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Abstract— Building hand-object models for dexterous in-
hand manipulation remains a crucial and open problem. Major
challenges include the difficulty of obtaining the geometric
and dynamical models of the hand, object, and time-varying
contacts, as well as the inevitable physical and perception
uncertainties. Instead of building accurate models to map
between the actuation inputs and the object motions, this work
proposes to enable the hand-object systems to continuously
approximate their local models via a self-identification process
where an underlying manipulation model is estimated through
a small number of exploratory actions and non-parametric
learning. With a very small number of data points, as opposed
to most data-driven methods, our system self-identifies the
underlying manipulation models online through exploratory
actions and non-parametric learning. By integrating the self-
identified hand-object model into a model predictive control
framework, the proposed system closes the control loop to
provide high accuracy in-hand manipulation. Furthermore,
the proposed self-identification is able to adaptively trigger
online updates through additional exploratory actions, as soon
as the self-identified local models render large discrepancies
against the observed manipulation outcomes. We implemented
the proposed approach on a sensorless underactuated Yale
Model O hand with a single external camera to observe the
object’s motion. With extensive experiments, we show that the
proposed self-identification approach can enable accurate and
robust dexterous manipulation without requiring an accurate
system model nor a large amount of data for offline training.

I. INTRODUCTION

Dexterous in-hand manipulation is a system-level problem
consisting of an array of sub-problems, ranging from the
modeling of contacts and hand-object dynamics [1], [2], to
the perception, planning, and control of the task-oriented
hand-object coordination [3]–[5]. At the core of all these
problems, almost all existing approaches are challenged by
the gaps between the required prior knowledge and online
feedback, and the actual limited information available to
the system [6]. For example, a very common assumption
made to contact-based manipulation systems is that the object
model is perfectly known. In practice, however, this is rarely
possible even if many sensing modalities are available. As
such, in-hand manipulation systems are often limited either
in their capability of handling complex dynamics or in
their generalizability across similar variations of task setups.
Although learning-based approaches have been extensively
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Point of Manipulation 

Fig. 1: An encoderless underactuated Yale Model O hand is
tasked to manipulate an unknown object to trace a reference path
(green trajectory). Enabled by the proposed non-parametric self-
identification, and with no prior knowledge assumed, the hand is
able to self-identify a system model using only 15 data points and
then accurately complete the task (blue trajectory).

investigated and shown the capabilities of acquiring complex
manipulation skills [7], [8], the data, which is the enabling
factor for such systems, is also a major limitation in more
general and dynamic tasks.

To bridge the aforementioned gaps while not shifting
more burden to the sensing or data collection sides, we
previously proposed the idea of self-identification [9] . For
hand-object systems modeled with a number of known and
missing parameters, the missing ones were iteratively self-
identified by the hand-object system through exploratory
actions without adding any additional sensors. The self-
identified system then showed great performance in precise
dexterous manipulation while tracking the real-time changes
of the missing parameters. This approach was inspired by
human manipulation where we do not have accurate models
of everything a priori. Rather, humans often use a strategy
that shifts the system paradigm from “sense, plan, and act” to
“ act, sense, and plan”. However, [9] still modeled the hand-
object system analytically and required a number of param-
eters to be self-identified and tracked in real-time, rendering
the approach not easily generalizable and computationally
very expensive.

To this end, this work proposes to replace the analytic
parameter-based models with a non-parametric model to
be self-identified. We consider a challenging setup with an
encoderless underactuated robot hand, as shown in Fig. 1.
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Given an unknown grasp on an unknown object, the proposed
system first collects a small number of manipulation data
points through exploratory actions, for which the grasp
stability is passively secured by the hand’s compliance. The
system then learns a non-parametric model to map from
the hand control directly to the object motion, yielding a
self-identified local model of the hand-object system. In this
work, the non-parametric model was learned by a Gaussian
Process Regressor. By integrating the self-identified model
into a Model Predictive Control (MPC) framework, we show
that in-hand manipulation can be precisely achieved, while
the self-identified model can be updated through additional
exploratory actions as needed. A system diagram is illus-
trated in Fig. 2.

