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Abstract—This paper is the second in a two-part series analyzing human grasping behavior during a wide range of unstructured tasks.

It investigates the tasks performed during the daily work of two housekeepers and two machinists and correlates grasp type and object

properties with the attributes of the tasks being performed. The task or activity is classified according to the force required, the degrees

of freedom, and the functional task type. We found that 46 percent of tasks are constrained, where the manipulated object is not

allowed to move in a full six degrees of freedom. Analyzing the interrelationships between the grasp, object, and task data show that the

best predictors of the grasp type are object size, task constraints, and object mass. Using these attributes, the grasp type can be

predicted with 47 percent accuracy. Those parameters likely make useful heuristics for grasp planning systems. The results further

suggest the common sub-categorization of grasps into power, intermediate, and precision categories may not be appropriate,

indicating that grasps are generally more multi-functional than previously thought. We find large and heavy objects are grasped with a

power grasp, but small and lightweight objects are not necessarily grasped with precision grasps—even with grasped object size less

than 2 cm and mass less than 20 g, precision grasps are only used 61 percent of the time. These results have important implications for

robotic hand design and grasp planners, since it appears while power grasps are frequently used for heavy objects, they can still be

quite practical for small, lightweight objects.

Index Terms—Human grasping, manipulation, activities of daily living, prosthetics, robotic hands

Ç

1 INTRODUCTION

DUE to the complexity of the human hand and the wide
variety of movements it is able to accomplish, many of

the factors influencing the human grasp choice are still
poorly understood. There has been considerable effort in
determining how certain parameters influence human
grasping. In general, it is assumed that there are at least two
important factors influencing the grasp kinematics: the
object being manipulated and the task to be accomplished
[1], [2]. A better understanding of human grasping behavior
can be used to provide performance specifications and test
cases for robotic systems which are designed to operate in
human environments. It can provide basic useful heuristics
for grasp planning systems and can define the most essen-
tial hand functions which should be restored during reha-
bilitation. Finally, it can help in designing devices that
interact with the human hand, to ensure that they will fit
into natural hand use patterns, and to better predict how
they will be grasped.

In the accompanying paper [3] we focus on the proper-
ties of objects being grasped during the daily work of two
housekeepers and two professional machinists, filmed
through a head-mounted wide-angle video camera, and cor-
relating those properties to the choice of grasp used with
them. In this paper, we now turn our attention to the prop-
erties of the task being performed in those videos. The goal

of the first part of this paper is to assign to each task distinct
properties that are hypothesized to influence the grasp. We
then use our extensive video analysis [4] to investigate the
influence of the task properties on grasp choice. The second
part of the paper correlates the relationship between task,
object properties, and grasp choice, with a focus on investi-
gating of how strongly different properties of the task and
object influence grasp choice and how well those properties
can predict the grasp chosen. The data set used in this publi-
cation and in the related publications [3], [4] was made pub-
lic and can be downloaded [5].

In terms of related work, a number of studies have
investigated various manipulative task performances in
daily life. In the rehabilitation literature, many studies dis-
cuss the “Activities of Daily Living” (ADLs) [6], which
allow a person’s level of independence/impairment to be
assessed. However, ADLs are not well structured to
describing the details of hand usage, and therefore the spe-
cific problems related to hand use are usually not identi-
fied [7]. In one relevant study that investigated objects and
ADLs (but not grasps), objects were marked with radio-fre-
quency-identification (RFID) tags and it was shown that
88 percent of the 14 ADLs studied could be predicted cor-
rectly by looking at the sequence of handled objects [8],
supporting the assumption that the task and the object are
closely related. Another study that gives some insight into
the most common human manipulation tasks used the
International Classifications for Functioning, Disability and
Health (ICF) issued by the World Health Organization
(WHO) [9] and calculated the frequency distributions of
activities [10]. Overall, 3,964 activities of a single healthy
person were recorded, with the most common activities
shown to be “lifting”, “putting down objects”, “preparing
complex meals”, “fine hand use, other specified”. Time

� The authors are with the Department of Mechanical Engineering and
Materials Science, Yale University, New Haven, CT.
E-mail: {thomas.feix, ian.bullock, aaron.dollar}@yale.edu.

Manuscript received 12 Aug. 2013; revised 7 May 2014; accepted 19 May
2014. Date of publication 28 May 2014; date of current version 15 Dec. 2014.
Recommended for acceptance by A. Okamura.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TOH.2014.2326867

430 IEEE TRANSACTIONS ON HAPTICS, VOL. 7, NO. 4, OCTOBER-DECEMBER 2014

1939-1412� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



usage research has also tried to determine what tasks and
activities the human engages over the course of the day
[11], [12], but the long time increments used resulted in
only very general results.

In terms of correlating grasps to tasks, one study by
Klatzky et al. looked at the connection between cognitive
object representations and hand shape categories [13]. It
showed that there exists a relationship between the hand
shape and the high level object class, and also
highlighted that those hand shapes are modulated by the
task, as defined via three functional classes (which we
use in the task classification in this paper). A number of
additional studies have investigated how task constraints
influence grasp kinematics through laboratory-based
experiments typically involving a very specific sequence
of action. The hand kinematics are recorded and how
they are modulated with respect to the specific goal of
the study are noted. These experiments have shown that
the grasp kinematics can be influenced by a task later on
in the action sequence [14], [15] as well as the intention
upon which the object is picked up [16], [17], [18], [19].
Even though these studies clearly show how the human
grasp kinematics are affected by certain tasks properties,
they are limited to the laboratory and the specific move-
ments studied.

