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Abstract—This paper is the first of a two-part series analyzing human grasping behavior during a wide range of unstructured tasks.

The results help clarify overall characteristics of human hand to inform many domains, such as the design of robotic manipulators,

targeting rehabilitation toward important hand functionality, and designing haptic devices for use by the hand. It investigates the

properties of objects grasped by two housekeepers and two machinists during the course of almost 10,000 grasp instances and

correlates the grasp types used to the properties of the object. We establish an object classification that assigns each object properties

from a set of seven classes, including mass, shape and size of the grasp location, grasped dimension, rigidity, and roundness. The

results showed that 55 percent of grasped objects had at least one dimension larger than 15 cm, suggesting that more than half of

objects cannot physically be grasped using their largest axis. Ninety-two percent of objects had a mass of 500 g or less, implying that a

high payload capacity may be unnecessary to accomplish a large subset of human grasping behavior. In terms of grasps, 96 percent of

grasp locations were 7 cm or less in width, which can help to define requirements for hand rehabilitation and defines a reasonable grasp

aperture size for a robotic hand. Subjects grasped the smallest overall major dimension of the object in 94 percent of the instances.

This suggests that grasping the smallest axis of an object could be a reliable default behavior to implement in grasp planners.

Index Terms—Human grasping, manipulation, activities of daily living, prosthetics, robotic hands

Ç

1 INTRODUCTION

THE human hand is a marvelous multifunctional tool,
and analyzing its diverse functionality helps both to

understand human manipulation behaviors as well as moti-
vate design choices for mechanical hands intending to repli-
cate its abilities. A number of studies have investigated
classifying grasps into a discrete set of types [1], [2], [3], [4],
[5], [6], and others have been aimed at understanding cer-
tain aspects of human hand usage [7], [8], [9], [10], [11].
However, there has been little work on investigating the
properties of objects humans interact with on a daily basis
and correlating those to grasp choice. A better appreciation
of the types and properties of objects that humans com-
monly manipulate is important in many domains. It can
inform hand rehabilitation by focusing on the ability to
grasp the most common and important object sizes and
masses. Prosthetic and robotic hand designers can improve
the performance of their hands by creating a hand that can
grasp the most common objects the human interacts with.

Grasp and object properties have previously been studied
to some extent by researchers in the robotics, haptics, and
psychology communities. For example, it has been shown
that the number of fingers used for grasping increases with
the size and mass of the object [12], [13] until a two-handed
grasp is required, indicating that object size and mass are
strong factors in determining the grasp type. In a similar

study [14], it was shown that the contact locations of the fin-
gertips are very similar within and between subjects, with
the shape of the object having a large influence on the
applied grasp. Klatzky et al. [7] indicated that humans use
the same or similar grasp types for certain types of objects,
and were able to predict a large percentage of grasps based
on the object shape data alone. Researchers in the robotics
community have investigated grasp planners based on
observation of human behavior [1], [15], [16]. These planners
use features such as object mass, local graspable features,
and major object axes. It is not clear however, which object
property ranges are common in human environments.

In the work described in this paper, we investigate the
relationship between grasp types and object properties in a
much larger set of human grasping data than has been pre-
viously analyzed. We utilize a data set of almost 10,000
grasps taken from a small head-mounted camera from four
subjects. For each grasp instance, grasp type, object grasped,
and the timing of the grasp are recorded. Prior work by the
authors utilizing this data set has analyzed the frequency of
each grasp type [17], [18], as well as how to best choose a
small set of grasps to span a wide range of objects [19] (part
of which is presented). Finally, we made the data set public,
including the information on the objects [20].

We classify each object with a set of parameters that are
relevant for grasping, taking inspiration from the theory of
affordances [21] as we are only interested in the objects that
afford grasping and manipulation. In addition to being
affected by the properties of the object, grasp choice is also
influenced by the task—the relationship between grasps
and tasks is presented in the accompanying paper [22],
which also investigates the object-task-grasp complex.

This paper is structured as follows. Section 2 presents the
object classification that we apply to the data. Section 3
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describes the data set on which the object taxonomy was
applied and Section 4 presents the results. Finally Section 5
discusses the results and Section 6 concludes the paper.

2 OBJECT CLASSIFICATION FOR GRASPING

2.1 Scope

In order to analyze the relationship between objects and
grasp choice, we must first provide a framework into which
all commonly manipulated objects fit into. We aim to clas-
sify only objects that allow human manipulation. For exam-
ple large objects, such as a car or a lathe will not be
considered as a whole part in this analysis, but will be bro-
ken into a set of smaller, more graspable parts.

2.2 Definition of an Object and Grasp Location

For the scope of this analysis, we define an object to be a
physical entity that acts as a whole when it is manipulated.
Therefore, the actual interaction with the object defines what
is regarded as an object. For example, if a stack of papers is
manipulated as one, the complete stack is regarded as one
object. However, when one grasps only one sheet of paper,
the single sheet is the manipulated object. By stacking or
dividing objects, a new graspable object can be created.

