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Abstract—In this paper, we propose a methodology for closed-
loop, humanlike, task-specific reaching and grasping with re-
dundant robot arms and low-complexity robot hands. Human
demonstrations are utilized in a learn by demonstration fashion,
in order to map human to humanlike robot motion. Principal
Components Analysis (PCA) is used to transform the humanlike
robot motion in a low-dimensional manifold, where appropriate
Navigation Function (NF) models are trained. A series of grasp
quality measures, as well as task compatibility indexes are
employed to guarantee robustness of the computed grasps and
task specificity of goal robot configurations. The final scheme
provides anthropomorphic robot motion, task-specific robot arm
configurations and hand grasping postures, optimized fingertips
placement on the object surface (that results to robust grasps)
and guaranteed convergence to the desired goals. The position
and geometry of the objects are considered a-priori known. The
efficiency of the proposed methods is assessed with simulations
and experiments that involve different robot arm hand systems.
The proposed scheme can be useful for various Human Robot
Interaction (HRI) applications.

Index Terms: Robot Grasping, Anthropomorphism, Naviga-
tion Functions, Human Robot Interaction

I. INTRODUCTION

Over the last years a lot of effort has been put into building
fully-actuated, highly dexterous, multifingered robot hands.
But these hands require multiple motors for the multiple
Degrees of Freedom (DoF), sophisticated sensing elements
and electronics, as well as complicated software and control
laws. Thus, they have increased complexity, weight and cost.
According to Ma et al [1] increasing system dexterity can
be accomplished either by adding hand complexity or arm
kinematic redundancy. In this paper, instead of using expen-
sive, complicated, multifingered robot hands, we utilize low-
complexity, compliant, underactuated robot hands [2]–[4] as
end-effectors of redundant robot arm hand systems. In this
respect, we are able to employ robot arm’s redundancy to
execute more complex tasks or to optimize arm hand system’s
performance for specific tasks.
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Nowadays it’s quite typical also for robots to operate in
human-centric, dynamic environments. Thus, anthropomor-
phism of robot motion becomes a desirable attribute for
1) aesthetical/psychological reasons (humans prefer robots
moving in a humanlike manner as they feel more comfortably
interacting with them) and 2) for safety reasons (humans can
more easily predict humanlike motions and compensate their
activities avoiding possible injuries [5], [6]). In order to derive
anthropomorphic robot motion, human demonstrations have
to be acquired and appropriate transformations have to be
defined that will facilitate mapping of human to humanlike
robot motion.

Mapping of human to robot motion has been a challenging
problem in the field of robotics. Over the past years, four
different human to robot hand motion mapping methodologies
have been proposed: fingertips mapping [7], [8], joint-to-joint
mapping [9], functional pose mapping [10] and object specific
mapping [11]. Regarding human to robot arm motion mapping,
most of the previous studies focused on a forward-inverse
kinematics approach [12]. Regarding anthropomorphism of
robot motion, authors in [13] used a criterion from ergonomics
to extract human-like goal configurations for robotic arm hand
systems, while in [14] they employed a series of bio-inspired
optimization principles (e.g., minimization of hand jerk) to
compute humanlike robot trajectories. Recently, we proposed a
mapping scheme based on the analytic computation of inverse
kinematics of a redundant robot arm, introducing the notion of
functional anthropomorphism. Functional anthropomorphism
has as first priority to guarantee the execution of specific
human-imposed task goals (e.g., same position and orientation
for human and robot wrists) and then to optimize anthropo-
morphism of robot configurations [15].

In everyday life grasping and manipulation tasks humans
adopt postures that maximize the forces and velocities trans-
mitted to the object, along a desired direction (task direction)
[16]. Human trajectories are typically optimized for the task
to be executed, but the process of mapping human to robot
motion doesn’t ensure that the extracted robot configurations
will also be optimal for the desired task1. An optimization
scheme can easily be formulated, that will derive task-specific
configurations as well as task-specific, robust grasps for vari-
ous robots arm hand systems. The problem of deriving task-
specific grasps has been studied in the past for both fully
actuated and underactuated hands.

