
  

 

Fig. 1. A robot hand equipped with force sensors grasping a plastic 
apple for classification purposes. 
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Abstract— In this paper we present a methodology for 

discriminating between different objects using only a single 

force closure grasp with an underactuated robot hand 

equipped with force sensors. The technique leverages the 

benefits of simple, adaptive robot grippers (which can grasp 

successfully without prior knowledge of the hand or the object 

model), with an advanced machine learning technique 

(Random Forests). Unlike prior work in literature, the 

proposed methodology does not require object exploration, 

release or re-grasping and works for arbitrary object positions 

and orientations within the reach of a grasp. A two-fingered 

compliant, underactuated robot hand is controlled in an open-

loop fashion to grasp objects with various shapes, sizes and 

stiffness. The Random Forests classification technique is used 

in order to discriminate between different object classes. The 

feature space used consists only of the actuator positions and 

the force sensor measurements at two specific time instances of 

the grasping process. A feature variables importance 

calculation procedure facilitates the identification of the most 

crucial features, concluding to the minimum number of sensors 

required. The efficiency of the proposed method is validated 

with two experimental paradigms involving two sets of 

fabricated model objects with different shapes, sizes and 

stiffness and a set of everyday life objects. 

I. INTRODUCTION 

Over the last decades many studies have focused on 
deriving object properties or discriminating between 
different everyday life objects, using vision or force / 
tactile sensor based methods. For robots operating in 
human-centric, dynamic environments, identifying 
object properties is an important but difficult task even 
for sophisticated vision algorithms. Moreover, in 
practical everyday tasks occlusion, poor lighting 
conditions, or camera workspaces limitations may 
render the use of vision based methodologies infeasible. 
For such cases a viable alternative is to perform object 
identification using tactile or force sensors. The tactile / 
force sensing based methodologies are able to derive 
different object properties like shape, texture, size, 
stiffness, weight [1]–[4] or to discriminate object’s 
class [5]–[7]. Knowing object properties helps to 
optimize the manipulation action (e.g., by allowing 
minimization of forces required to achieve a stable 
grasp), whereas knowing the object class enables the 
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execution of object-specific strategies or plans [8]. 
Specific object properties like shape and size may 
influence a grasp configuration, while others like 
friction, weight and stiffness may affect the amount of 
external forces that should be imposed on the object to 
guarantee stability of the grasp. Knowing object 
properties may facilitate: 1) the execution of object and 
task specific grasps, 2) the minimization of forces and 
effort required to guarantee stability of grasp, 3) a high 
level object-specific task planning. 

Roboticists have applied tactile sensing to robot 
hands for many decades, inspired by nature’s most 
dexterous and versatile end-effector the human hand. 
The human hand has approximately 17,000 
mechanoreceptive units that innervate it’s skin and 
provide a highly sophisticated system for understanding 
the environment [8]. Touch and kinesthesis have been 
described as subtle senses that are critically important 
for human environmental interaction [9]. Humans rely 
on tactile information in daily life for identifying 
different objects and their properties (e.g., detecting the 
fullness of a cup, identifying objects in the dark etc.). 
Normally different exploratory procedures are used for 
different properties [10]. In medicine, touch based 
interaction, permits identification of tissue type and 
structure during palpation [9] while feedback during 
grasping, enables task optimization [11]. In the field of 
industrial robotics, object classification via open loop 
grasping could complement bin picking and blind 
grasping (e.g., within a warehouse or production line). 
Quality inspection may also be facilitated by such 
methods (deficiencies in the shape or weight of a 
manufactured object can be detected as it is picked up).  
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Fig. 2. The structure of an underactuated finger and the 

locations of the force sensors. 

A robot may also discriminate between different 
objects using haptic properties when vision is not 
available, or when it needs additional information e.g., 
an unripe fruit feels different to a ripe fruit, though they 
may visually appear the same. 

In this paper we present a complete methodology for 
discriminating between different objects while grasping 
them, using an underactuated compliant robot hand 
(Fig. 1) equipped with force sensors. The underactuated 
robot hand comprises of two fingers, each equipped 
with 8 force sensors (Fig. 2). The proposed approach 
can be used with any type of robot hand1 and is 
essentially model free as it does not require any prior 
information about the object or the robot hand model. 
This is particularly beneficial for grippers with complex 
kinematic and dynamic models that are difficult to be 
derived and when complexity of the analytic methods 
gets high (e.g., upon contact with the object, for the 
underactuated, compliant fingers used in this study). 
Moreover, our approach does not require calibration of 
force sensors, since raw sensor values and their inter-
object variation can be used for classification.  

