any type of adaptive robot hand and 
its efficiency is experimentally validated using extensive 
paradigms involving different hand designs and various 
everyday life objects. 

I. INTRODUCTION 

Over the last decade a new class of adaptive robot hands 
has been introduced [1]–[3]. The particular hands, are of low-
complexity, compliant, under-actuated and have been 
designed for executing robust grasping and dexterous, in-
hand manipulation tasks with everyday life objects. A 
significant characteristic of adaptive hands, is their ability to 
extract stable power and precision grasps even under 
significant object pose or other environmental uncertainties, 
taking advantage of the passive adaptability that is inherited 
to their design by the under-actuation (the use of less motors 
than degrees of freedom) and the structural compliance.  

For all these reasons, adaptive hands are an excellent 
alternative to the fully actuated, multi-fingered, rigid and 
expensive robot hands that are typically considered for 
grasping and manipulation tasks and that require 
sophisticated sensing elements and complicated control laws, 
in order to operate in dynamic environments. 
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  However, despite the promising performance of adaptive 
hands and their numerous applications, they have also certain 
disadvantages and limitations. For example, for many 
precision fingertip grasps their fingers tend to reconfigure 
towards an elastic equilibrium configuration determined by 
the contact forces exerted and the joint stiffness (see Fig. 1). 
The passive adaptability may facilitate grasping and may 
robustify dexterous, in-hand manipulation, but it complicates 
also the analysis and the modelling of these hands. In 
particular, their transmission is typically based on artificial 
tendons (cables) driven through low-friction tubes. These 
cables couple together different joints that are actuated by a 
single motor, introducing kinematic constraints. Moreover, 
the rerouting of the tendons causes phenomena like the 
capstan effect that introduce friction to the hand structure [4]. 
The joints of adaptive hands can be implemented either as 
spring loaded pin joints or as flexure joints based on urethane 
rubbers that complicate further the kinematics analysis, 
making the derivation of analytical models non-trivial.  

All these phenomena become quite apparent during 
grasping and more precisely upon contact with the object 
surface. At this point, the hand is starting to squeeze the 
object and the forces exerted through the robot fingertips 
trigger a hand-object system reconfiguration that imposes a 
parasitic object motion that may be undesired. For example, 
when the hand is in the process of grasping a glass full of 
water such perturbations may cause the water to be spilt, or if 
the hand is used in order to grasp some part of the 
environment (e.g., a button / knob of a console, a handle of a 
door etc.) such hand object system reconfigurations may pull 
the grasped part towards the wrist and damage it.  
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Fig. 1. Post-contact, parasitic object motion for symmetric and 
non-symmetric grasps with adaptive hands. The symmetric 
grasps produce a pure parasitic translation, while the non-
symmetric grasps produce a coupled, parasitic translation and 
rotation of the object.  
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In this paper, we propose a learning methodology for 
estimating based on the contact forces exerted on the object, 
the imposed parasitic object motions. To do so, we use 
advanced Machine Learning techniques (Random Forests 
regression) to predict from the contact forces exerted the 
post-contact, parasitic object motions and the hand object 
system reconfiguration. The learning estimates are compared 
with “ground truth” data provided by a vision based motion 
capture system. The efficiency of the proposed methods is 
experimentally validated through a series of reconfiguration 
paradigms, involving different adaptive robot hand designs as 
well as various everyday life objects.    

The rest of the paper is organized as follows. Section II 
discusses the related work on grasping and manipulation with 
adaptive hands, Section III, focuses on the methods used in 
order to control the robot hands in grasping tasks and 
formulate the proposed methodology, Section IV presents the 
apparatus used and Section V presents an extensive set of 
experimental paradigms. Finally, Section VI compares the 
proposed methodology with similar previous work that uses a 
constrained optimization scheme and Section VII concludes 
the paper and discusses some possible future directions.  