Related to the prior work described above, there is exten-
sive evidence that the task or intended activity influences
the grasp kinematics. However, many challenges remain in
terms of defining specific relationships between the two in
order to analyze their connection.

The remainder of this paper is structured as follows. In
the next Section the properties of the task classification are
presented. Section 3 provides an overview of the data acqui-
sition and how the assignment of the task properties was
done for our real life data set. Following that, Section 4
describes the results of the task classification. In Section 5,
the data from the task and the object classification are com-
bined and their results are presented. Finally, Section 6 dis-
cusses the task and object-task-grasp results and Section 7
concludes the analysis.

2 TASK CLASSIFICATION FOR GRASPING

2.1 Scope

Our goal for a task classification is to assign properties to
the tasks that we believe directly relate to how the human
chooses grasps while still retaining a level of generality that
allows different tasks to be compared. Specific task descrip-
tions such as “hammering”, “using a screwdriver”, or
“wiping” might be used, but these task descriptions, while
intuitive, cannot be compared easily without breaking
down each task further. Therefore we seek to assign to each
task parameters that allow comparing various attributes
between tasks.

In this work we define the extent of a task by a single
grasp-release cycle. Since the chosen task properties are
general, they can be assigned to each grasp-release cycle.
They do not depend on verbal descriptions that cannot be
abstracted and compared easily between. Although each
grasp-release cycle may be part of a longer high level task,
these higher level activities are not analyzed in this paper.

2.2 Task Properties

We assign each task a set of properties that we hypothesize
are important for grasping and that can also be easily
assigned by visual observation. After a thorough review of
the literature and consideration of the wide range of possi-
bilities, we decided to classify tasks along three dimensions:
constraints, which describe the degrees of freedom and
nature of the constraints on the grasped object; functional
class, which describes at a high-level what is being done
with the object; and force, which describes whether the force
being applied is to lift the object or based on some addi-
tional task property such as opening a door.

The first property is the constraints of the task. Depend-
ing on the task (and also the object properties), an object is
only allowed to translate and rotate in certain directions in
order to successfully complete the task. We follow the defi-
nitions from [20], [21], which specify a complete set of 20
possible relative motions between two rigid bodies. The
nomenclature defines the relationship between the object
and the environment (a fixed reference frame). Fig. 1
(adapted from [18]) explains the nomenclature and gives
examples of human manipulation tasks falling into that
category. For example, consider the task of opening a door.
In this case there are five constraints on the movement,
with only a single possible rotation around the hinge axis
of the door. Thus, the constraint assigned is rotation, fixed,
fixed (“rxx”) and the object’s physical restrictions deter-
mine the constraint. However, consider the constrained
task of holding a fully filled glass of water. Although the
glass is physically free to move, to successfully complete
the task, the glass has to be kept upright. Too much tilting
would result in spilled water, thus a failure in task comple-
tion. We assign the holding a glass task a unconstrained,
translation, translation (“utt”) constraint. In this case the
task itself defines the constraint, rather than a physical con-
nection to the environment. In a majority of real world
tasks the object moves to some extent in all six DoF, but in
some directions the movements are negligible. In the hold-
ing a glass example, tilting the glass a miniscule amount
will be allowable, however the movement amplitude is
much smaller as compared to the directions in which it is
allowed to move. These small deviations are disregarded
and a higher number of constraints is assigned, since the
goal is to capture the essential task constraints.

The functional class is a high level description of the task,
for which we use the three categories from [13]. The “hold
and pick up” (referenced by “hold” in the paper) category
defines general manipulation activities, primarily object
transport. The second category is “use”, where the object is
used according to the object’s specific purpose it is designed
for or is commonly used. For example, wiping with a
sponge or writing with a pencil are within the “use” cate-
gory. Transporting a pencil, however, would be classified as
“hold and pick up”, since it is outside the specific writing
tasks a pencil is designed for. The last category is “feel and
touch” (referenced by “feel” in the paper), in which the
hand is used as a sensory tool to interact with the environ-
ment. In addition, cases where contact is made without a
specific goal are assigned this category.

The force property specifies what type of force is neces-
sary to complete the task. Since the forces required can be
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complex and difficult to discern visually, we use a simpli-
fied description that still provides useful information about
the task. Specifically, we assign a value of either “weight”
or “interaction”. We assign “weight” if the grasp force is
closely related to lifting the object. This can be the case for
tasks other than object transport, such as using a drill. In
that case, the dominating force requirement is to lift the
drill, squeezing the trigger usually needs less force. In the
second category, “interaction,” the grasp force is deter-
mined by factors other than object weight, usually through
the interaction with the environment. There are two main
mechanisms for this decoupling: the weight of the object is
supported by the constraints, making the force needed to
move the object less than would be required to lift the object
(such as opening a drawer or door); or when the interaction
force is primarily intended to apply a force through the
object, such as is done when scrubbing with a sponge
(where the force needed to lift the sponge is much less than
the force needed to scrub effectively).

2.3 Limitations of the Classification

In general, defining task properties is much more challeng-
ing than assigning object properties, given the wide range
of possible classifications. While there are still other param-
eters of a task which affect grasp choice, many of them are
hard to categorize and difficult to assign consistently. Most
intuitive task parameters are qualitative properties, which
do not generalize well to a physical property. This fact is
reflected in a lower inter-rater agreement (see Section 3.1)
compared to the object classification. This is also the reason
we reduced the task classification to a few essential proper-
ties, and removed some properties we tested in the
beginning.