1Typically, low-complexity hands have different kinematic constraints and
significant dimensional differences with the human hand.978-1-4673-7509-2/15/$31.00 2015 IEEE
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Typically, the task is represented modelling the wrench/twist
transmission capabilities of a grasp with task ellipsoids. Li et
al [17] first proposed a task-oriented quality measure, the max-
imization of which leads to task-specific grasps. An overview
of other related studies focusing on grasp synthesis, can be
found in [18]. In [19] and [20] different task compatibility
indexes have been proposed. These indexes optimize task-
specificity of grasp configurations given specific task require-
ments in terms of wrenches and twists applied on the object.
Recently, Boutselis et al [21], [22] proposed a methodology
based on the concept of Q-distance [23] that derives task-
specific force closure grasps for fully actuated robot hands,
under a wide range of uncertainties. Moreover, Mavrogiannis
et al [24] proposed an optimization scheme that derives task-
specific force closure grasps for underactuated robot hands.

Regarding humanlike grasp planning, in [25] authors pro-
posed Navigation Function models trained in a low-d manifold
of human motion. These NF models used fictitious obstacle
functions learned using B-Splines that: 1) embedded anthro-
pomorphism and 2) applied repulsive effects on the robot
artifact so as to attain new humanlike configurations. In [26]
authors proposed the concept of “principal motion directions”
to reduce the dimension of the search space in motion planning
with anthropomorphic mechanical hands, avoiding collisions
and mimicking real human hand postures. In [27] Ciocarlie
et al, proposed an on-line grasp planner that utilizes a series
of low-dimensional posture subspaces, in order to perform
automated grasp synthesis with artificial hands, in real and
simulated environments.

In this paper we propose a methodology for closed-loop,
human-like, task-specific reaching and grasping with redun-
dant arms and low-complexity hands. For doing so, we first
formulate the human to robot motion mapping as a constrained
non-linear optimization problem. Position and orientation
goals are incorporated in the objective function together with a
criterion of functional anthropomorphism [15], which is used
to minimize structural dissimilarity between human and robot
configurations. The derived humanlike trajectories are used
to train Navigation Function models that generalize to new
reach-to-grasp motions. In order to derive robust, task-specific
grasps and task-specific arm configurations, we use specific
grasp quality measures [28] and we optimize a set of task
and grasp compatibility indexes (for the arm and the hand
case), that maximize the velocity and force transmission ratios
along the desired task directions. The final scheme provides:
1) anthropomorphic robot motion, 2) task specific robot arm
configurations, 3) robust grasps and 4) guaranteed convergence
to the desired goals.

The rest of the document is organized as follows: Section
II presents the motion capture systems, the kinematic model
of the human arm hand system, the robot arms and hands
used, and the human data collection procedure, Section III
discusses the various methods employed to formulate the
proposed methodology, Section IV reports the results of the
simulated and the experimental paradigms, while Section V
concludes the paper.

II. APPARATUS, MODELS AND HUMAN DEMONSTRATIONS

A. Motion Capture Systems

In order to capture human arm kinematics the Liberty
(Polhemus Inc.) magnetic motion capture system was used,
which consists of a reference system and three magnetic
position sensors. During the experiments, one sensor was
placed on the human shoulder, one sensor on the human elbow
and a third sensor on the human wrist. The Liberty system
provides high accuracy for both position (0.03 inches) and
orientation (0.15 degrees) at a frequency of 240 Hz.

Human hand kinematics were gathered using the Cyber-
Glove II (Cyberglove Systems) data-glove. The particular data-
glove has 22 sensors that capture twenty DoF of the human
hand and two DoF of the human wrist. More precisely, the
flexion-extension of all three joints of each human finger,
the abduction/adduction of the fingers, as well as the flex-
ion/extension and the abduction/adduction of the wrist can be
measured. The acquisition frequency of the Cyberglove II is
90 Hz and the accuracy is 1 degree.

B. Kinematic Models of the Human Arm and Hand

Human arm is modeled with 7 DoF. Three rotational DoF
are used for the shoulder, one rotational DoF for the elbow,
one rotational DoF for pronation/supination and two rotational
DoF for the wrist. The human hand model is inspired by
the way that Cyberglove II flex sensors are positioned. The
model consists of fifteen joints and twenty DoF. Index, middle,
ring and pinky fingers have three DoF for flexion/extension
and one for abduction/adduction, while the thumb has two
for flexion/extension, one for abduction/adduction and one to
model thumb’s ability to oppose to other fingers. Each finger is
considered as an independent serial kinematic chain. A more
sophisticated human hand model can be used in case there is
a motion capture system available that can measure the extra
DoF [29]. In order to derive the link lengths for the forward
kinematics computations, we use parametric models derived
from hand anthropometry studies [30].