II. RELATED WORK 

Adaptive hands have received an increased attention from 
the robotics community over the last decade, with most 
studies focusing on new hand designs [5]–[7], robust 
grasping [8], [9] and dexterous, in-hand manipulation [10], 
[11]. Nowadays, most researchers control adaptive hands in 
an open-loop fashion [12], [13]. However, in order to 
formulate efficient grasping or manipulation planning 
schemes with these hands, their behavior and their 
kinematics should first be accurately modelled.  

Regarding the modelling of adaptive hands, Odhner et al. 
introduced the smooth curvature model [14], [15], an 
efficient representation of complex planar flexure joints that 
approximates them as elastic beams that bend smoothly. 
More precisely, a set of low-order polynomials were used to 
characterize the joint curvatures even for large deformations. 
The proposed models extract a set of homogeneous 
transformation matrices that describe the configurations of 
the rigid hand phalanges / links, as well as their derivatives 
(e.g., Jacobians and Hessian matrices).  

Regarding grasp quality and stability, a series of studies 
have focused on under-actuated hands. In [9], a  constrained 
optimization scheme was proposed that uses the soft synergy 
model proposed by Bicchi et al [16] and the grasp 
compatibility index proposed by Chiu et al [17], in order to 
derive task-specific force closure grasps for synergistically 
controlled, under-actuated robot hands.  Ciocarlie et al [18], 
[19], formulated a constrained optimization framework for 
compliant, under-actuated robot hands that uses a quasistatic 
equilibrium formulation in order to derive design parameters 
that optimize stability across a set of grasps. All these 
studies focused either on a higher, grasp planning level or on 
providing a scheme for design optimization, without taking 
into consideration the imposed post-contact, parasitic object 
motions and the hand object system reconfiguration.   

Furthermore, Su et al [20], proposed a robust grasp 
planning scheme for under-actuated hands that works even 
under object pose uncertainties, employing a contact-force 
based grasp adaptation that allows the extraction of stable 
grasps with a single trial (no re-grasping is required). Chen 
et al [21], proposed an adaptive methodology for reaching 
and grasping with multi-fingered hands, improving their 
performance under object pose uncertainties. To do so, they 
employed a spatial virtual spring framework and they 
formulated an adaptive grasping control scheme that 
achieves local in-hand adjustments (of the fingers that are 
not yet in contact with the object surface) without resorting 
to the arm motion. Prattichizzo et al [22], studied   the   
structural   conditions  required in order to   design   an 
internal  force  controller  decoupled  from  the object  
motions and they proposed a controller that achieves stable 
grasping with compliant, multi-fingered robot hands, while 
Malvezzi et al [23] proposed an internal forces controller 
that guarantees that the object will not be perturbed. All 
these studies focused either on deriving stable grasps or on 
eliminating object motions for compliant robot hands, 
without dealing with under-actuated pinch grasps that 
impose certain post-contact parasitic object motions and 
without considering the hand object system reconfiguration.  

Recently, we proposed a methodology based on analytical 
models and constrained optimization methods, for deriving 
stable, symmetrical, minimal effort grasps with adaptive 
hands and compensating for post-contact, parasitic object 
motions using the Barrett WAM robot arm [24], [25]. The 
methodology used a grasping force optimization scheme and 
a force decomposition model to compute an appropriate set 
of contact forces and estimate the post-contact, parasitic 
object motion that these forces will trigger. More precisely, 
in [24] we focused only on the simple case of symmetric 
grasps of model objects, while in [25] we focused on both 
symmetric and non-symmetric grasps, considering also a set 
of everyday life objects. The contact forces were derived 
from the displacements of the robot fingers and no tactile 
sensing was available to measure the actual contact forces. 
The efficiency of the proposed methods was validated using 
various simulated and experimental paradigms involving 
different robot arm hand systems.  

In this paper, we substitute: a) the force decomposition 
model with tactile sensors that measure the actual contact 
forces exerted (relaxing the uncertainties) and b) the 
constrained optimization scheme with a machine learning 
methodology. More precisely, a Random Forests regressor is 
used to estimate from the exerted contact forces the post-
contact, parasitic object motion in both symmetric and non-
symmetric grasps.   