We initially assigned a precision parameter related to how
accurately the movement must be conducted, which we
allowed to be either “rough”, “normal” or “precise”. This
parameter might appear very straightforward and easy to
understand. However, we found that the raters disagreed
(Kohen’s k ¼ 0:09) for many of the tasks, thus this

Fig. 1. Constraint definition for the tasks, adapted from [20]. There are twenty possible classes of object motion relative to the world reference frame.
We follow the definition of [20], [21], however change the letters used. Each of the three axes can either be free to move (u), only allow translation (t),
only allow rotation (r) or does not allow any movement around that axis (x). Switching two axes within one category results in the same constraint
type; letters are ordered in order to facilitate comparison.
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parameter was excluded from the final data. We believe pre-
cision is hard to estimate from visual information in part
because it is a general term, but further breaking it up into
the precision of individual motion or force components
would be too difficult for the current study.

For the force property, the “interaction” category is very
diverse, simply stating that the grasp force is not directly
determined by object weight. Although additional classifi-
cation of task forces could help predict grasp choice, in prac-
tice it would be difficult to visually classify the task force in
much more detail than is already done.

3 METHODS

The same data set and approach as in the accompanying
paper [3] was used. The data is based on two housekeepers
and two machinists, recorded during their professional
work for approximately 8 hours each [4], [22]. In the initial
video processing only high level task names were recorded,
which were classified in a second step. Similar to the object
classification, we allow raters to set the task to “cannot clas-
sify” to accommodate tasks which cannot be reliably classi-
fied based on the high level task description and video
snapshots provided to the raters.

3.1 Inter-Rater Agreement and Error Estimation

To evaluate the reliability of our classifications, we took the
same approach as in our joint paper, Section. 3.3 [3]. All 297
tasks were classified by two raters based on the category
descriptions laid out in Section 2.

They raters agreed in 82 percent (Cohen’s k ¼ 0:16 [23]) of
the instances whether the task can be classified or not. Rater
1 assigned “cannot classify” rarely (10 tasks, 3 percent),
whereas Rater 2 assigned it in 58 (20 percent) of the tasks.
This explains the large discrepancy between the agreement
and the Cohens Kappa. To further analyze the agreement
between raters, instances where at least one rater assigned
cannot classify were removed. This allows to compare the
assignment from both raters. The low agreement on whether
the tasks can be classified does not influence the following
analysis as data from both raters is present.

For the force parameter, the raters assigned the same
property in 84 percent (Cohen’s k ¼ 0:68) of the instances.

Concerning the constraints, the raters agreed in 68 per-
cent of the cases (Cohen’s k ¼ 0:59). The main difference is
that rater 1 assigned “uuu” (fully unconstrained) in some
cases where rater 2 assigned some task constraints. In 12
tasks rater 1 assigned “uuu” and rater 2 assigned “txx” (one
translational DoF). Those instances include tasks like
“zipping jacket”, “removing ruler from pocket” and
“moving curtain”. Here, it becomes clear that the two raters
had slightly different opinions about the nature of the task.
The other common discrepancy is “uuu” and “rxx” (one
dimensional rotation), which includes tasks like “turning
tool” and “turning page”. Clearly all those tasks have some
one dimensional movement, but also might be complex
enough that in reality all six object movements matter. This
shows the complexity of a verbal description, it is very chal-
lenging to establish a good rule upon which a task is
regarded to be constrained.

Finally, agreement on the functional class was found in
66 percent of the instances (Cohen’s k ¼ 0:37). Rater 2
assigned the “use” property much less; there are 69 cases in
which rater 1 assigned “use” and rater 2 assigned “hold”.
This discrepancy was mainly that rater 2 had a more strict
view about what was regarded to be “using and object”. As
this view was too restricted, the task description was
adapted accordingly to make the distinction between “use”
and “hold” clearer.

The 95 percent confidence interval of the results was esti-
mated using the same bootstrap method as described in the
joint paper, Section 3.4 [3]. This method takes into account
both the rater disagreement and the frequency distributions
in the data.

3.2 The Final Task Classification Data Set

The classifications of the two raters were combined in a
semi-supervised method. The differences in the assign-
ments were analyzed by rater 1, who then made the final
classification decision. This step added another layer of
review of the assignments, where unclear task descriptions
were identified and potential misclassifications were cor-
rected. As described in the inter-rater agreement, there was
a discrepancy in the function class that rater 2 assigned
“use” more conservative. Most of those differences were
corrected to be “use”. Overall this step increased the overall
accuracy of the data set. The error bar estimation reflects the
disagreement of the raters, thus gives a clear estimate on
how reliable the results are.

4 RESULTS

4.1 General Statistics

After classifying and rejecting the instances with an associ-
ated task that could not be classified, 9,933 grasp instances
are used for further analysis. Overall, 231 tasks are present
in the data set.

Fig. 2 shows the 12 most frequent tasks and their distribu-
tionwithin the grasp types (less frequent tasks arewhite, sep-
arated by a vertical line), utilizing the task names chosen by
the individual raters in the initial video tagging (with a goal
of being descriptive within one-three words). There is a good
deal of overlap, as can be seen in the multiple instances of
“holding”, resulting from the fact that the rater tried to best
capture what was happening and adding additional context
to purely assign “holding” as high level task. For example
holding a glassmight have different constraints than holding
a tool and that would be reflected in the task description.
These frequent tasks will have a large influence on the final
results. Compared to the object data set, the 12 most frequent
tasks cover 72 percent of the data set, whereas the 12most fre-
quent objects cover only 56 percent [3] of the data set. How-
ever, their distribution over grasp types is relatively even -
from the most common grasp types only the precision disk is
weighted heavily by one task (“wiping surface”).