II. RELATED WORK

Hand-Object Models: Traditional models of in-hand ma-
nipulation systems often assume that precise geometric and
physical models of the hand, object, contacts, etc., are
available [2]. Since such approaches are very sophisticated
in modeling every detailed aspect of the system, they are
limited in scalability and normally focus on specific sub-
problems of hand-object systems, including contact modeling
[10], force control [11], stability maintenance [3]. More
importantly, model-based methods are inherently limited as
the assumptions of model availability often do not hold
in reality. On another hand, simplified models such as
action primitives have been designed to model the manip-
ulation mappings [12], [13]. However, as the primitives are
handcrafted, they are not generalizable, nor scalable. This
work proposes self-identifying a non-parametric model of
the hand-object system, aiming at avoiding sophisticated
modeling, model availability assumption, and unnecessary
model simplification.

Data-Driven Approaches: With sufficient data and train-
ing, learning-based methods have shown unprecedented per-
formance in acquiring complex manipulation skills [8]. In
an end-to-end manner, data has filled in the gap traditionally
formed by the lack of a priori system information and per-
ception uncertainties [7], [14]. However, as such methods are
sensitive to the amount and diversity of the training data, they
are often not generalizable, even to similar task variations.
Unlike those data-demanding approaches, the non-parametric
Gaussian Process model employed in this work is lightweight
and known to work with a minimal amount of data [15]. As
such, it enables the self-identification of hand-object models
online through only a few exploratory actions.

Interactive Perception: Leveraging proactive manipulation
actions to unveil hidden system information can greatly
improve the robot perception under limited sensing [16].
Particularly for hand-object systems, interactive perception
can enable grasping and in-hand manipulation under large
uncertainties [17], [18]. While most interactive perception
methods focus on estimating specific parameters of a system,
our non-parametric self-identification aims to directly build
a mapping, approximated locally, from the hand’s actuation
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Fig. 2: System diagram of the proposed non-parametric self-
identification for dexterous in-hand manipulation.

input to the object motions to enable the MPC control of
precise dexterous manipulation.

III. HAND-OBJECT SYSTEMS AND PROBLEM
FORMULATION

In this work, we aim to address the in-hand dexterous
manipulation problem, where an object grasped by an un-
deractuated robot hand needs to be reconfigured to certain
poses. We consider the hand and the object as a whole
discrete-time dynamical system. The underlying state of the
hand-object system at time t is st ∈ RN , where N is the
number of all the physical properties necessary for uniquely
identifying a system state, such as hand joint configurations
and hand-object contact locations. The control of the system,
ut ∈ RC , is the actuation input to the hand at time t.
For an underactuated hand, the dimension of controls, C, is
less than the degree of freedom of the hand. The dynamics
of the system can be represented by a transition function
g : RN × RC 7→ RN such that

st+1 = g(st, ut) (1)

Additionally, we select a fixed point on the object’s surface
and use this point’s motion to represent the object’s motion.
We term this point as the Point of Manipulation (POM),
whose position at time t is denoted by zt ∈ R3. As such,
the object’s motion at time t can be represented by the finite
difference of POM’s positions, i.e., δzt = zt+1 − zt.

However, building an analytical model for such hand-
object systems is impossible due to the following challenges:
1) the system state st is not fully observable as it contains
parameters not obtainable due to the limited sensing capabil-
ity of the system, such as the hand-object contact locations
and the joint angles of the underactuated hand; and 2) the
system dynamics g requires accurate geometric models of
the hand and the object, which are in general unavailable.
Moreover, even if g is solvable, it is hard to generalize across
different object shapes or different types of contacts. Instead,
assuming a neglectable change of the hand-object system
state after applying a small enough control, we can locally
approximate the system model without exactly knowing the
current system state st. For this, we use another function



Algorithm 1 Dexterous Manipulation via Self-Id and MPC
Input: Reference trajectory X , a distance threshold α, number of

initial exploratory actions d and a, number of adapting actions
for model update b

1: t← 0, z0 ← OBSERVEPOM()
2: x0 ← z0
3: Γ,Γ−1 ← SELFIDENTIFICATION(z0, d, a) ▷ Alg. 2
4: for xi ∈ X , i = 1, · · · , n do ▷ Waypoints in X
5: while ∥xi − zt∥ > α do
6: ut ← MPC(zt, xi−1, xi) ▷ Alg. 3
7: zt+1 ← EXECUTE(ut) ▷ Observe POM
8: if ϵt > γ then ▷ Sec. IV-B
9: Γ,Γ−1 ← SELFIDENTIFICATION(zt+1, 0, b)

10: end if
11: t← t+ 1
12: end while
13: end for

Γ : RC → R3 to represent the locally approximated system
transitions, which maps from the control input to the object’s
motion:

Γ(ut) = δzt (2)

In addition, the inverse of the approximated system model
is defined by Γ−1 : R3 → RC . We name Γ and its inverse
Γ−1 as local manipulation models. To precisely manipulate
the object without prior knowledge of the system dynamics,
the system needs to self-identify the local manipulation
models Γ and Γ−1 and adapt them to different hand-object
configurations when necessary.