C. Robot Arms and Hands

In this paper we provide a series of simulated and experi-
mental paradigms using two robot arms and three robot hands.
More precisely, the following robots are used: 1) the Barrett
WAM 7 DoF robotic manipulator [31], 2) the Mitsubishi PA10
7 DoF robotic manipulator [32], 3) the OpenHand Model T42
two-fingered robot hand [3], 4) the iRobot-Harvard-Yale (iHY)
three-fingered robot hand [33] and 5) the OpenBionics 4F four-
fingered robot hand [4]. For simulations purposes the robot
models were created using the Matlab Robotics Toolbox [34].

D. Human Demonstrations

In order to collect human demonstrations we conducted
experiments with five healthy volunteers 21, 24, 27, 28 and
40 years old. All the experimental procedures were approved
by the Institutional Review Board of the National Technical
University of Athens and the subjects gave informed consent.
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Fig. 1: The different robot arms and hands used.

All participants performed the experiments with their domi-
nant arm (right arm for all cases) and they repeated multiple
(10 per object) reaching movements to grasp a series of objects
placed at five different positions in 3D space. A resting period
of one minute was used between consecutive trials, in order for
the subjects to avoid fatigue. Each subject executed multiple
trials, for every object and object position combination.

III. METHODS

In this section, we present the different methods used to
formulate the proposed methodology.

A. Mapping Human to Humanlike Robot Arm Hand System
Motion

At first we formulate the problem of mapping human to hu-
manlike robot motion, as a constrained non-linear optimization
problem. We have experimentally validated that the problem is
well formed and even when the algorithm terminates at local
minimum, the solution suffices for our purposes. Such choice
is typical for related studies [35].

1) Position and Orientation Metrics: Typically, robot hands
may have non-anthropomorphic dimensions in terms of palm
size, finger sizes, phalanges sizes, finger base frames co-
ordinates etc. Thus, the application of common human to
robot motion mapping methodologies like fingertips mapping,
becomes difficult when human and robot wrist attain same
position and orientation. In [15] we proposed to apply a
wrist offset in order to compensate for dimensional differ-
ences between the human and robot hands. In this paper,
we reformulate human to robot motion mapping in a unified
manner, for the overall robot arm hand system. For doing
so, we consider as system’s end-effectors the robot fingertips
which have to achieve same position and/or orientation with
the human fingertips.

Let xRAHi = fRAHi(qRAHi) denote the forward kinematics for
each robot finger, let m be the number of the fingers and
xRAHi ,xRAHgoali ∈ R3 denote the current and desired fingertip
position respectively. We can define the following metric for
position goals:

PRAH(qRAH) =
m

∑
i=1

∥∥xRAH i −xRAHgoali

∥∥2 (1)

Regarding the orientation, let hci = (aci ,bci ,cci ,dci), hgi =
(agi ,bgi ,cgi ,dgi) ∈ R4 denote the current and goal fingertip ori-
entations (expressed using quaternions, to avoid singularities)
for each finger. Then the distance in S3, between human and
robot fingertip orientations is defined as:

d̄RAHoi(hci ,hgi) = cos−1(aciagi +bcibgi + ccicgi +dcidgi) (2)

Taking into account the antipodal points [36], we formulate
the following distance metric for orientations:

dRAHoi(hci ,hgi) = min{d̄RAHoi(hci ,hgi), d̄RAHoi(hci ,−hgi)} (3)

In this study, we have to map human to robot motion for
robot hands that have less than five fingers. Previous studies
used the virtual finger approach [37], computing a virtual
fingertip position of the robot hand, as a linear combination
of the fingertip positions of the human hand (e.g., ring and
pinky fingers). In this paper, we assign human thumb fingertip
position as a position goal for one of the robot fingers and
then we use splines to calculate the remaining robot fingertip
positions, interpolating between the other four positions of
the rest human fingers and selecting m− 1 equally distant
points (where m is the number of robot fingers). Spline is
a low-degree polynomial function that is sufficiently smooth
at the places where the polynomial curves connect (i.e.,
knots). Spline interpolation yields smaller errors than linear
interpolation and the interpolant is smoother.