4.2 Overall Task Properties

In this section, we present the results after the taxonomies in
Section 2 were applied. Concerning task force, Fig. 3 shows
that in 60 percent of the instances the force is related to
lifting to object (“weight” category). However, in the
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remaining 40 percent of the cases, the mass of the object
does not give any information on the grasp force.

No constraints are present (“uuu”) in 54 percent of the
instances. There are 10 other constraint configurations pres-
ent, of which four are more common. The “uur” constraint
mainly involves writing, vacuuming and mopping. Another
common constraint is “utt”, which is used when pointing in
one direction, such as when spraying or holding a glass. For
wiping a surface and cases where an object is moved on a
plane, the “ttr” property is assigned. Finally, “rxx” involves
only a single rotational degree of freedom, for tasks such as
moving a door. This final “rxx” constraint is the most com-
mon constraint, found in about 17 percent of the instances.

Functional class is dominated by the “hold” category,
which was assigned in 54 percent of the grasps. In about 46
percent of the instances the object was “used” and in only 9
total instances (less than 0.1 percent) the functional class
was “feel”.

Fig. 4 shows the correlations between the three task cate-
gories within the data set. The most prominent parameter

combination is “hold”, “weight” and “uuu”. This combina-
tion accounts for 5,042 instances (51 percent of the data),
and generally applies to unconstrained object transport
tasks. The other common combinations are within “force ¼
interaction” and “use”, which involves a much wider vari-
ety of constraints.

Considering the force-constraint relationship (Fig. 4),
shows that when constraints are present, the grasp force is
usually decoupled from the weight of the object. The only
big exception is the “utt” case, which is mainly used for
pointing a spray bottle onto a surface, a frequent

Fig. 3. Distribution of the task properties. The error bars represent a
95 percent confidence interval, as described in Section 3.1.

Fig. 4. The two plots show the correlations within the data set. The top
plot shows the correlations for all datapoints where the force equal to
weight and the second plot shows all instances where the force is not
related to the weight of the object. The area of the circles is proportional
to the number of instances. The symbols for the constraints are as fol-
lows: u. . .unconstrained, t. . .only translation, r. . .only rotation, x. . .fixed.

Fig. 2. Task-grasp relationship for common tasks. The most common 12
tasks are highlighted, while all other tasks are white. Some grasps are
weighted by only a few very common tasks. Grasps with fewer than 50
instances are omitted. The order of the legend is equal to the order
within each bar.
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housekeeping task. In this task, the bottle is lifted, which
dominates the grip force requirement, thus “weight” is
assigned. Fig. 4 also shows that the functional class is
related to the constraints. For the free movement case
(“uuu”), most of the instances correspond to “hold. If a con-
straint is present, most tasks are instead the “use” type.

As is implied in the discussion of task categories described
above, there is generally a very strong correlation between the
‘force’ and ‘functional class’ categorization. However, tasks
such as carrying a glass of water or pointing a spray bottle
deviate from the direct correlation between “force ¼ weight”
and “hold”, prompting us to keep both categorizations.

4.3 Correlating Task Properties and Grasp

With regards to the task constraints, in about 54 percent of
the instances the object was completely free to move
(“uuu”). However, this leaves a full 46 percent of instances
where the task is subject to at least one constraint. Concern-
ing the individual grasps (see Fig. 5 left), while uncon-
strained tasks often dominate, most still exhibit a variety of
constraints. One notable exception is the ring grasp, which
is mainly used for “rxx”, which is one rotational DoF. This

is mainly used for the tasks “turning knob” and “turning
handle”. The writing tripod is mainly used in the “urr”
case, corresponding to the constraint of one point (the tip of
the pen) on a plane.

Concerning the grasp force, Fig. 5 center shows how each
single grasped is used. Most of the grasps are dominated by
a force related to lifting the object, however, a third of the
grasps are used primarily for interaction force tasks. The
index finger extension grasp is used mainly for tasks such as
mopping and vacuuming; typically constrained tasks. The
ring grasp and the palmar grasps are used by the machinist
to move controls and covers of machines. Finally, the plat-
form and the precision disk are usedmainly for wiping.

As shown in Fig. 5 right, the functional class relationship
has similar trends to the force class. The biggest differences
occur in the medium wrap, which is used for spray bottles
and pliers and the light tool, used primarily for calipers and
compressed air nozzles.

4.4 Correlating Task and Object Properties

Up until now this paper has focused on the task-grasp rela-
tionship. In the remainder of the paper we combine the task

Fig. 5. Task property distributions for each grasp type. The number on the right indicates the number of instances this particular grasp was present in
the data set. The left figure shows the task constraints, center shows the force property, and right shows the functional class. Grasps with less than
50 instances are not shown.The order of the legend is equal to the order within each bar.
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data with the object data [3], the combined data set contains
7,770 instances. This number is slightly less than the indi-
vidual object or task data sets, since any instance missing
either task or object data was removed.