Regarding the experiments, the robot hand is 
controlled in an open-loop fashion to close to a 
predefined configuration (at the motor space) and grasp 
objects with various: shapes, sizes and stiffness located 
in arbitrary poses (positions and orientations). Upon 
contact with the object, the actuator positions lead to 
flexure joint deformations that enable the hand to 
comply to object geometries and adjust normal forces at 
the contact points. The open-loop, passive adaptation 

 
1 It may require additional control laws depending on the hand type (e.g., 

for rigid hands to avoid breaking the objects). 

nature of the underactuated grippers gives us two 
significant advantages for tactile based object 
classification. First, it provides robustness to large 
position and orientation differences in object pose, 
removing the necessity of accurate grasp planning. 
Second, it eliminates the effect of the controller 
parameters on the classification process.  

In this work we discriminate between different 
‘model’ and everyday life objects using advanced 
machine learning techniques for classification (Random 
Forests) and a feature space that consists of the actuator 
positions and the force sensor measurements at two 
different time instances of the grasping process. It must 
be noted that although the proposed methodology can 
be used with any classifier desired, we employ the 
Random Forests technique in order to achieve high 
classification accuracy (see Section V for details) and 
determine what the most important features are, using 
its inherent feature variables importance calculation 
procedure. Features importance scores are necessary in 
order to optimize our experimental set and conclude to 
the minimum number of sensors required. The 
efficiency of the proposed methods is experimentally 
validated for discrimination between both ‘model’ 
objects with various shapes, sizes and stiffness and 
everyday life objects (groceries). 

The rest of the paper is organized as follows: Section 
II summarizes the related work, Section III explains the 
methods used to discriminate between the different 
objects, Section IV presents the experimental setup and 
the experiments conducted, Section V reports and 
discusses the classification results, compares different 
classifiers and provides guidelines for the optimization 
of the experimental setup, while Section VI concludes 
the paper. 

II. RELATED WORK 

The advances in sensor technology provided a boost 
in the field of tactile based object classification in 
recent years. The majority of the methods presented in 
literature, employ data driven approaches due to the 
complexity of analyzing tactile sensor data. In contrast 
to our work, all of these methods use expensive 
grippers and force sensors. Also, some of these methods 
necessitate sophisticated control methods and 
exploratory procedures. The data driven methods are 
used either for deriving object properties such as 
rigidity, material and texture of the object or for 
deciding the object class. 

For identifying object properties, piezo-resistive 
pressure sensors are utilized in [12] to classify three 
rigidity levels by grasping the objects. In this work, 
mean, variance and maximum force values are used as 
features and a Decision Tree classifier is employed. In 
[13], a 6-axis force/torque sensor is attached to the 
finger of the robot and the material of the objects is 
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classified by sliding the finger on object surface. A 
texture recognition method is presented in [14] which 
uses a multimodal sensor that provides force, vibration 
and temperature data. These data are collected by 
sliding the finger on the object surface with a 
predefined trajectory. A more ‘subjective’ classification 
is presented in  [15] where the system is trained for 34 
adjectives to describe the objects with characterizations 
like absorbent, compact, cool, metallic, unpleasant etc. 
In this work a biomimetic sensor is used, which gives 
pressure, temperature and deformation information of 
contact surfaces.  

For identifying object class, [16] adapts the popular 
vision based object recognition technique ‘bag-of-
features’, to the tactile based classification problem. In 
this method, a ‘vocabulary’ of tactile images is formed 
by grasping a set of objects from several local regions. 
Histograms are then generated for objects classes. 
While classifying an object, the method necessitates 
multiple grasping actions, creates a new histogram from 
the observations and compares it with the histograms 
obtained by the training. In [17], object classification is 
achieved by using the time series of tactile-array images 
during squeezing and ‘de-squeezing’ (releasing) of the 
object with a k Nearest Neighbors classifier. It is 
important to note that, due to the data necessary to be 
collected in the de-squeezing phase, the grip on the 
object is lost. In our case, we use a single stable grasp 
and we do not necessitate a de-squeezing motion, so we 
can maintain our grasp during and after the 
classification. However, in these experiments, there are 
only very slight orientation and position variations, 
whereas our system is able to handle arbitrary positions 
and orientations of objects. The method in [18]  
identifies mobility and rigidity information of the object 
together with its class. This is achieved by sliding a 
tactile array on the object surface and utilizing a k 
Nearest Neighbors classifier. 