Most graspable objects do not have any physical connec-
tion to the environment, thus making it easy to determine
the boundary between the object and the environment.
However, some cases are less clear. One prominent example
is different bodies connected via joints or hinges. Our classi-
fication considers joints or hinges that connect the object to
an immobile object attached to the ground (e.g., a wall) to
define the “end” of the object. Examples would be a door
hinged to a frame or a drawer sliding on a track. However,
joints that do not serve to connect the object to the ground
are considered to be part of the object (such as the door and
door handle or two halves of a pair of scissors). If, during
the course of one grasp, the end of an object changes, the
larger object is assigned. For example, a closed door is
immobile (thus the object would only be the handle) until
the handle is turned, upon which it can be opened (in which
case the object is the door). In that case the assigned object is
the door including the handle, for both sub-movements.

An object can often be manipulated in many different
ways. For each way it is manipulated, there might be differ-
ent proportions of the object relevant for the actual grasp.
Therefore, we introduce the concept of a grasp location, which

we define as the local part of the object specific to the grasp
instance. An object can have multiple grasp locations, and
humans will choose a grasp location based on the task and
other parameters. For example, a mug (Fig. 1) has at least
three different grasp locations: the side (cylindrical shape);
the top (disk shape); and the handle (thin curved shape).
While it might appear odd to break up an object by grasp
locations, most objects have a small set of local geometries
that are commonly involved in grasps. This is especially true
for objects designed for human interaction. Thus, looking
only at the overall object geometry wouldmiss themost rele-
vant parts of the geometry for actual grasping behavior.

2.3 Properties of an Object and Grasp Location

While objects can be assigned any number of a wide range of
properties, we place our focus on properties that are impor-
tant for grasping and that can be easily assessed. The right
side of Fig. 1 shows an overview of object properties that we
consider, which are explained inmore detail below. The only
property defined on the full object level is the mass of the
object. The other parameters are defined for each grasp loca-
tion, which can have very different local shapes.

The mass is a mostly straight-forward parameter to
assign. For the purposes of this classification, we choose to
define mass irrespective of the force needed to manipulate
the object, and we explicitly take the full mass of the object
into consideration. For example, even though the large
mass of a door is supported by its hinges, we record its full
mass for completeness. In our view the task ultimately
defines how the mass of the object relates to the grasp force
and is therefore taken into account in our task taxonomy
[21]. Depending on if the door is transported or simply
opened, the resulting grasp force can change to a large
degree. For other objects, the mass is variable, such as in a
bottle of water. For the purposes of our classification, if the
fill level is unknown, as is frequently the case when visually
determining object properties, then a typical fill level of
around half of the container’s maximum capacity was
assigned. For very heavy objects or objects that are
completely fixed to the environment, we bin the mass into a
single category (1;000þ g) for the purposes of the analysis
presented in this paper.

Besides mass, all the other object properties that we
assign are specific to the individual grasp locations. The
next three properties define the shape and size of the grasp
location. After much deliberation as to how to distill such

Fig. 1. One object can have multiple natural grasp locations. Depending on the task and other parameters, the human chooses one of the grasp loca-
tions to manipulate the object. The only parameter which is on the object level is the mass of the object. All other parameters are individual for each
grasp location.
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a massive variation in shape down to a manageable num-
ber of parameters, we decided to employ an established
nomenclature that classifies convex objects according to
their three primary axes [23], [24]. For objects of ellipsoid
or convex shape there are four distinct shape classes,
which are summarized in Fig. 3, left column. The three
major axes of the object define the major directions of the
object. These axes are denoted a, b, and c, where a is along
the longest object dimension and c is along the shortest.
We refer to length of the object in those three dimensions
as the size of the grasp location (A, B, and C), where A �
B � C. The constant R defines the threshold above which
two axes are considered to be different lengths (i.e. if the
ratio between two sides is greater than R, they are consid-
ered to have a different length). Tests determined that the
value at which one typically regards two axes to be differ-
ent is about R ¼ 3=2 [23]. Although these shape categories
were conceived for ellipsoid shapes, the general concept
can be applied for all objects. It has been argued [23] that
the assignment of those three values can be done with an

agreement between raters of less than 5 percent, and our
observation confirms that. There are instances where the
long dimensions are much longer than any human hand.
In this case it does not add information relative to grasping
to precisely record the long dimension, since they are too
large to be grasped. Therefore, any dimension larger than
the largest thumb-index finger span (approximately 15 cm
[25]) is binned into the 15þ cm category.

We define the grasped dimension as the part of the object
that lies between the fingers when grasped. By referring to
the previously defined object axes, the values are from the
prior set {a, b, c} to indicate which axes best determine
the hand opening. Fig. 2 shows two examples of how the
dimensions determine the grasped dimension. In the left
figure, the object is grasped along the shortest dimension,
therefore the grasped dimension is c. For many objects,
more than one dimension determines the hand opening, for
example for a disk (as shown in Fig. 2, right image) the
length A and B are equal and both determine the hand
opening. Therefore, the grasped dimension for Fig. 2, right,
should be set to a/b. That means that both the a and b axis
determine the hand opening. In particular for such a round
object, there is no unique labeling, as the a and b axes can be
rotated around c without change in length.