III. METHODS 
In this section, we present the methods that are used to: a) 

control and plan the motion of adaptive hands in grasping 
tasks and b) estimate the post-contact, parasitic object 
motion (that is caused by the reconfiguration of the hand 
object system) from the exerted contact forces.  
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A. Planning Stable Grasps 
In order to preposition the objects so as to secure stable 

initial grasps, we compute an appropriate wrist offset from 
the object. To do so, we optimize a specific grasp quality 
metric [26]. The metric chosen in this work, is the distance 
between the contact centroid (𝐨𝐨𝑐𝑐𝑐𝑐) and the object geometric 
centroid (𝐨𝐨𝑔𝑔𝑐𝑐) similarly to [27] and [28] that is given by: 

𝑄𝑄𝐷𝐷𝐷𝐷 = �𝐨𝐨𝑐𝑐𝑐𝑐 − 𝐨𝐨𝑔𝑔𝑐𝑐�            (1) 
In order to minimize this distance and derive an optimal 

initial grasp, we flex the fingers by applying an increasing 
motor load until the distance between the two fingertip 
positions is equal to the object dimensions (e.g., the diameter 
of a sphere). All the parameters of the object are considered 
known. The forward kinematics of the fingers are solved 
using the models provided in [15]. Having computed the 
finger poses at which the distance between the fingertips 
equals the object dimension, we can now easily compute the 
wrist offset. Details are provided in Fig. 2.  

B. Modelling Adaptive Hands 
Adaptive hands may either be developed with spring loaded 
pin joints or with flexure joints. In the case of spring loaded 
pin joints, the potential energy of the hand is expressed as:  

𝑉𝑉(𝐪𝐪) = 1
2
𝐪𝐪T𝐊𝐊𝐪𝐪           (2) 

where q is the vector of the joint angles and K is the 
stiffness matrix that represents the pin joint compliances. In 
the case of flexure joints, the smooth curvature model [14], 
[15] can be used to provide estimations of the hand 
kinematics. The particular model is based on the assumption 
that flexure joints behave as elastic beams that bend 
smoothly and can therefore be approximated by low-order 
polynomials  (Legendre polynomials). The configuration of 
the flexure joints is described with three generalized 
coordinates instead of one that is used for pin joints. The 

potential energy of the hand 𝑉𝑉(𝒒𝒒), is computed as reported 
in [15] and [27]. The smooth curvature model, derives the 
finger poses relatively to the tendon displacements or the 
tendon loads. Thus, the problem of finding the hand 
configuration, is a constrained energy minimization. The 
equilibrium configuration of the hand-object system can be 
found by minimizing the function: 

𝐸𝐸(𝛕𝛕) = −∇𝑞𝑞𝑉𝑉(𝐪𝐪) + 𝐉𝐉𝐩𝐩𝐓𝐓𝐟𝐟              (3) 

where τ denotes the forces acting on the system, f is the 
vector of the contact forces applied at a specific point p, 𝐉𝐉pT 
is the Jacobian of the particular point and ∇𝑞𝑞𝑉𝑉 is the gradient 
of the total internal energy of the system. Given the contact 
forces exerted on the object, the scheme can estimate the 
parasitic object motion and the reconfiguration of the hand 
object system using equation (3). More specifically, the 
problem, can be formulated as:  

𝛕𝛕∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝛕𝛕
𝐸𝐸(𝛕𝛕)                           (4) 

s.t. 
     𝐉𝐉𝐡𝐡𝐓𝐓𝐟𝐟 = τ                      (5) 

𝐆𝐆𝐟𝐟 = −𝐟𝐟ext                 (6) 

�𝑓𝑓𝑠𝑠𝑖𝑖
2 + 𝑓𝑓𝑡𝑡𝑖𝑖

2 ≤ 𝜇𝜇𝑓𝑓𝑛𝑛𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛𝑐𝑐     (7) 