Unsupervised learning techniques are utilized to 
cluster raw sensors data for a tactile based object 
classification problem [7], [19]. In [19], time series of 
sensor measurements are used and feature hierarchies 
are constructed using spatio-temporal hierarchical 
matching pursuit (STHMP) on raw data. In this work a 
1-vs-all classifier is obtained. The technique is 
implemented with 3 different hands (Schunk Dextrous 
Hand, Schunk Parallel Hand and iCub hand) using 10 
household objects. The authors in [7] utilize joint 
position information together with the tactile data and 
report increased success rates. In that work, authors 
present an incremental learning technique which allows 
online improvement of the classifier.  In [20], a 
multimodal tactile sensor which provides force, 
vibration and temperature information is attached to a 
Shadow Dexterous Hand. The system goes through a 
series of exploratory movements to extract the rigidity, 

texture and thermal properties of the object. 
Reinforcement learning techniques are utilized to 
process the collected data. Recently, Deep Learning 
was utilized for multimodal object recognition using a 
four finger hand [21]. The hand was equipped with 
force sensor arrays, 6 axis force/torque sensors for each 
fingertip and joint encoders. In that work, the role of 
each sensor on the recognition performance is 
examined in detail. 

The closest work to ours is presented in [22]. Like in 
our method, the classification is made based on a single 
grasp and instead of using time series data like some of 
the aforementioned methods, this method forms a 
feature vector with data collected upon events (when 
first contact of the fingers is detected, and in steady 
state). During the experiments, the gripper of PR2 robot 
was used which was equipped with a capacitive sensor 
array. In these experiments the internal state (fullness) 
of the containers is recognized. Different from our 
method, all the objects used in the experiments have 
radial symmetry, therefore the data do not have 
orientation variance. Moreover, the method uses a 
hybrid control scheme which switches between velocity 
and force control whereas our procedure is completely 
open loop. It is very important to know that in [22] the 
authors report that the parameters of the controller 
significantly affect the classification performance and 
therefore a thorough control design was required. This 
shows an important advantage of our open-loop scheme 
which uses an underactuated, adaptive robot gripper.  

III. METHODS 

A. An Ensemble Classifier based on Random Forests 

In this paper we use a Random Forests classifier in 

order to discriminate between different object classes. 
The Random Forests technique was originally 

proposed by Tin Kam Ho [23] and Leo Breiman [24] 

and is an ensemble classifier based on decision trees. 

In statistics and machine learning, ensemble classifiers 
are called the methods that combine a set of 

independent classifiers, to obtain better predictive 

performance. The classifier’s output, is the class which 
is the mode of individual trees’ decisions. Each 

decision tree of the random forest, casts a vote for the 

most popular class at the input variables. Some of the  
advantages of the Random Forests technique are: 

 It runs efficiently and fast on large databases. 

 Provides high classification accuracy.  

 Provides an inherent feature variables 

importance calculation procedure. 

 Can handle thousands of input variables. 

 Can easily handle multiclass problems (like the 

problem we address). 
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In this work we deal with a multiclass problem since 

we have to discriminate between a wide range of 
objects with various properties. Thus, we use a 

Random Forest classifier for two main reasons: 1) to 

achieve high classification accuracy and 2) to calculate 

feature variables importance and optimize our 
experimental setup, keeping the minimum number of 

sensors required to achieve a certain level of accuracy. 

In Section V we also compare the random forests 
technique with other classifiers.  

B. Features Selection  

The feature space used consists of the actuator 
positions and the force sensor readings at two different 
time instances. More precisely, the feature vector 
contains 2 sets of 2 motor positions (1 motor for each 
finger) and 2 sets of 16 force sensors (8 for each 
finger), having a total of 36 variables (see Fig. 3). This 
choice makes the proposed methodology essentially 
model-free, as no a-priori information regarding the 
robot model or the actual joint angles is required. This 
is especially important for applications with 
underactuated, compliant robot hands, since for the 
majority of these hands, the calculation of their 
kinematics gets complicated especially after contact 
with an object, where passive compliance takes place. 
Moreover, the force sensor readings do not have to be 
calibrated since we only care about the differentiation 
of their values among the different classes (so their raw 
values can be efficiently used). At this point it must be 
noted that although our methodology does not require 
advanced sensor calibrations, we do acknowledge that 
our experiments were conducted within a relatively 
short time period and that over longer periods of time 
the classifier may require re-training due to changes in 
sensor output (e.g., caused by sensor drifts).  