2) A Metric of Anthropomorphism: In this subsection we
use a metric of anthropomorphism that diminishes structural
dissimilarity between the human and the robot arm config-
urations [38]. Let selbow ∈ R3 be the human elbow position
in 3D space and S be the set of n robot joint positions in
3D space. For n points s1,s2, ...,sn, the distance between the
human elbow and robot joints positions (excluding shoulder
and end-effector), is given by:

D =
n

∑
j=1

∥∥s j− selbow
∥∥2 (4)

3) Problem Formulation: The objective function FRAH for
the case of a robot arm hand system, under position, orienta-
tion and anthropomorphism goals, becomes:

FRAH(qRAH) = wRAHxPRAH(qRAH)+

wRAHo

m

∑
i=1

dRAHoi(hci ,hgi)+wDD
(5)

where wRAHx, wRAHo and wD are the weights that adjust the
relative importance of the position, orientation and anthropo-
morphism terms respectively and D is the sum of distances
between the human elbow and the robot joint positions. Hence,
the mapping problem is in this case formulated as follows:

minimize FRAH(qRAH) (6)

subject to the inequality constraints of joints limits:

q−RAH < qRAH < q+
RAH (7)



where qRAH is the vector of the joint angles of the robot arm
hand system and q−RAH , q+

RAH are the lower and upper limits
respectively. Moreover, for each finger we may also adopt
equality constraints that encapsulate possible joint couplings.
For solving the optimization problem the fmincon function
of MATLAB was used, with the interior-point algorithm. A
review of different metrics and methods can be found in [38].

It must be noted that in this paper we introduce task goals
via position and orientation metrics in the objective function
and not as equality constraints, because otherwise for many
cases the problem would become infeasible. Using such an
approach, the user is able to select the position and orientation
accuracy (appropriately defining the corresponding weights),
which may be lower for free space motions (focusing on
anthropomorphism) and very high during grasping or any other
interaction with the environment.

B. Training Navigation Function Models

Following the aforementioned procedure we manage to map
human to anthropomorphic robot motion for a complete robot
arm hand system and derive a series of humanlike reach to
grasp robot joint-space trajectories. These trajectories can be
used in order to train Navigation Function (NF) models that
learn new anthropomorphic robot motions and generalize to
new grasping tasks. The Navigation Functions models were
first proposed by Rimon and Koditschek [39], [40] and some
of their characteristics are: 1) they provide closed-loop motion
planning, 2) they guarantee convergence to the desired goals,
3) they have highly nonlinear learning capability, 4) they
provide continuous and smooth trajectories, 5) they embed an-
thropomorphism (synthesizing “fictitious” obstacle functions)
and finally 6) they can generalize for similar, neighboring
configurations (goal configurations).

In this paper we train NF models that use “fictitious”
obstacle functions learned in the low dimensional space of
the anthropomorphic robot kinematics. These functions apply
repulsive effects on the robot arm hand system, so as to reach
anthropomorphic configurations. In order to learn the structure
of the NF obstacle functions, we use B-Splines as described
in [25]. The control law is constructed as follows:

u(t) =−Kp∇qφ (xt) (8)

where xt is the system state and φ is the navigation function
responsible to: 1) drive the system to its final configuration and
2) generate new anthropomorphic robot trajectories (similar to
those used during training). Kp > 0 is a constant gain matrix.
The navigation function is given by:

φ =
γd (q)(

γk
d (q)+β

) 1
k

(9)

where q,qd are the current the desired configurations respec-
tively, γd (q) = ‖q−qd‖2 is the paraboloid attractive effect,
β = ∏i∈I0 βi is the aggregated obstacle repulsive effects and
k ∈ N \{0,1} is a tuning parameter. More details regarding
the NF, can be found in [25].

In this paper we follow a similar approach with [25],
training the NF models with the anthropomorphic robot motion
(joint space trajectories) instead of the human motion. More
precisely, for the training of the NF models we use the
humanlike robot motion that we derived from the aforemen-
tioned human to robot motion mapping scheme. The extracted
humanlike robot data are represented in a lower dimensional
manifold using the Principal Components Analysis (PCA)2.
The output of the NF models, is back-projected in the high
dimensional space in order to control the robot arm hand
system. In this case, no online human to robot motion mapping
is required, thus computational effort diminishes (all compu-
tations are performed offline). All models require as input the
“goal” position in the low-d space of the humanlike robot
kinematics.