In this work, the hand-object system is tasked to find and
execute a sequence of control inputs to gradually move the
object, such that the POM will trace through a reference
trajectory represented by a sequence of T desired positions
of POM: X = {x1, · · · , xT }, where x1, · · · , xT ∈ R3

are called keypoints of the trajectory. We formulate such
dexterous in-hand manipulation as a self-identification and
control problem, and approach the problem through non-
parametric learning and Model Predictive Control (MPC), as
illustrated in Fig. 2 and summarized in Alg. 1. The details
of the approach will be described in Sec. IV and Sec. V.

Starting with the POM positioned at z0 ∈ R3, the system
identifies the models Γ and Γ−1 through a small number of
initial exploratory actions consisting of d randomly sampled
and a calculated controls, as will be detailed in Sec. IV-
A and Alg. 2. Then, the self-identified models will be
integrated into an MPC framework to generate real-time
control ut to move POM toward targeted keypoints of the
reference trajectory. Meanwhile, the system observes the
outcome position of POM zt+1 after each generated control
ut has been executed. If a large deviation from the desired
reference trajectory has been detected, as will be described in
Sec. IV-B, the system will update the models Γ and Γ−1 by
performing b more exploratory actions. As such, being self-
identified and updated in real-time, the models are used to
generate controls to precisely move the POM on the object to
reach each keypoint of the reference trajectory sequentially.

IV. NON-PARAMETRIC SELF-IDENTIFICATION

In this section, we present a non-parametric approach
based on Gaussian Process Regression to facilitate the self-
identification of the local manipulation models Γ and Γ−1.
Such a non-parametric learning approach does not require
a parametric form of the models, which is challenging to
specify and difficult to generalize. Moreover, as an efficient
nonlinear function approximator that works well with a
small amount of data, Gaussian Process Regression alleviates
the burden of heavy online data collection, which is time-
consuming for a real-world system. Specifically, as described
in Sec. IV-A, with a set of data points collected by the system
through online exploratory actions, the manipulation models
Γ and Γ−1 can be learned efficiently to find the inherent
relation between the control inputs and the object’s motion.

A. Exploratory Actions and Self-Identification

To self-identify the manipulation models with data col-
lected online, we dynamically maintain a training dataset,
D = {(ûi, δẑi)}Pi=1, consisting of P data points the system
has observed. Each data point is a pair (ûi, δẑi), where ûi ∈
RC is a control the system has executed and δẑi ∈ R3 is the
object’s motion observed after executing ûi. The dataset D is
initially empty but will be updated to have more data points
as the system keeps executing to manipulate the object. We
use exploratory actions to name the data points in the training
dataset D, as such actions are performed for exploring the
system models. We illustrate how such exploratory actions
are generated and used for self-identification in Alg. 2.

Without prior knowledge about the hand-object configura-
tion, the system begins by randomly generating a number
of d controls. Each control is randomly sampled from a
C-dimensional uniform distribution within the range [−l, l],
where l is chosen to be arbitrarily small while not being
overwhelmed by the system’s physical uncertainties. The
system will execute each of these d controls, observe the
object’s motion after each control execution, and add them
to the training dataset D.

However, certain patterns of the object’s motions might
not be present in D since the size P of the dataset is kept
small in practice. Therefore, to have more representative
data to effectively learn the manipulation models, we intend
to increase the local density of the dataset D by selecting
additional a controls to explore. For that, we define the
local density of the dataset D at its i-th data point to be
the reciprocal of the distance between δẑi and its nearest
neighbor in D:

ρD(i) =
1

minj ̸=i∥δẑi − δẑj∥
(3)

The data point with the lowest local density will be used
to calculate a new control ûs, to be added into the training
dataset D with its corresponding observation of the object’s
motion δẑs. This new control ûs is determined by the average



Algorithm 2 Self-Identification
Input: Observed POM z0, number of random actions d, number

of extra actions a
Output: Non-parametric manipulation models Γ and Γ−1

1: D ← ACQUIREDATASET() ▷ Training Dataset
2: for i = 1, · · · , d do ▷ d Random Actions
3: ûi ← UNIFORM(−l, l) ▷ Uniform Sampling from [−l, l]
4: zi ← EXECUTE(ûi) ▷ Observe POM
5: δẑi ← zi − zi−1 ▷ Object’s Motion
6: D ← D ∪ {(ûi, δẑi)}
7: end for
8: for i = d+ 1, · · · , d+ a do ▷ a Extra Actions
9: p← argminjρD(j)