𝐪𝐪− ≤ 𝐪𝐪 ≤ 𝐪𝐪+         (8) 
𝐜𝐜𝑖𝑖 ∈ 𝜕𝜕𝐎𝐎, 𝑖𝑖 = 1,2                   (9) 

𝑆𝑆ℎ ∉ 𝐎𝐎           (10) 
where 𝐉𝐉𝐡𝐡𝐓𝐓 is the hand Jacobian, G is the grasp matrix, 𝐪𝐪−and 
𝐪𝐪+are the lower and upper joint limits, 𝐎𝐎 is the space 
occupied by the object, 𝐜𝐜𝑖𝑖 is the vector containing the i-th 
fingertip coordinates (that must lie on the object surface 𝜕𝜕𝐎𝐎) 
and Sh, is a set of discrete points lying on the robot hand 
phalanges that should never penetrate the object. The 
constrained optimization scheme can predict the hand 
configurations and the fingertip velocities. The velocity of 
the object can be extracted from the fingertip velocities 
using the grasp matrix G.   

It must be noted, that most of these parameters and 
constraints are hard to derive and compute and they cannot 
encapsulate the complete mechanics of the problem, since 
they do not account for several hard to model phenomena 
(e.g., kinetic friction forces). Thus, in this paper we choose 
to use these models only in the grasp planning phase and to 
formulate a learning scheme for estimating the post-contact 
reconfiguration of the hand object system.  

C. A Learning Scheme based on Random Forests 
In this section, we formulate a machine learning scheme that 
is able to predict the post-contact parasitic object motion of 
the object, based on the contact forces exerted during 
grasping. The problem is formulated as a regression problem 
and we choose as a predictor, the Random Forests regression 
method that is an ensemble method based on multiple 
decision trees.   

The Random Forests were originally proposed by Tin 
Kam Ho of Bell Labs  [29] and Leo Breiman [30] and can be 
used either for classification or for regression. Random 
Forests run efficiently and fast on large databases, they can 
be parallelized, they provide excellent estimation accuracy, 

 
Fig. 2. An illustration of the wrist offset calculation procedure 
for the T42FF while grasping a sphere with a diameter of 60 
mm. The distances are depicted with white dashed lines.  
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they do not overfit by design (they have a built-in cross 
validation procedure), they are resistant to outliers, they 
provide a comprehensive metric of the feature variables 
importance and they are an ideal technique for 
multidimensional spaces.  In the regression case, the random 
forest predictor is formed similarly to the classification case 
by taking instead of the most popular class, the mean 
estimation value over the individual estimations of the n 
decision trees of the forest. An exemplar structure of a 
Random Forests regressor, is depicted in Fig. 4. The out of 
bag data are one-third of the total samples that is left out of 
the training set and is used to get a running unbiased 
estimate of the classification or regression error as new trees 
are added to the forest.  

IV. APPARATUS 
In this section, we present the experimental setup that we 

used in order to experimentally validate the effectiveness of 
the proposed methods. The experiments included symmetric 
and non-symmetric grasps of different everyday life objects. 
The post-contact parasitic object motion was captured using 
a standard web camera. The kinematic models of the 
examined adaptive hands were prepared using the freeform 
manipulator toolbox [15], the SynGrasp toolbox [31] and the 
Robotics Toolbox [32], in MATLAB (MathWorks).  

A. Robot Hands Examined 
In this paper, we examine the post-contact reconfiguration 
and the imposed parasitic object motion, for two different 
adaptive robot grippers / hands. Model T42 is an open-
source, two-fingered, compliant and underactuated robot 
gripper. Each finger of the T42 has a dedicated actuator 
(Dynamixel MX 64) and two phalanges. The possible 
versions of the T42 hand are the FF, PP and PF, where the P 
stands for spring loaded pin joints and the F stands for 
flexure joints implemented with elastomer materials 
(Smooth-On, PMC 780 urethane rubber). In this work, we 
used a T42PF and a T42PP that are both equipped with 
tactile sensors. The hands are depicted in Fig. 5.  