C. Deriving Task-Specific Robot Arm Configurations and
Task-Specific, Robust Grasps

In this section we derive task-specific robot arm configura-
tions and task-specific, robust grasps that will be fed to the
NF models as new goals.

1) Deriving Task-Specific Robot Arm Configurations: It is
well known that at any posture the velocity and force trans-
mission characteristics of a manipulator can be geometrically
represented as ellipsoids. Let J be the manipulator Jacobian
that maps the joint space velocities q̇ to task space velocities
ẋ with ẋ = J(q)q̇ and the joint space torques τ to task space
forces f with τ = JT (q)f. The velocity (or manipulability)
ellipsoid is defined as:

ẋT (JJT )−1ẋ≤ 1 (10)

while the force ellipsoid is defined as:

fT (JJT )f≤ 1 (11)

According to Yoshikawa [41] when you maximize the volume
of the manipulability ellipsoid you move to configurations
away from singularities. The volume of the ellipsoid is pro-
portional to the quantity:

VME(q) =
√

det(J(q)JT (q)) (12)

This quantity is called the “Manipulability Measure” and
expresses the ability of the end effector to move or exert forces
to a random direction. In order to maximize the capability of a
robot arm to move fastly or exert forces at a specific direction
you have to maximize appropriately the force or velocity
transmission ratios along this direction. Let d denote the unit
vector in the direction of interest and α the distance along the
d vector from the origin to the surface of the ellipsoid. The
scalar α is the force transmission ratio in the direction of d.
But αd is also a point on the ellipsoid surface and must satisfy
the following equation:

(αd)T (JJT )(αd) = 1 (13)

2The first 3 principal components extracted using the PCA method account
for more than 88% of the data variance for both the arm and the hand case.



Thus, we derive the force transmission ratio α , as follows:

α
a = [dT (JJT )d]−1/2

(14)

Through a similar derivation, the velocity transmission ratio
β in the direction of d is defined as:

β
a = [dT (JJT )−1d]−1/2

(15)

Now we can define the task compatibility index for a task
described by m task coordinates. Let di (with i = 1,2, ...l) be
the direction vectors across which we want to control force
and let d j (with j=l+1,l+2,...m) be the direction vectors across
which we want to control velocity. Thus, we denote αa

i the
force transmission ratio in the direction of di and β a

j the
velocity transmission ratio in the direction of d j. The task
compatibility index, is defined as:

TC =
1

(αa
1 αa

2 ...α
a
l )(β

a
l+1β a

l+2...β
a
m)

(16)

2) Deriving Task-Specific Grasps: In a similar fashion, we
define a grasping task by it’s requirements in wrench/twist
transmission to the object. Thus, for robot hands we optimize
a grasp-compatibility index similar to the index defined for
the robot arm. The velocity transmission ratio expresses how
much a unitary change of the joint angle velocities affects
the twist on the object’s center of mass, while the force
transmission ratio expresses how much a unitary change of
the joint torques affects the wrench on the object’s center
of mass. The maximization of the transmission ratios can
be geometrically represented as an alignment between the
principal axis of the corresponding ellipsoid and task direction
d. Thus, for the hand case the force and velocity transmission
ratios become:

α
h = [dT (H(q)HT (q))d]−1/2

(17)

β
h = [dT (H(q)HT (q))−1d]−1/2

(18)

where H is the hand-object Jacobian and αh and β h are the
hand force and velocity transmission ratios respectively. In
order to achieve a task-specific grasp wrt a task’s requirements
in force and velocity transmission and control, we have to
appropriately maximize the aforementioned ratios. The grasp
compatibility index is defined similarly to (16):

GC =
1

(αh
1 αh

2 ...α
h
l )(β

h
l+1β h

l+2...β
h
m)

(19)

3) Utilizing Grasping Quality Measures: In order to
achieve robust grasps, we introduce specific grasp quality
measures in our objective function. Two different measures
based on geometric relations [28] are considered for the
different hands: 1) the distance between the centroid of the
contact polygon and the object geometric centroid and 2) the
area of the grasp polygon.

a) Distance between the contact polygon centroid and the
geometric centroid of the object: In order to minimize the

effect of inertial and gravitational forces on the grasp, we
have to minimize the distance between the object’s geometric
centroid (CG) and the contact polygon’s centroid (CC). Thus
the metric becomes:

QDC = ‖CG−CC‖ (20)

b) Area of the grasp polygon: In order to derive a robust
grasp that resists large disturbances with the same contact
forces we have to maximize the area of the grasp polygon.
A metric that computes this area for the simple case of three
contact points (e.g., iHY is a three fingered hand), is defined
as follows:

QAGP = Area(Triangle(ccc111,,,ccc222,,,ccc333)) (21)

where ccc111,,,ccc222,,,ccc333 are contact points on the object surface.
4) Problem Formulation: Thus, we need to perform a

constrained minimization of the following objective function:

G(p) = wTCTC+wGCGC+wQQ+wDD (22)

wrt the decision variables

p =
[
qT

RA qT
RH
]T ∈ Rnqra+nqrh (23)

where nqra, nqrh are the numbers of the robot arm and
robot hand joint variables respectively, Q is the value of
the selected grasp quality metric3 and wTC,wGC,wQ,wD are
the weights that adjust the relative importance of the task
compatibility, grasp compatibility, grasp quality measure and
anthropomorphism4 terms respectively. Thus, the optimization
problem is formulated as follows:

p∗ = argmin
p

G(p) (24)

s.t.
q−RAH < qRAH < q+

RAH (25)

qi = kiqi−1 (26)

fkine(qRAH) ∈ ∂O (27)

qi
abd/add ≤ qi+1

abd/add (28)

Sl /∈ O (29)

where (25) denotes the joint limit constraints, (26) denotes
the weighted by ki coupling between specific joints of robot
hands, (27) bounds the fingertips to lie on the object’s surface,
(28) avoids abduction/adduction collisions for the iHY robot
hand and (29) guarantees that no point on the robot hand links
(in discrete set Sl) will penetrate the object.

3Q can be defined by eq. 20 or 21 and depends on the chosen robot hand.
4In order to compute the value of the metric of anthropomorphism, we use

as reference the elbow position of the human configuration that reaches closer
to the desired object position (closer to the wrist).



D. Methodology Outline
In order to formulate the proposed methodology, we use the

following steps:
• Human demonstrations (human motion data) are collected

for the tasks to be executed.
• Human motion is transformed to anthropomorphic robot

motion using the aforementioned mapping scheme.
• A low-d manifold of the anthropomorphic robot motion

is derived using Principal Components Analysis (PCA).
• Navigation Function (NF) models are trained in the low-d

space of the anthropomorphic robot motion.
• Task-specific robot configurations and task-specific, ro-

bust grasps are derived using appropriate task and grasp
compatibility indexes and grasp quality measures.

• The derived task-specific robot configurations are used as
goal configurations for the NF models, that produce new
humanlike robot motion.

• The produced humanlike robot motion is back projected
to the high-d space, to control the arm hand system.

• Navigation Function models guarantee convergence to the
desired goals, efficiently executing the required task.

IV. RESULTS

In this section we validate the efficiency of the pro-
posed methods, using a series of simulated and experimental
paradigms with different robot arm hand systems. In Fig. 2
we present instances of three different trajectories executed
with two different robot arm hand systems. The first example
depicted in subfigure 2a) focuses only on trajectory tracking
(in task space) while the other two trajectories optimize also
anthropomorphism of robot configurations. The robot elbow
is much closer to the human elbow for the anthropomorphic
results, as structural dissimilarity between human and robot
configurations has been minimized. The reason that the human
and robot elbow positions are not coincident is owed to
the huge dimensional differences (in terms of link lengths)
between the human and the robot arm.

Fig. 3 presents the effect of the task compatibility index
metric in the derived anthropomorphic configuration. As it can
be noticed the robot arm posture is slightly changed, in order
for the major axis of the velocity ellipsoid to be aligned with
the task direction. In Fig. 4 the Barrett WAM + i-HY robot
arm hand system grasps a spherical object. All robot hand
constraints are guaranteed and the task compatibility index of
the robot arm hand system is optimized. More specifically in
subfigure 4a) the force transmission ratio is maximized across
a specific direction while in 4b) the velocity transmission ratio
is maximized along the same direction.