10: p′ ← argminj ̸=p∥δẑp − δẑj∥ ▷ Nearest Neighbor
11: ûs ← (ûp + ûp′)/2 ▷ Eq. (4)
12: zi ← EXECUTE(ûs) ▷ Observe POM
13: δẑs ← zi − zi−1 ▷ Object’s Motion
14: D ← D ∪ {(ûs, δẑs)}
15: end for
16: Γ,Γ−1 ← GPR(D) ▷ Gaussian Process Regression
17: return Γ, Γ−1

of this data point and its nearest neighbor:

ûs =
ûp + ûp′

2
p = argmin

j∈{1,··· ,|D|}
ρD(j)

p′ = argmin
j∈{1,··· ,|D|}\{p}

∥δẑp − δẑj∥

(4)

Using this method, we would approach a uniform distribution
as the number of exploratory actions increases. With the
dataset D generated by exploratory actions, the manipulation
models Γ and Γ−1 can be efficiently self-identified by
Gaussian Process Regression (Alg. 2). It is worth noting that
both models Γ and Γ−1 are regressed with the same dataset
D, but with a different domain and codomain of the data. As
Γ and Γ−1 are independently learned, we cannot guarantee
a closed loop between them. In other words, for the self-
identified models, Γ−1(Γ(u)) ̸= u.

B. Model Update

While manipulating the object, the underlying system
dynamics can vary over time due to changes in hand
configuration and contacts. This can cause the failure of
the self-identified models as they are locally approximated.
Therefore, we introduce a mechanism in our framework
that adaptively updates the model online when needed. As
demonstrated with Fig. 3, if a large discrepancy between the
observed system state and the prediction of self-identified
models has been detected, the model will be updated with
b additional actions calculated by Eq. (4). We particularly
name such exploratory actions adapting actions, as they are
used to adapt the model to a new locality.

For that, we need to define an indicator, to determine when
the model update should be triggered. Consider the in-hand
manipulation task defined in Sec. III. Suppose that the POM
has already reached the first i− 1 keypoints of the reference
trajectory X through in-hand manipulation. In other words,

the system currently targets the next keypoint xi ∈ X . We
linearly interpolate from xi−1 to xi to create an intermediate
trajectory Wi = {w1

i , w
2
i , · · · , wM

i } of M waypoints, where
w1

i = xi−1 and wM
i = xi. Given POM’s position zt ∈ R3

at the current time step, the nearest waypoint wj∗

i in the
intermediate trajectory Wi is found by

j∗ = argmin
j∈{1,··· ,M}

∥zt − wj
i ∥ (5)

With this, we define the manipulation error ϵt at time t
to be the distance between POM’s position and its nearest
waypoint in the intermediate trajectory:

ϵt = ∥zt − wj∗

i ∥ (6)

The manipulation error ϵt measures how much the POM
deviates from its desired trajectory. If ϵt is greater than
a threshold γ, the framework will update the model. This
mechanism can be found in lines 8 and 9 in Alg. 1.

Fig. 3: An example demonstration of model update with the setup
in Fig. 1, where the system is tasked to trace the reference trajectory
(green triangle): (A) At the beginning, the system performs d+ a
initial exploratory actions (red) to learn the non-parametric models.
(B) The model update request is triggered during manipulation,
according to the sensory feedback. (C) The manipulation error ϵt
(yellow) exceeds the threshold γ, triggering the model update. (D)
Additional b data points obtained from adapting actions (red) are
used to update the models. Then, the system continues with the
trajectory tracing tasks (magenta).

C. Model Transfer

The underlying system dynamics become different when
the object’s geometry or grasp configuration has changed.
Intuitively, however, the patterns of manipulation can ren-
der some similarities across such geometric and physical
variations. In other words, the self-identified manipulation
models should feature generalizability on different objects
or different contact locations, facilitating model transfer
between different hand-object setups.

As such, when manipulating a new object, our framework
has the option to initialize the manipulation models Γ and



Γ−1 by the models that have been learned previously with a
different object. By such model transfer, the system can skip
the data-gathering step for initial exploratory actions in line
3 of Alg. 1, to speed up the manipulation of a new object.
We will show the benefits of using model transfer in our
framework through the experiments in Sec. VI-D.