The relationship between tasks and objects is summa-
rized in Fig. 6. Each of the large boxes represents the rela-
tionship between one task and one object attribute,
normalized so that the sub-bins sum up to 100 percent.
Combinations with a frequency rounded to 0 percent are
not plotted to reduce visual clutter. The grasp size and the
mass were binned such that the number of instances per bin
is well distributed and that the bins make intuitive sense.
The number of instances for the grasp size bin is, from small
to large: 1,007 (0-0.9 cm), 1,307 (1-1.9 cm), 1,581 (2-2.9 cm),
1,092 (3-4.9 cm), 940 (5-9.9 cm), 140 (10þ cm), and 1,703
floppy objects. For the binning of the mass, the number of
instances from small to large is as follows: 1,922 (0-99 g),
1,671 (100-199 g), 1,820 (200-299 g), 1,675 (300-499 g), 246
(500-799 g) and 436 (800þ g).

5 PREDICTOR QUALITY OF SUB-CLASSIFICATIONS

In this section, we use machine learning techniques to gain
insight into the structure of the data set and to analyze how
well the data can predict the grasp type. This process will
prove useful in that it will inform not only how well a grasp
can be predicted based on task and object data properties as
assigned in this study, but also lend insight into how much
information is contained within those property classes. As
in Section 4.4 above, we use the full data set including task,
object, and grasp properties, with a total of 7,770 instances.

A summary of the data set is shown in Table 1. For the
object, seven properties are assigned directly and three

additional ones are derived based on the assigned parame-
ters. The task data has three attributes and the grasp data has
just one attribute—grasp type. All numerical attributes were
binned, making them nominal. For the size parameter, the
bin size is 1 cm, giving 16 bins, whereas for mass each bin is
100 g wide, resulting in 11 bins. For size C, four bins have no
data, thus the final number of levels is 12. Note that for some
attributes (A, B, C, Grasp Size) there is a category added for
floppy objects, making the actual number of levels one
higher. The binning step has two purposes: first, it allows

Fig. 6. Relationship between the task and the object properties. Each of the boxes sum up to 100 percent and expresses the relationship between
one task attribute and one object attribute. For example taking the top right box, the most common combination is objects with a weight of 0-99 g and
a force that is related to the weight of the object, which is the case for 17 percent of all instances. The sum of all squares within the box is 100 percent.
Darker background indicates a higher percentage. Rare (smaller than 0.5 percent in each cell) parameters are not plotted. Each box contains at least
98 percent of the instances. The grasp size and the mass were binned as indicated by the labels below. Note that the smallest values from the raters
were 1 mm and 1 g.

TABLE 1
Overview of Data Set Attributes

Attribute Levels Dataset

1 2 3 4

A 17 x x x
B 17 x x x
C 13 x x x

Assigned Grasped Dimension 6 x x x
Rigidity 4 x x x

Object Roundness 5 x x x
Mass 11 x x x

Grasp Size 17 x
Derived Shape 5 x

Type 12 x

Force 2 x x x
Task Assigned Constraint 11 x x x

Functional Class 3 x x x

Class Grasp Type 32

The data set columns on the right indicate the assignment of attributes to the
four data sets used in the analysis.
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applying classifiers that can only use nominal values; and
second, it greatly reduces the chance that the classifier can
use the specific numerical values to overfit the data.

In order to investigate the predictive capabilities of our
classifications, we consider four combinations of subsets of
the classification data. The Full (1) data set contains all
attributes from the object (both assigned and derived) and
task classifications. With 13 attributes, this is the most com-
prehensive data set. The Full (2) data set uses only the
assigned attributes of object and task, omitting the derived
ones, resulting in 10 attributes. Finally, Object (3) and Task
(4) use only the object and task attributes, respectively.

In order to examine how well our classifiers predict our
data, we apply two machine learning algorithms through
the machine learning software Weka [24]. The first classifier
we use is a decision tree algorithm, namely the J48
implementation of the C.4.5 algorithm [25], using parame-
ters (-C 0.25, –M 10). The C parameter defines the amount of
tree pruning. The minimum number of instances per leaf
(parameter -M) was raised to 10 in order to prevent exces-
sive overfitting, since it avoids creating a new leaves for
rare parameter combinations. In order to confirm that these
results are not an artifact of the particular algorithm used,
we also performed a nearest-neighbor classification using
the iBK [26] implementation in Weka with parameters (-K 5
–W 0 –I), which define the numbers of neighbors (-K), that
the full data set is used for classification (- W 0) and a 1/dis-
tance weighting is applied (-I). We found that all results are
within 1.5 percent of the decision-tree classification. Fur-
thermore, initial testing with Support Vector Machines
using different kernel functions also had similar results. We
believe that the close correlation of the results indicates that
results described below are based on differences in the data
set rather than the classifiers themselves. Due to the fact
that we believe a decision tree-based analysis is more logical
given the nature of our data, we only report the results from
the decision-tree analysis in the following sections.

5.1 Prediction of Grasp Type

In this section, we examine how well each of the four data
sets predict grasp type. We use a 10-fold cross-validation
[27] to calculate the classification errors. In that procedure
the data set is split randomly into 10 equally sized subsam-
ples. Nine subsamples are used to train the classifier and
the tenth sample is used to determine the classification accu-
racy. This step is repeated 10 times, each time alternating
which subsample is used for training/testing. The average
performance of the classifier is reported. During initial

testing, the number of folds used did not appear to signifi-
cantly influence the classification results, thus we kept the
standard 10 fold cross validation.