Finally, in Fig. 5 two different grasps with the OpenHand
T42 and a cylindrical object are depicted. Subfigure 5a),
presents a random grasp satisfying that the contact points will
lie on the object surface and that no robot link will penetrate
the object. Subfigure 5b) presents an optimal grasp wrt the
grasping quality metric proposed in eq. 20 and which has a
minimized distance between the object’s geometric centroid
and the contact polygon’s centroid.

Fig. 2: Deriving humanlike trajectories for reach to grasp move-
ments. Row a) presents instances of the trajectory executed with
the Barrett WAM arm and the OpenHand T42 robot hand without
a criterion of anthropomorphism. Row b) presents instances of the
trajectory executed with the same robot arm hand system, using the
criterion of functional anthropomorphism. Row c) presents instances
of the trajectory executed with the Barrett WAM robot arm and the
iHY robot hand, using a criterion of functional anthropomorphism.
Human fingertips and elbow positions are represented by the blue
lines, while robot fingertips and elbow positions are represented by
the cyan lines.

Fig. 3: The Barrett WAM + OpenHand T42 robot arm hand
system, is used to grasp a spherical object using an anthropomorphic
configuration (employing a metric of anthropomorphism to minimize
structural dissimilarity between human and robot arms). Subfigure
a) presents the derived configuration without employing the task
compatibility index (velocity ellipsoid is almost spherical). Subfigure
b) presents the robot arm hand system’s configuration after the
incorporation of the task compatibility index criterion. Velocity trans-
mission ratio is maximized and the major axis of the manipulability
ellipsoid is aligned with task direction. The blue sphere represents
human elbow position (the distance between human and robot elbow
is minimized).



Fig. 4: The Barrett WAM + i-HY robot arm hand system, is used to
grasp a spherical object maximizing force and velocity transmission
ratios along a specific task direction. The criterion of anthropomor-
phism is omitted in order to highlight the differences between the
optimal configurations for the different task specifications. For all
cases, the major axis of the “desired” ellipsoid (velocity or force) is
aligned with the task direction and the corresponding transmission
ratio is maximized.

Fig. 5: The OpenHand T42 is used to grasp a cylindrical object.
Subfigure a) presents a random grasp, while subfigure b) presents an
optimal grasp for which the distance between the object’s geometric
centroid (CG) and the contact polygon’s centroid (CC) is minimized.
For both cases all robot hand constraints are satisfied.

Fig. 6: The iHY robot hand is used to grasp a spherical object in a
task specific manner optimizing a task-compatibility index along the
desired directions. Subfigures a) and b) depict grasps maximizing the
force and velocity transmission ratios respectively, along the y axis.
Subfigures c) and d) depict grasps maximizing the force and velocity
transmission ratios respectively, along the z axis. For all cases the
major axis of the “desired” ellipsoid (velocity or force) aligns with
the desired task direction.

In Fig. 6 we present grasps of a spherical object with
the iHY hand for which the task compatibility index is
optimized (maximizing force and velocity transmission ratios
along the desired directions). It must be noted that a large
value of the GC index indicates good control compatibility
(finer control of force and velocity can be achieved) while
a small value indicates good compatibility for effecting large
forces and velocities in the respective directions. Thus choice
of directions and the maximization or minimization of the
index depends on the task requirements.

The accompanying video presents an experiment with the
Mitsubishi PA + OpenBionics 4F robot arm hand system
repeatedly reaching in a humanlike fashion and grasping a
wide range of everyday life objects [42] with a specific
preplanned grasp. As it can be noticed the low-complexity,
compliant hand facilitates grasping even under object position
uncertainties (when the object is perturbed or when the object
position is not accurately known). Images of the conducted
experiment are depicted in Fig. 7.

V. CONCLUSIONS

In this paper, we proposed a methodology for closed-loop,
humanlike, task-specific reaching and grasping with redundant
robot arms and low-complexity robot hands. Human demon-
strations are utilized to map human to anthropomorphic robot
motion. Principal Components Analysis is used to represent
the humanlike robot motion in a low-dimensional manifold
where appropriate path planning models are trained. The
proposed scheme provides: 1) anthropomorphic robot arm
trajectories, 2) task-specific robot arm and hand configurations,
maximizing the task and grasp compatibility indexes of the
arm and hand respectively, 3) robust grasps, utilizing appro-
priate grasp quality measures and 4) guaranteed convergence
to the desired goals. In this work we consider the position and
geometry of objects a-priori known.
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