B.  Experimental Setup 
The data collection setup, was prepared using a set of T-

slotted profiles of the Industrial Erector Set (80/20) to create 
a frame that supports both the camera (using a 3D printed 
base) and the wrist coupling that is used for attaching the 
hands (a dovetail coupling of the Yale Open Hand project 
[33]). The data collection setup is depicted in Fig. 6. In order 
to compensate for the post-contact parasitic object motions, 
we use the Barrett WAM 7 DoF redundant robotic 
manipulator. More details regarding the Barrett WAM can 
be found in [34].  

The camera used in order to track the motion of the object 
is the Creative Senz3D that shoots RGB video with an HD 
720p resolution (1280x720). For the object tracking 
algorithm, a fiducial markers based tracking using the Aruco 
library [35], was used. All scripts required, were developed 
in Python and they were included in our grasp planning 
framework. The experiments were performed with everyday 
life objects, in order to test our methodology in realistic 
scenarios. The objects used, have different shapes, sizes and 
weights and can be found in the YCB object set [36].  

 
Fig. 4. Structure of the Random Forests regressor. The final 
estimation of the forest is the mean value of the individual tree 
estimations.  

 
Fig. 6. The setup used for data collection. The frame is created 
with a set of T-slotted profiles of the Industrial Erector Set 
(80/20). A blue 3D printed base is used in order to hold both 
the web camera and a pulley for repositioning the object (using 
the dedicated motor at the top right side of the image). The red 
base of the hand is a 3D printed wrist coupling of the Yale 
Open Hand project [33].  

 

   
Fig. 5. The models T42PF and T42PP that are used in the 
experiments. The T42PF consists of a custom base and two 
fingers of the RightHand Robotics ReFlex hand [38] that are 
equipped with 8 tactile sensors. The T42PP consists of a 
custom base and two fingers with two spring loaded pin joints. 
Each distal phalanx is equipped with 5 tactile sensors.  
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C. Force Sensing  
In order to capture the forces exerted by the robot fingertips 
we used the TakkStrip tactile sensors (RightHand Robotics) 
that were originally created by the Takktile team [37]. More 
specifically, the Model T42PF has two RightHand Robotics 
fingers attached that are equipped with two Takkstrip 
modules with 8 sensors per finger (5 located on the proximal 
and 3 on the distal phalanx). More details regarding the 
RightHand Robotics fingers can be found in [38].  For the 
development of the Model T42PP we used two TakkStrip 2 
modules that were incorporated in an appropriately designed 
version of the T42 distal phalanx. After installing the tactile 
sensors, we covered them with finger-pads implemented 
with elastomer materials (Smooth-On, Vytaflex 40 liquid 
urethane rubber). For data collection, we used the TakkFast 
high-speed USB interface (RightHand Robotics) that 
transfers data from I2C to USB at high speeds (100 Hz).  

V. EXPERIMENTAL RESULTS 
In this section we present a set of experimental results that 

validate the efficiency of the proposed methods. The 
experiments included capturing and estimation of the post-
contact, parasitic object motions for different adaptive robot 
hands and different grasp types (symmetric and non-
symmetric grasps).  

A. Data Collection and Training 
To train the Random Forests models, we used a training 

dataset that included multiple trials for every hand, grasp 
and object combination. The raw values of the tactile sensors 
were used for training and no calibration or sensor selection 
was performed as the absence of force readings from 
particular sensors (that are not in contact with the object 
surface) does not deteriorate the performance of the 
methodology. The poses of the objects were captured with 
the vision system, as described in Section IV. The Random 
Forests models were trained in a task / grasp specific way 
similarly to [39], as the behavior of adaptive hands during 
grasping depends on the initial grasp and on the contact 
forces exerted by the fingers. The models were grown with 
ten decision trees in order to increase speed of execution and 
computational efficiency and since the difference in terms of 
estimation accuracy between the 10 and the 100 trees was 
not significant. All results reported are the average values 
over the different rounds of 5-fold cross-validation 
procedure.  