The classification rates for the four data sets are reported
in Table 2. The Full (1) and Full (2) data sets achieve the
highest classification rates and the classification rates are
basically unchanged by removing the derived parameters
to create the Full (2) data. In either case, approximately
47 percent of the grasps are classified correctly. From the
individual data sets, the Object (3) properties give higher
classification rates (about 43 percent) as compared to the
Task (4) data set (about 31 percent). Both classification rates
are higher than the baseline classification rate of 16 percent,
which would be achieved if all samples were classified as
medium wrap, the most common grasp type.

Fig. 7 shows the classification rate for each individual
grasp type. For the Full (2) data set only 6 of the 22 most fre-
quent grasp types are above the 0.5 line (corresponding
roughly to the overall classification performance of 0.47).
The classification rate for the individual Object (3) and Task
(4) data sets shows which grasp types can be distinguished
well with each type of property. The object set achieves
good classification for many grasp types, whereas the task
data is generally much less able to distinguish between
them. The task classification has a spike on the lateral tri-
pod, which achieves a classification rate of 92 percent. How-
ever, in that case that is due to the specifics of the classifier,

TABLE 2
The Table Reports the Classification Rates in Percent for the

Four Data Sets, as Described in Table 1

Dataset Classification Results

Full (1) 46.6%
Full (2) 46.8%
Object (3) 42.7%
Task (4) 30.8%

The results are based on the decision tree classifier. The nearest neighbor classi-
fier results are within 1.5 percent of the decision tree Classifier.

Fig. 7. Classification rates for each grasp type. The results for the Full (1)
data set are always within 0.013 of the Full (2) data set, therefore it is not
shown in the graph. The grasps are ordered according to their frequency
in the data set. Furthermore, grasps with less than 50 instances are not
shown. The line at 0.5 corresponds roughly to the classification rate of
the full data set (47 percent).
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which classifies 3,456 samples into this category. This means
that almost 45 percent of the instances are put into that cate-
gory, even though they make up for only 8 percent of the
data. Consequently, there is a high chance that the real lat-
eral tripod instances are correctly identified.

For some grasp types, the differences in the classification
rate for the combined data set (2) and the individual data
sets (3 and 4) are relatively high. This indicates that the task
and the object classification have complementary informa-
tion, which can be combined to reliably predict the grasp
type. One such case is the writing tripod, which generally
has the constraint “uur”, requiring that the tip of the pen
touches the paper. The writing task is mainly confused with
vacuuming, which has the same constraint, but an assign-
ment of medium wrap. For the Object (3) data set, the algo-
rithms cannot distinguish between the adduction grasp and
the writing tripod. Thus, only when the object and task data
are combined can the result be narrowed down to the final
writing tripod grasp. This example shows how combining
the object and task data can resolve some ambiguities that
would be present if only one source of data was used.

5.2 Importance of Individual Attributes

To estimate how well individual attributes predict the grasp
type, we use the classifiers to create an attribute ranking. As
the initial results showed that the difference between the Full
(1) and Full (2) data sets is very small, we use the Full (2) data
for the attribute ranking. This data set does not include the
derived properties, yet achieves a similar classification rate.

We apply a greedy search strategy to determine the
importance of attributes. We start by calculating the classifi-
cation rates of the decision tree algorithm for each attribute
individually (Fig. 8), with results showing that the size (A,
B, and C), constraint, and mass attributes perform best over-
all. However, these attributes likely contain some redun-
dant information. In order to pick the best combinations of
a lower number of attributes, we first select the best attri-
bute and then determine which attribute should be added
next in order to maximize the classification rate, repeating
this step until we have added all attributes to the data set.
Fig. 9 shows the order in which the attributes were added
and the gain for each attribute, naturally plateauing at the
full classification rate of 47 percent. This strategy does not

guarantee an optimal set for a given number of attributes,
but will give a set that performs very well. In particular the
first attributes are stable, as their initial gain is large. The
confidence of the ordering of later attributes diminishes, as
the gain of them is very small.

The nearest neighbor classifier agrees on the ordering of
the attributes up to mass. For the fifth property it would
add the dimension C, whereas the decision tree selects func-
tional class. As the gain for those last attributes is miniscule,
this difference is insignificant.

5.3 Prediction of Power, Precision and Intermediate
Grasp

To further investigate the prediction capabilities of the data,
the classification analysis was performed again with the
grasp types replaced by their assignment to the power,
intermediate or precision (P/I/P) categories (according to
[28]). This results in a data set with 3,308 power grasp
instances, 1,674 intermediate grasps and 2,788 precision
grasps. Due to the class distribution, the baseline classifica-
tion rate is 43 percent, which would be achieved if all sam-
ples are classified as power grasp.

The results for these data sets are reported in Table 3. As
expected, with fewer class levels, the classification rate
increased. However, the increase is relatively small, and
there is still considerable misclassification. Sixty seven per-
cent classification is achieved with the full data set. The
Object (3) data set results in a classification rate of 64 percent
and the Task (4) data set achieves 51 percent.

As the reduction in classes is expected to increase the
classification rate, a comparison of the results is sought.
Therefore, the 32 grasps types in the data set are assigned
randomly into three classes and the classification rates are
calculated. This step is repeated 100 times and the results
are presented in Table 3. The results show that the assign-
ment has a major influence on the final classification
results. The best set achieves a classification rate of 77 per-
cent for the Full (1, 2) data set. The number of grasps for
each class is 11, 4 and 17, which is similar to the original
power (15), intermediate (6) and precision (12) assignment.
The mean for the 100 assignments is very similar to the
results for the P/I/P data set.