V. MODEL PREDICTIVE CONTROL

As the manipulation models Γ and Γ−1 can be efficiently
self-identified through exploratory actions in Sec. IV, we can
use them as predictive models to develop a control scheme to
generate controls based on the desired motion of the object.
To this end, we integrate the models Γ and Γ−1 in a Model
Predictive Control (MPC) framework to iteratively generate
controls at each time step. Our MPC-based control scheme
is presented in Alg. 3 and the details will be described
below. Benefitting from the efficient inference of Γ and
Γ−1, the MPC effectively meets the requirement of real-time
executions.

As some definitions in Sec. IV-B are useful for MPC, we
briefly recall them here: between the last reached keypoint
xi−1 and its next xi in the reference trajectory X , we
create an intermediate trajectory Wi = {w1

i , w
2
i , · · · , wM

i }
of M waypoints by linear interpolation. In this intermediate
trajectory Wi, we find the nearest wj∗

i , with its index j∗, to
POM’s position zt at the current time step.

Then, we use the intermediate trajectory Wi as a local
reference to guide the MPC in searching for optimal control.
Concretely, MPC uses the self-identified models Γ and Γ−1

to predict the behavior of the controlled hand-object system
up to a prediction horizon L. By adding stochasticity into the
prediction with some random ξ of control, it can simulate
Q independent trajectories, as illustrated in Fig. 4. Each
simulated trajectory Uq = {(ûq

t , ẑ
q
t ), · · · , (û

q
t+L, ẑ

q
t+L)},

where q = 1, · · · , Q, is generated by the following iterative
process starting with k = 0:

ûq
t+k = Γ−1(wj∗+k

i − ẑqt+k) + ξ

ẑqt+k+1 = Γ(ûq
t+k) + ẑqt+k

(7)

where ûq
tk

∈ RC and ẑqt+k ∈ R3 are the predicted control
and state (i.e., POM’s pose) at time t + k in the q-th
simulated trajectory, and ξ ∼ N (0, σIC) is a multivariate
Gaussian random variable. The scale σ of this Gaussian
random variable is named MPC optimization scale.

Over the Q simulated trajectories, MPC searches for the
optimal trajectory Uq∗ (the blue one in Fig. 4) such that
the accumulated distance between it and the intermediate
trajectory Wi is minimized:

q∗ = argmin
q∈{1,··· ,Q}

(
L∑

k=0

∥ẑqt+k − wj∗+k
i ∥

)
(8)

where L = min{K,M − j∗} is the prediction horizon (i.e.,
the length of the simulated trajectories) not greater than a
hyperparameter K. The first control ûq∗

t in the optimal tra-
jectory Uq∗ is then sent to the hand actuators for execution.
While the entire procedure of MPC is performed at each time

step, the system will precisely control the object’s motion,
guided by the self-identified manipulation models.

Algorithm 3 Model Predictive Control (MPC)
Input: Observed POM zt, last reached keypoint xi−1, targeted

keypoint xi

Output: Optimized control for execution ut

1: {w1
i , · · · , wM

i } ← LINEARINTERPOLATE(xi−1, xi)
2: j∗ ← argminj∥zt − wj

i ∥ ▷ Nearest Waypoint by Eq. (5)
3: L← min{K,M − j∗} ▷ Prediction Horizon
4: for q = 1, · · · , Q do
5: ẑqt ← zt
6: for k = 0, · · · , L− 1 do
7: ξ ← N (0, σIC)
8: ûq

t+k ← Γ−1(wj∗+k
i − ẑjt+k) + ξ ▷ Predicted Control

9: ẑqt+k+1 ← Γ(ûq
t+k) + ẑqt+k ▷ Predicted State

10: end for
11: end for
12: q∗ ← argminq

(∑L
k=0 ∥ẑ

q
t+k − wj∗+k

i ∥
)

▷ Eq. (8)

13: return uq∗
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ẑq

∗

t+4

ẑq
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Fig. 4: Simulated trajectories in MPC, by the self-identified models
Γ and Γ−1. In this figure, Q = 50 trajectories (gray) are simulated
and each one has a horizon of L = 5. The optimal trajectory (blue),
closest to the reference trajectory (black), is selected to extract the
optimal control.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate and study the performance
of the proposed framework under a real-world setting that
requires precise in-hand manipulation. As shown in Fig. 5,
We deployed our proposed framework on a Yale Model
O underactuated hand [19]. This hand has three identical
fingers, each finger of which has one motor to actuate two
spring-loaded joints through the tendon. While the tendon is
pulled by the motor, the joint configuration of each finger
will change accordingly. The spring in each finger joint
enables compliance that facilitates stable contact between the
hand and the grasped object. For our experimental setup, we
restricted two fingers to be parallel to each other and always
take the same actuation input, while the third finger was
configured to the opposite side. As such, the object’s motion
was physically constrained in a horizontal plane.