As we have already noted the proposed features are 
collected at two different instances of the open-loop 
grasping process. The first instance occurs when both 
robot fingers are in contact with the object surface. The 
second instance occurs when the actuators motion has 
stopped. In order to automatically extract these two 
instances we compare the actual and desired actuator 
positions. When their differences reach a predefined 
threshold, a contact with the object is identified and the 
time of the first instance is recorded. Finally, when the 
hand is in steady state (i.e., when the grasping motion 
has stopped) the second time instance is recorded. 
Moreover, we have experimentally verified that the use 
of a third time instance provides marginally better 
results and that the use of time series increases the 
computational complexity of the methodology, without 
a significant increase of the accuracy.  

 

Fig. 3. Automatic contact detection for three trials. Subfigure 
a) presents the desired (cyan lines) and the actual (blue lines) 

motor positions, while the red lines denote the instances 

detected. Subfigure b) presents the force measurements for 

the left (blue lines) and the right finger (red lines).   

C. Calculating Feature Importance  

A reasonable goal for such a setup, is to select the 
most important sensors and minimize the number of 
sensors required to achieve similar classification 
accuracy. In this respect, we use the Random forests 
inherent capability to compute the importance scores of 
the feature variables and assess their relative 
importance. More precisely, the Random Forests 
methodology uses for each tree, a different bootstrap 
sample set from the original data. One-third of the 
samples are left out of this set (they are called out-of-
bag samples) and are not used in the construction of the 
n-th tree. For every tree in the forest, we use the out-of-
bag samples and count the number of votes cast for the 
correct class. Then the values of the variable m are 
randomly permuted in the out-of-bag samples and the 
votes are computed and counted again. Subtracting the 
number of votes casted for the correct class in the 
permuted out-of-bag data from the number of votes 
casted for the correct class in the untouched out-of-bag 
data, we get the importance score of a feature variable 
m, for each tree. The raw importance score for each 
feature variable, is computed as the average importance 
score of all trees of the random forest.  

IV. EXPERIMENTAL SETUP  

In order to assess the performance of the proposed 
methodology, we have designed three sets of 
experiments. The first set assesses the efficiency of the 
classifier for discriminating objects with different 
shapes and sizes, the second set focuses on the 
discrimination of objects with different shapes and 
stiffness and the third set focuses on the discrimination 
between different everyday life objects. In this section, 
we present the objects selected for these experiments, 
the apparatus used and we provide a description of the 
experiments conducted.  
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Fig. 4. The model objects of the first set. The boxes and 

cylinders have side lengths / diameters of 50, 70 and 90 mm. 

A. Model Objects and Everyday Life Objects 

In this work we use three sets of model and everyday 
life objects with different sizes, shapes and stiffness, in 
order to test the efficiency of the proposed classifier, to 
discriminate between objects with different properties.  

The solid objects were 3D printed, while the 
compliant objects were created with standard 
machining tools using foam sheets of different stiffness 
levels. The first set involves 6 rigid model objects (3 
rectangles and 3 cylinders) with different shapes and 
sizes. The rigid model objects are depicted in Fig. 4 and 
their characteristics (sizes and stiffness) are reported in 
Table I. Object stiffness were measured via 
perturbations by a load cell mounted on a linear 
actuator. The linear actuator position accuracy was 0.01 
mm and the load cell force resolution was 0.01 N.  
It must be noted that the stiffness of the rigid 

rectangles was measured in the center of a face, where 
their geometry allows for a greater deformation.  

Table I: Characteristics of model objects of the first set. 

Objects Cylinders Rectangles 

Sizes 50, 70, 90 mm 
(diameter) 

50, 70, 90 mm 
(side) 

Stiffness 97 kN/m 51 kN/m 
 

The second set of objects consists of four rectangles 
and four cylinders with same size and different 

stiffness. The second set objects are depicted in Fig. 5, 

while their characteristics are reported in Table II. 

 

Fig. 5. The model objects of the second set. The first row 

depicts rectangles with same side length and different 

stiffness. The second row depicts four different cylinders 

with same diameter and different stiffness. 

 

Fig. 6. The everyday life objects used for the experiments. 
These objects are contained in the YCB object set [25]. 

Table II: Stiffness of the objects of the second set. 