Fig. 8. Classification rate for one attribute based on a decision-tree clas-
sifier. All are above the baseline classification rate of 16 percent, which
would classify all grasps as medium wrap, the most common grasp type.

Fig. 9. Classification rates for adding more parameters to the Full(2) data
set in the order presented in the figure. A, the most important attribute, is
added first. The classification rate plateaus at almost 47 percent.

438 IEEE TRANSACTIONS ON HAPTICS, VOL. 7, NO. 4, OCTOBER-DECEMBER 2014



While this categorization does not appear to be an effec-
tive classifier on average, there may be certain attribute
combinations that directly inform the overall type of grasp.
To investigate this, we binned the numerical values (size
A, B, C) and mass into three levels, to make the resulting
rules simple enough to understand and analyze. The bins
where chosen to ensure the number of instances within
each bin is roughly equal. The same bin thresholds of 2
and 5 centimeters were used for all three size parameters
(A, B, and C). Consequently, for the largest size A, most
instances are within the “large” category, whereas for C
(the smallest object dimension), most instances are in the
“small” category. The mass bins are separated by 150 and
350 gram thresholds.

To find association rules within the data, we used the
“Associate” function within Weka. In particular, we used
the “Apriori” [29] and “Predictive Apriori” [30] algorithms.
Most of the more effective association rules predict the
power grasp category, largely based on the mass and a size
parameter. There are rules that predict precision and inter-
mediate grasps, however, their confidence is much lower
and the number of instances is much smaller.

To further investigate the relationship, the frequency of
different combinations of size, mass and the grasp class, are
shown in Fig. 10. As can be seen, there is a clear trend that
heavier and larger objects are more likely to be grasped with
a power grasp. For an object with a grasp size larger than
5 cm and a mass over 350 grams, 89 percent of all grasps are
power grasps. However, for lightweight and small objects
the trend is much less clear, as a small and lightweight object
is not necessarily graspedwith a precision grasp (47 percent).
Power and intermediate grasps are still used to a large
degree for small and light objects. Evenwhen the object mass
is less than 20 grams, and the grasp size is smaller than 2 cm,
the proportion of precision grasps rises only to 61 percent.

6 DISCUSSION

6.1 General Results

The results for task constraints have important implications.
Overall, 46 percent of the instances were subject to con-
straints, which were mainly connected to the functional
class “use” and in which the grasp force was usually
decoupled from the weight of the object. Simple object
transport operations would be adequate only to perform

about half of the actions observed. This suggests that for
robotic systems, such as assistive robots, designing a robotic
system for object transport alone may be inadequate to
accomplish the majority of the typical tasks that a human
would. It is, however, unclear from the current data set
what the typical kinematic differences would be between
the object transport and manipulation actions.

In both the object and task classification there are certain
classes that have been observed only a few times. In the
object case the “fragile” category was present in only 0.2 per-
cent of the instances. This suggests that a high degree of
grip force sensitivity in a robotic system may not always be
necessary in order to avoid breaking typical objects in
human environments, though the machinist objects may be
more durable than those typically encountered. Also some
grasped dimension combinations (a/b/c, a/b) and round-
ness classes (c, abc) were found in only a few instances.
Regarding tasks, the functional class “feel” was only present
in 0.1 percent of the instances. These results suggest that
certain object and grasp configurations are quite rare, but it
is possible that other professions would encounter some of
these rare instances more often.

Some interesting observations can be made using the
object and task property distributions in Fig. 6. Concerning
the grasp size, it appears that the sizes for force ¼ weight
are more evenly distributed than for force ¼ interaction. A
similar observation can be made for the functional class—
the “use” property is connected to a narrower distribution
for grasp size. The main reason for this is likely that all those
objects are directly designed to be stably grasped, thus a
proper object size was chosen. This fits the results in [31],
which claims that the optimal diameter for a handle is 22-
32 mm. In general, the distributions for the “use” category
can give guidelines for device design, as well as perfor-
mance specifications for a dexterous robotic hand. If a
robotic hand is to be optimized for object transport rather
than manipulation, the data from the “hold” category may
give more appropriate target specifications or test cases.

Overall, the mass of the object has a relatively uniform
distribution up to 500 grams; however, the individual distri-
butions differ depending on the task type. When there is no
constraint present (“uuu”), there is a clear trend that the
object is lightweight. However, for instances where there is
a constraint present, this trend is not observed. For this data
set, the participants generally transport lighter objects than
they use for a functional purpose. This trend may not hold

TABLE 3
The Table Reports the Classification Rates for the Data Sets,

Where the Grasp Type Was Replaced with Power, Intermediate
and Precision [28]

P/I/P Random Assignment

Assignment Best Mean Std

Full (1) 66.6% 77.3% 66.0% 3.5%
Full (2) 66.71% 77.4% 66.0% 3.5%
Object (3) 63.5% 76.2% 63.2% 4.1%
Task (4) 51.1% 72.7% 56.3% 5.1%

The results are contrasted to the classification rates for a random assignment of
the grasp types into three categories. The table is based on 100 random assign-
ments, where the results for the best set, the mean and standard deviation for
the classification rates is given. The attributes are the same as reported in
Table 1 and the results are for the decision tree classifier.