The POM was selected to be on the top of the object,
which was tracked by a camera mounted above the object
through AprilTag [20]. The camera has a resolution of



1024× 512 and the tracker’s frequency is 30 fps. Note that
the tag-based POM tracker can be replaced by other vision-
based frameworks. At the beginning of each experiment trial,
the experimenter needed to hand one object in Fig. 6 to the
underactuated hand by a stable grasp.

Fig. 5: The experimental setup: The Yale Model O underactuated
hand is tasked to manipulate an object (an orange cube (obj #4)),
whose POM is tracked by a top camera with AprilTag.

1

2

3

4

5

Fig. 6: The objects used in the experiments: 1) a pill bottle, 2) a
mustard bottle (YCB dataset #006), 3) an apple (YCB dataset #013),
4) an orange cube, and 5) a toy airplane (YCB dataset #072a) [21].

A. Experiment Design

As defined in Sec. III, we tasked our framework to trace a
reference trajectory of POM through in-hand manipulation.
The reference trajectories we used in experiments are shown
by the green lines in Fig. 7, including a triangle, a square,
a π letter, and a spiral line. Each trajectory is represented
by a sequence of desired positions of POM (i.e., keypoints,
shown by the red dots in Fig. 7) in the camera’s frame,
therefore enabling our system to work without the necessity
of hand-eye calibration. To trace a reference trajectory, the
POM on the object must reach each keypoint in the correct
order, with a tolerance of α = 1mm in Alg. 1. The blue
lines in Fig. 7 showcase POM’s actual trajectories while the
system executes controls generated by MPC.

Besides the requirement for precise motion control, such
an in-hand manipulation task challenges our framework from

three other aspects: 1) With a lack of sensing capability for
joint configuration and contact information, our framework
needs to be effective in approximating the actual system tran-
sitions through self-identification, which is crucial for precise
manipulation. 2) The real-world data collection through
online manipulation is time-consuming, demanding high data
efficiency of the model self-identification. 3) The contacts
between the hand and the object change during manipulation,
due to unpredictable sliding or rolling. This requires the
adaptability of our framework to such changes. As will be
shown with experiments in Sec. VI-B, VI-C, and VI-D, our
framework is effective in addressing these challenges and
is able to precisely control the object’s motion with self-
identified models under various real-world settings.

To quantitatively evaluate the performance of our frame-
work on in-hand manipulation, we selected two metrics:

1) Manipulation error, as defined in Sec. IV-B, averaged
over the entire trajectory. This reflects how far the
actual execution deviates from the desired reference
trajectory. A small manipulation error is a direct indi-
cation of accurate motion control of the object, which
is highly affected by the quality of the self-identified
models and the robustness of our MPC control policy.

2) The accumulated number of adapting actions. As
described in Sec. IV-B, whenever the manipulation
error exceeds a threshold γ = 2mm, our system will
perform more exploratory actions to update the self-
identified models. A small value of this metric means
fewer times of model updates, thus reflecting the high
data efficiency and good adaptability of our framework.

Note that the object was constrained to move in a horizontal
plane by our setup. The reference trajectories were always
given on this plane with the fixed height, and we evaluated
the manipulation errors only in this plane as well.

B. Analysis on Initial Exploratory Actions

In this experiment, we study how many initial exploratory
actions are needed for a decent model of self-identification.
With the experiment results, we intend to show that the self-
identified models, even learned with only a small amount of
training data, can enable precise in-hand manipulation.