B. Estimating the Post-Contact Parasitic Object Motions 
To validate the efficacy of the proposed methods in 

estimating the post-contact parasitic object motions, we 
compared the estimated motions with actual object motions. 

 
Fig. 7. Screenshots of the conducted experiments. Two symmetric and two non-symmetric grasps are depicted. The objects grasped are 
a box of sugar, a plastic cylinder, a toy cube (Rubik’s cube) and a bottle of mustard. The trajectories of the objects are estimated and 
provided in the third row.  

 

297



  

Results of the post-contact, parasitic object motion 
estimation are depicted in Fig. 7, while the scores of the 
estimations accuracy are reported in Table I. In order to 
represent the similarity between the actual and the estimated 
post-contact, parasitic object motions as a percentage, we 
used as a metric the percentage of the normalized mean 
square error (NMSE).   

In Fig. 7, it is evident that symmetric grasps are easier to 
model and that we can estimate their parasitic object motions 
more accurately. The estimated motions are not entirely 
accurate as they do not include difficult to incorporate, 
dynamic parameters (e.g., tendon routing friction) and 
possible asymmetries and/or design inaccuracies in the robot 
hand structure. The theoretical results of the constrained 
optimization scheme dictate that the post-contact parasitic 
object motion for a symmetric grasp should be a pure 
translation of the object, while the parasitic object motion 
for non-symmetric grasps should have also rotational 
components. The first finding is not observed in the real 
experiments, mainly due to friction. However, although it is 
not zero, the parasitic rotation of the objects is not 
significant in the symmetric grasps depicted in the first two 
plots of the third row of Fig. 7.  

VI. DISCUSSION  
In this section we discuss the advantages and the 

disadvantages of the constrained optimization schemes 
proposed in [24], [25] and the hereby proposed learning 
methodology. The constrained optimization scheme requires 
extensive knowledge of the hand and object parameters (e.g., 
joint and fingertip stiffness etc.) as their values affect the 
estimations and the scheme is especially prone to errors from 
modelling inaccuracies. Moreover, even the tactile sensor 
values need to be calibrated and scaled to the appropriate 
units, in order to be used. However, the constrained 
optimization scheme provides intuition about the problem 
mechanics and can be particularly useful for testing the 
significance and the effect of different hand and object 
parameters or to provide insight and inspiration for new 
design iterations. Finally, the constrained optimization 
scheme can be used for new robot hands or special objects 
that have not been seen during training and that can be 
described analytically. On the other hand, the machine 
learning scheme trains a Random Forests regression model 
that is actually a “black box” model and does not provide 

any insight about the problem mechanics. However, the 
particular model does not require any knowledge about the 
hand parameters and it can efficiently use the raw values of 
the tactile sensors without any calibration, scaling or sensor 
selection. It should also be noted that the Random Forests 
regressor relies on the availability of good training data to 
perform efficiently.  

VII. CONCLUSIONS 
In this paper, we presented a learning methodology that 

can estimate the post-contact reconfiguration of the hand 
object system for adaptive grasping mechanisms. The 
methodology is based on machine learning methods for 
regression, does not require any a-priori knowledge of the 
hand-object system parameters and can predict the imposed 
post-contact, parasitic object motion, using the contact 
forces exerted on the object. These contact forces are 
captured with appropriate tactile sensors that are installed on 
the robot finger-pads and they are used as input to a Random 
Forests regression model. To validate the efficiency of the 
proposed methods, we used a variety of experimental 
paradigms involving different robot hand designs and 
various everyday life objects in both symmetric and non-
symmetric grasps.  

Regarding future directions, we plan to focus on a 
synergistic collaboration of a machine learning and a 
constrained optimization scheme, to generalize them for 
complex objects and to assess the effect of multiple contact 
points, external disturbances and modeling inaccuracies on 
their performance. 
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