Objects Green White Black Yellow 

Cylinders 156 

N/m 

346 

N/m 

2.1 

kN/m 

97.2  

kN/m 

Rectangles 156 
N/m 

346 
N/m 

2.1 
kN/m 

51.1 
kN/m 

 

The third set contains a wide set of everyday life 

objects. The objects used are contained in the YCB 
object set [25] to facilitate replication of the results by 

other groups and benchmarking of the proposed 

techniques. These objects are depicted in Fig. 6 and 
their characteristics are reported in Table III. 

Table III: Characteristics of everyday life objects.  All food 

package items are unopened and contain original products. 

Objects Dimensions 

(mm) 

Stiffness 

Side 1 
(kN/m) 

Stiffness  

Side 2 
(kN/m) 

Coffee Can 102x139 67.2 N/A 

Soup Can 66x101 49.4 N/A 

Sugar Box 38x89x175 4.73 26.87 

Apple (toy) 75 10.6 N/A 

Peach (toy) 59 8.79 N/A 

Windex Bottle 80x105x270 9.87 5.0 

Mustard Bottle 50x85x 175 4.69 2.98 

Bleach Bottle 50x93x250 3.2 3.2 

Gelatin Box 28x85x73 3.1 4.7 

Cracker Box 60x160x230 2.6 3.0 

B. Experimental Setup 

1) A Two-Fingered Underactuated Hand: 

The robot hand used in this study uses the base of 

the Model T42 of the Yale OpenHand project [26] and 
the fingers of the ReFlex hand (Right Hand Robotics). 

The robot hand has two underactuated fingers with two 

phalanges per finger. Each finger has one pin joint and 

one flexure joint. An image of the robot hand can be 
found in Fig. 1, while the parameters and the structure 

of each robot finger are reported in Fig. 2. Each finger 

has a dedicated actuator (Dynamixel MX 28).   
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2) Embedded Force Sensors:   

‘Takktile’ force sensors are embedded in the grip 
pad of each phalanx. These robust and inexpensive 

sensors are based on MEMS barometers mounted on 

printed circuit boards [27]. Each robot finger 

accommodates a total of 8 sensors: 3 sensors on the 
distal phalanx and 5 sensors on the proximal phalanx. 

An Arduino platform is used to interface the sensors 

with the planner PC. 

C. Experiments Conducted  

Three experiments were conducted with the different 
object sets. In all experiments, the objects were placed 

in arbitrary positions and orientations within the 

grasping workspace of the robot hand (Fig. 7). Objects 
were placed on a table on which the robot hand rested 

while grasping, leading to a consistent grasp height 

from the base of each object. We chose to use arbitrary 
positions and orientations, in order to demonstrate that 

our methodology: 1) does not depend on the object 

pose and is robust to object pose uncertainties, 2) 

works in a direct manner (no re-grasping or other 
repetitive procedures are required), 3) can deal with 

asymmetric finger trajectories, resting positions, 

contact times and contact locations (which result from 
the adaptive nature of the gripper), 4) can deal with 

fingers ‘pushing’ the objects during grasp. For each of 

the 22 objects, 20 grasps were performed.  

V. RESULTS 

In this section we present the classification results, a 

comparison between different classification methods 
and the identification of the most importance features 

(e.g., force sensors) using the Random Forests inherent 

feature variables importance calculation procedure. For 

the training of the classifiers, we use the 10-fold cross-
validation method [28]. The classification accuracies 

we averaged over the multiple rounds. 

A. Classification Results for Model Objects 

At first we present classification results for the 
model objects contained in object sets 1 and 2. Table 

IV reports the classification accuracy. The classifier is 

slightly better at discriminating between objects with 
different shapes and sizes rather than between objects 

with different shapes and stiffness.  

Table IV: Classification results for model objects. 

Case Object Set 1:  

Size and Shape 
Discrimination 

Object Set 2: 

Shapes and Stiffness  
Discrimination 

Accuracy 93.57%  

(SD: 3.25%) 

93.01%  

(SD: 3.02%)  

 

 

Fig. 7. Examples of different arbitrary positions used while 

collecting the training and the test data. 

B. Classification Results for Everyday Life Objects 

The second classification problem that is being 
solved concerns a discrimination between a wide range 

of everyday life objects. The classification accuracies 

are reported in Table V for two different cases: 1) for 

constrained orientations, 2) for free orientations. In the 
constrained orientations case objects were positioned 

in an arbitrary manner with the orientations limited 

within ±45 degrees of the principal axis. The second 
case included experiments with any arbitrary 

orientation (±360 degrees). As was expected for the 

constrained orientations case the classification 

accuracy is much higher.   