For this, we varied the number of initial exploratory
actions (i.e., d+a in Alg. 1) to be 10, 15, 20, 25 and 30, and
tasked the framework to manipulate all the objects in Fig. 6
and trace all the four trajectories given in Fig. 7. For each
setting, we repeated the experiment 5 times. To ensure the
manipulation performance is not dominated by a bad control
policy, we set the MPC optimization scale not too small
with σ = 0.1. The results are summarized in Fig. 8. From
the results, we find fewer initial exploratory actions cause a
worse quality of the self-identified system models reflected
by a higher manipulation error and demand for more adapting
actions. This is because the underlying system transitions
can be hardly approximated via self-identification, if without
sufficient exploration. However, by slightly increasing the
number of initial exploratory actions, higher manipulation
precision was achieved with lower manipulation errors; and



Fig. 7: Real-world trajectory tracing tasks by in-hand manipulation: a triangle, a square, a π letter, and a spiral line. Green: reference
trajectories. Blue: real trajectories executed by our system. Red dots: keypoints that POM needs to sequentially go through.

the non-parametric models were better approximated via self-
identification, indicated by a smaller number of adapting
actions for the model update. After 20 initial exploratory
actions, the manipulation performance of our framework
roughly converged, and an average manipulation error of
less than 0.8mm could be achieved for all the objects and
reference trajectories. Importantly, this has demonstrated the
high data efficiency of our framework, which in general only
needs less than 30 data points to achieve dexterous in-hand
manipulation with high precision.
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Fig. 8: Self-identification performance in terms of the number of
initial exploratory actions. For different numbers of initial actions,
the result is averaged over all the objects and reference trajectories.

C. MPC Performance Analysis

The self-identified models Γ and Γ−1 by our framework
are locally approximated, thereby can never be perfect due
to the lack of prior knowledge about the system and the
limited sensing capability. However, for precise manipula-
tion, we require the controls generated by MPC to be robust
enough against imperfect model self-identification. In this
experiment, we evaluate the robustness of the self-identified
models when the control loop is closed by MPC, and analyze
how it is affected by the optimization scale σ.

Intuitively, a small σ will enforce the MPC policy to
be more confident about the self-identified models, thus
becoming more greedy but potentially not robust to imperfect
self-identifications; whereas a large σ will increase the search
space of MPC for the optimal control.

In this specific experiment, we only used an orange cube
(obj #4) in Fig. 6 as the object for manipulation. For MPC,
the maximum prediction horizon was set to K = 5, and the
number of simulated trajectories for optimization was set to
Q = 50. For each different σ, we repeated the manipulation
5 times for each of the four reference trajectories in Fig. 7.

The results are summarized in Fig. 9. From the results, we
observed a large number of adapting actions with a small
σ less than 0.02. This is expected since MPC is too greedy
using the self-identified models with a small σ, resulting
in fewer optimal executions and more instances of model
update requests. By slightly increasing σ to introduce more
stochasticity into the predictions, MPC could search more
extensively for finding the optimal control and the average
number of adapting actions was immediately reduced to less
than 5, rendering a significant performance improvement.
In general, from the experiments, we found that the self-
identified models are sufficiently reliable to make predictions
about control with appropriate σ; furthermore, our MPC-
based control policy was able to achieve precise manipu-
lation by closing the control loop with approximated non-
parametric models.
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Fig. 9: MPC performance evaluation in terms of its optimization
scale σ and the number of adapting actions.

D. Model Generalizability

In real-world applications, the object being manipulated
and the grasp configuration are likely to be different every
time. Therefore, good generalizability of the self-identified
models to such variations is desirable, as it helps save the
time and cost of retraining the models every time.

In this experiment, we challenged the generalizability of
the self-identified models in our framework, by manipulating
a new object (target object) with models learned through
manipulating a different object (source object). Specifically,
we saved the models Γ and Γ−1 learned from manipulating
an orange cube (obj #4) with 25 initial exploratory actions.
Similar to Sec. IV-C, we directly used this saved model to
initialize the manipulation of a new object, without any initial
exploratory actions on the new object. For each object, we



ran 4 trials for each reference trajectory and averaged the
results in Fig. 10. As can be seen from the results, regardless
of the specific object, there was no significant increase in
manipulation errors even though the manipulation models
were learned using a different object. When manipulating a
new object, although we observed that more adapting actions
were performed for the model update, the total number
of exploratory actions was reduced from 25 to 12 since
no exploratory actions were needed initially. In summary,
the experiment has shown good generalizability of the self-
identified models, and efficient utilization of model transfer.
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Fig. 10: Results of model transfer experiments. The model was self-
identified on a source object (green) and then used for manipulating
different other target objects (blue).

VII. CONCLUSION

In this paper, we approached the in-hand dexterous ma-
nipulation problem with non-parametric self-identification
and Model Predictive Control. With a small number of
exploratory actions, our proposed framework efficiently self-
identifies the underlying manipulation models through Gaus-
sian Process Regression. By integrating the self-identified
manipulation models into an MPC-based framework, a robust
control method can be developed for precise manipulation.
Furthermore, when the self-identified local models become
unreliable for generating effective controls, our framework
can adaptively update the models by performing more ex-
ploratory actions.