Fig. 10. Distribution of power, intermediate and precision grasp for vary-
ing mass and grasp size. The percentages for each mass and grasp
size combination sum up to 100 percent. Stronger correlations are
highlighted with a darker shading. Floppy objects were excluded, there-
fore this table is based on 6,067 instances.
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for all professions—for example a professional mover
would likely transport much heavier objects than a machin-
ist or housekeeper.

6.2 Classification Results

Overall, our data set (Full (1) and Full (2)) successfully pre-
dicted the grasp type in 47 percent of the instances. The most
effective predictor is dimension A (the longest), which out-
performs the other dimensions (B and C). This is surprising,
since dimension A rarely determines the grasp size directly.
One reason for this behaviormight be that the longest dimen-
sion encodes slightlymore information about the object type.
As the difference in the classification rate between A and C is
4 percent, slight differences in the data might ultimately lead
to this result. The next attributes added are the constraint,
size B, and the mass of the objects, each of which add infor-
mation that increases the classification rate to a larger degree.
Using only those attributes, the classification rate is 46 per-
cent—they already capture themajority of the information in
the data. These results suggest that for grasp planning sys-
tems, major object dimensions, constraint condition, and
mass alone could provide much of the information needed
to select the overall grasp type.

In 1965, Napier [1] argued that the object shape and task
are the two major factors governing how we grasp, however
it is still an open question how much shape and task affect
the grasp chosen. While this study cannot estimate their full
influence, it can help determine a lower bound for the
degree of influence. When using only the object data set,
about 43 percent of the instances can be classified correctly.
For the tasks this number is about 31 percent. Thus, we
argue that, as a lower bound, the choice of grasp is influ-
enced at least 43 percent by the object properties and 31 per-
cent by the task properties assigned in this study. Our
estimate of task influence may be more of an underestimate,
since it is difficult to verbally define exact task constraints,
while object properties are more directly related to clear
physical quantities. This likely helps explain why the over-
all task classification rate is lower than for object properties.
When the data sets are combined (Full (1) and Full (2)),
53 percent of the instances are incorrectly classified. Much
of this remaining error could come from limitations in the
rating system. However, in some cases multiple grasps may
be equally viable for successful task completion, and
humans might randomly select [2] one grasp type.

Our results call into question the conventional classifica-
tion of grasps into power, intermediate, and precision cate-
gories (P/I/P). As they are based on study of grasping [1],
[2], one might expect the P/I/P set to perform well. How-
ever, our results show that assigning the grasps randomly
into three categories results in the same performance. While
we might expect that there exists a way to bin grasps into
three classes that is easier to classify than the P/I/P catego-
ries, it is still surprising that the P/I/P method is not at least
easier to classify than a typical random grasp assignment. It
is possible that the P/I/P classification would perform bet-
ter with a different selection of objects, such as by including
more heavy objects.

Currently, the only reliable prediction about the P/I/P
assignment was for power grasps. The results in Section

5.3 show that for heavy (>350 g) and large (>5 cm)
objects, 89 percent of all grasps were power grasps. How-
ever, the opposite is not true. One reason for this asym-
metry might be the fact that a large and/or heavy object
must be grasped by a grasp that can handle such an
object. The opposite is not true, a small object can still be
grasped by a power or intermediate grasp. This result is
quite important, as it provides evidence against a com-
monly held notion that power grasps are used mainly for
heavier objects or in higher force tasks. Our data suggests
instead that small objects may also benefit from the
apparent added security of a power grasp. For robotic
applications, this suggests that designing hands to allow
power grasps of smaller objects may be beneficial, and
also that grasp planners should not necessarily pick preci-
sion grasps for small objects.

7 CONCLUSIONS AND FUTURE WORK

We set out to augment the data from our video analysis
study [4] with information about the objects being manipu-
lated and the tasks being performed. The data shows grasp-
ing behavior of two machinists and two housekeepers being
recorded during their professional work; analyzing other
professions could add further generalizability to the results.
The data highlights the complexity of human manipulation.
With a set of seven object and three task properties we could
predict the grasp type correctly in about 47 percent of the
instances. The upper limit of the possible classification rate
in this study is the inter-rater agreement of the grasp assign-
ments, which was 62 percent for our data set [4]. Although
greater rater agreement could improve this statistic some-
what, we believe that human manipulation is sufficiently
complex and diverse such that there will always be a sub-
stantial level of uncertainty.

Certain major results seem particularly useful or impor-
tant. Many (46 percent) of instances observed are subject to
constraints, which emphasizes that many real-world human
tasks are not as simple as object transport. It is thus worth-
while to design robotic systems for human environments to
allow more versatile behavior. The classification results sug-
gest that major object dimensions, constraint condition, and
mass are particularly important to selecting grasp type, and
these criteria could thus be used as effective heuristics for
grasp planning systems. Finally, the results call into ques-
tion the conventional notions of power and precision
grasps, and suggest that while power grasps are well suited
to heavy objects or high force tasks, they may still be useful
even for very small or lightweight objects. This suggests
robotic systems could still take advantage of power grasps
even when interacting with small objects.

Our current approach in this and related papers [3], [20]
provides useful information about the objects that we inter-
act with, the tasks we perform, and the grasps we use for
them. These results can be applied to define performance
specifications and test conditions for robotic hands, to pro-
vide basic heuristics useful in developing grasp planners,
to target rehabilitation efforts toward essential hand func-
tionality, and finally, to aid in the design of haptic interfa-
ces or other devices that should interact with the hand in a
natural manner.
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