Table V: Classification results for everyday life objects. 

Case Constraint 

Orientations 

Free 

Orientations 

Accuracy 100% 94.32% (SD: 3.09%) 

C. Comparison of Classification Methods 

In this subsection we compare some standard 
classification methods against the random forests 

classifier. More specifically, the methods used are: 1) 

Linear Discriminant Analysis (LDA), 2) Neural 

Networks (NN), 3) Support Vector Machines (SVM) 
and 4) Random Forests (RF). Regarding the training of 

the different methods, we performed SVM based 

classification using different kernels and keeping the 
best scores (linear, RBF etc.) and we constructed a 

single hidden layer Neural Network with fifteen hidden 

units (after trial and error to select the most appropriate 
number of units), which was trained with the 

Levenberg-Marquardt back-propagation algorithm. 

The Random forests were grown with ten trees for 

processing speed (two times faster) and one hundred 
trees for accuracy. The classifiers were compared for 

the task of discriminating between everyday life 

objects with constrained orientations. Classification 
accuracies for the different methods, are reported in 

Table VI. Random forests outperformed all other 

methods but all achieved high classification accuracies.  
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It must be noted that the efficiency of methods like 

the SVM and the NN, is highly affected by the tuning 
of their parameters or the selection of an appropriate 

kernel. Random Forests outperform all the other 

methods even for the simplest case of 10 grown trees 

and without requiring any additional tuning. It is 
possible that after excessive tuning, other classifiers 

may achieve similar or slightly better results but the RF 

will still be a simple and highly effective solution.  

Table VI: Comparison of different classifiers. 

Classifier Accuracy 

Linear Discriminant Analysis 89.74% 

Neural Networks 95.65% 

Support Vector Machines 92.30% 

Random Forests (10 trees) 98.04% 

Random Forests (100 trees) 100% 

D. Optimizing the Experimental Setup  

In this subsection we perform a calculation of the 
feature variables importance and we employ the 
outcomes in minimizing the number of sensors required 
to achieve a certain level of classification accuracy. The 
importance bar plots of the different feature variables 
for the cases of everyday life objects with constrained 
and free orientations, are presented in Fig. 8. The x axis 
presents the sets derived from 10 different separations 
of the training data. As it can be noticed the feature 
variable importance scores are robust along the 
different separations. The classification results for the 
reduced number of feature variables are reported in 
Table VII.  

Table VII: Effect of feature variables selection in the 

classification accuracy for everyday life objects with free 

and constrained orientations.  

Orientations All (36) Features 

(16 force sensors) 

12 Features 

(4 force sensors)  

Free  100% 98.48% 

Constrained  94.32% 92.43% 

 
For the case of the constrained orientations when we 

train the classifier with the 12 most important feature 
variables we get a drop of the classification accuracy of 
only 1.52%, while for the case of the free orientations, 
the use of the 12 most important features leads to a 
classification accuracy drop of only 1.89%. The fact 
that we achieve similar classification accuracy with a 
reduced number of features dictates that we have a 
redundancy in the feature space. The redundant features 
can be removed without affecting the efficiency of the 
proposed methodology. Thus, we are able to redesign 
the experimental setup, concluding to a simplified 
version that requires a minimum of 2 force sensors per 
finger instead of the original 8.   

 

Fig. 8. Feature variables importance bar plots for 

discrimination of everyday life objects with constrained 

(subplot a) and free orientations (subplot b). The height of 

the different bars represents the importance scores of the 

different feature variables. The sets of data used for the 

computation of the feature variables importances, are ten 

different / random separations of the training data. 

VI. CONCLUSION 

In this paper we formulated a complete methodology 

for performing object classification in an interactive 

manner, using an underactuated hand and force 

sensors. For doing so we grasped a wide range of 

objects with different shapes, sizes and stiffness 

positioned in arbitrary poses in front of the robot hand. 

A Random Forrest classifier was employed in order to 

discriminate between the different classes of objects. 

The feature space used consists of the servo motor 

positions and the force measurements, at two different 

instances of the grasping process. The experiments 

were performed with an underactuated compliant robot 

hand which was controlled in an open-loop fashion. A 

feature variables importance calculation procedure 

(inherent in the Random Forests classifiers) was used 

in order to identify the most important features, and it 

was concluded that the number of force sensors can be 

reduced from 8 to 2 per finger, without significant loss 

of classification accuracy.  
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