With extensive real-world experiments on an underactu-
ated Yale Model O hand, we show that 1) our proposed
framework can achieve millimeter-level in-hand manipula-
tion without requiring a large amount of data nor sophisti-
cated sensing systems; 2) the MPC-based control is robust
when integrated with imperfect manipulation models, which
are locally approximated; 3) the self-identified manipulation
models can well generalize on similar setup variations.

In future work, we aim to implement the proposed frame-
work on a more complex or higher-dimensional system,
for example, an underactuated hand with more motors or a
compliant robot arm with higher degrees of freedom. Further-
more, we plan to improve the current framework, to achieve
higher precision and dexterity of in-hand manipulation by a
more capable control policy; or to enhance the adaptability
of self-identification to different types of motion constraints.
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[6] J. Bütepage, S. Cruciani, M. Kokic, M. Welle, and D. Kragic, “From
visual understanding to complex object manipulation,” Annual Review
of Control, Robotics, and Autonomous Systems, vol. 2, no. 1, 2019.

[7] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with large-scale data collection,”
in International Symposium on Experimental Robotics. Springer,
2016, pp. 173–184.

[8] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-
supervised deep reinforcement learning,” in IEEE International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp.
4238–4245.

[9] K. Hang, W. G. Bircher, A. S. Morgan, and A. M. Dollar, “Manipu-
lation for self-identification, and self-identification for better manipu-
lation,” Science Robotics, vol. 6, no. 54, 2021.

[10] B. Sundaralingam and T. Hermans, “Geometric in-hand regrasp plan-
ning: Alternating optimization of finger gaits and in-grasp manipula-
tion,” in IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 231–238.

[11] M. Li, K. Tahara, and A. Billard, “Learning task manifolds for
constrained object manipulation,” Autonomous Robots, vol. 42, no. 1,
pp. 159–174, 2018.

[12] B. Calli and A. M. Dollar, “Robust precision manipulation with simple
process models using visual servoing techniques with disturbance re-
jection,” IEEE Transactions on Automation Science and Engineering,
vol. 16, no. 1, pp. 406–419, 2019.

[13] M. V. Liarokapis and A. M. Dollar, “Post-contact, in-hand object
motion compensation with adaptive hands,” IEEE Transactions on
Automation Science and Engineering, vol. 15, no. 2, pp. 456–467,
2016.

[14] L. P. Kaelbling, “The foundation of efficient robot learning,” Science,
vol. 369, no. 6506, pp. 915–916, 2020.

[15] N. Fazeli, S. Zapolsky, E. Drumwright, and A. Rodriguez, “Learning
data-efficient rigid-body contact models: Case study of planar impact,”
in Conference on Robot Learning. PMLR, 2017, pp. 388–397.

[16] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal,
and G. S. Sukhatme, “Interactive perception: Leveraging action in
perception and perception in action,” IEEE Transactions on Robotics,
vol. 33, no. 6, pp. 1273–1291, 2017.

[17] M. C. Koval, N. S. Pollard, and S. S. Srinivasa, “Pose estimation
for planar contact manipulation with manifold particle filters,” The
International Journal of Robotics Research, vol. 34, no. 7, pp. 922–
945, 2015.

[18] R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake, “Efficient
planning in non-gaussian belief spaces and its application to robot
grasping,” in International Symposium on Robotics Research, 2017,
pp. 253–269.

[19] L. U. Odhner, L. P. Jentoft, M. R. Claffee, N. Corson, Y. Tenzer, R. R.
Ma, M. Buehler, R. Kohout, R. D. Howe, and A. M. Dollar, “A com-
pliant, underactuated hand for robust manipulation,” The International
Journal of Robotics Research, vol. 33, no. 5, pp. 736–752, 2014.

[20] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in
2011 IEEE International Conference on Robotics and Automation,
2011, pp. 3400–3407.

[21] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in 2015 International Conference on
Advanced Robotics (ICAR), 2015, pp. 510–517.


	Introduction
	Related work
	Hand-object systems and problem formulation
	Non-Parametric Self-Identification
	Exploratory Actions and Self-Identification
	Model Update
	Model Transfer

	Model Predictive Control
	Experimental Evaluation
	Experiment Design
	Analysis on Initial Exploratory Actions
	MPC Performance Analysis
	Model Generalizability

	Conclusion
	References