Many common objects have circular or elliptical cross
sections. Therefore, we introduce the parameter roundness,
which defines whether the object is curved around certain
axes. Roundness can be expressed along the three previ-
ously defined axes. The possible values of roundness are
any combination of {a, b, c}. Roundness is assigned to a
given {a, b, c} axis if the object cross sections perpendicular
to that axis are circular or elliptical. In the case of Fig. 2,
right, there is roundness around the c axis. In the case of a
sphere, a cross section in any direction is circular, thus the
roundness parameter is “abc”. Fig. 3 gives an overview of
the possible roundness values and gives example images.

Fig. 3. Object types that can be inferred based on the object dimensions and the roundness. The inequalities define into which object category of
Zingg [23] the object belongs to. We followed his recommendation and set R ¼ 3=2.

Fig. 2. Grasped dimensions for two objects. In the case of the round
object, either of the two diameters could define the grasped dimension.
Thus the two dimensions a and b of the object are both assigned to be
the grasped dimension.
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By looking at the relative length of the grasp location
dimensions, one can infer the shape categories defined by
Zingg [23], [24]: equant, prolate, oblate, and bladed (Fig. 3
left). By adding the information about the roundness of the
object, that categorization can be further refined. For each
category there are five possible roundness conditions: no
roundness, roundness along each individual axis or round-
ness along all axes. This leads to a set of 20 combinations,
with an overview in Fig. 3. Since in some categories the object
dimensions are equal, they cannot be distinguished and thus
different roundness values around them are meaningless. If,
for example, all dimensions are equal (equant category),
roundness around A is equal to roundness around C, simply
because the labeling of the dimensions is not unique. By
merging those ambiguous categories, the possible combina-
tions are reduced down to 16 distinct object types. Some of
the object types resemble common objects, such as cylinders
or diskswhile others have no known common name.

The final parameter, rigidity, defines how the object
responds when force is applied by the grasp. There is evi-
dence that the human adjusts the grasp parameters accord-
ingly [26]. We assign four possible properties: {rigid, fragile,
squeezable, floppy}. A grasp location is defined as rigid if it
can withstand the full hand force without breaking or
deforming significantly. For example, a mug or a piece of
wood would be regarded as rigid. The fragile category also
does not show major deformation when force is applied.
However, there is a threshold, upon which the object will
break or start to deform a lot. Examples for this category are
an egg or a very slender glass. The next category is squeezable
objects. These deform significantly under normal grasping
forces. Examples are sponges or paper cups. Even though
these objects are easy to deform, they still have an inherent
shape, which distinguishes them from the last category.
Finally, an object is floppy if it has no inherent shape, such as
a rag. Those objects deform heavily under gravity. Because
the object shape can change so much, size, grasped dimen-
sion and roundness are not assigned for floppy objects.

2.4 LIMITATIONS OF THE CLASSIFICATION

To fully describe real objects many parameters are needed.
The presented classification incorporates important object
properties that are likely to govern the choice of grasp. Many
other properties, however, were not incorporated into the
classification, some of which are discussed in the following.

The grasp force is influenced by many factors—currently
only the effects of object mass are included. Among other
things, the center of gravity and its distance from the grasp
location is not taken into account. If the grasp point is far
away from the center of gravity, a high grasp force could be
required even for a light object. The surface friction is also
not recorded. We did not include these parameters as those
parameters are too difficult to obtain in an unstructured
environment with current technology. Furthermore, many
of these parameters are related to the task being done with
the object, and we add detail along those lines in the accom-
panying paper [22].

There are other additional parameters that would afford
or disallow manipulation. Very hot or cold objects would
require different manipulation strategies as they would

otherwise injure the hand. A knife disallows grasps that
would touch the cutting edge. Because these parameters are
only applicable to a small subset of objects or are hard to
measure, we exclude them from our analysis. Furthermore,
we only analyze instances where the object is grasped, thus
we assume implicitly that every object-grasp combination
has to be affordable; otherwise it would not be observed by
our methodology.

3 METHODS

3.1 Experimental Procedure and Apparatus

Two machinists and two housekeepers participated in the
study discussed in this paper. Those two professions were
selected because both perform usually manual labor. Fur-
thermore, the housekeeper works at home, which can be rel-
evant for robots that operate in home environments. The
machinist represents manufacturing, where there are many
different tools and machines present. Both areas are impor-
tant areas in which robots are supposed to operate. We
used two subjects per profession to have a minimum
amount of statistics.

The following enrollment criteria were used to screen
potential subjects for the study: significant experience as
professionals in their field, of normal physical ability, right-
handed, able to participate for long enough to generate
eight hours of data, and performing tasks representative of
their profession during the span of their participation. The
protocol was approved by the local IRB.

Full details of the experimental protocol can be found in
[18], but a brief summary follows. Subjects wore a head-
mounted camera that recorded their hand use during normal
professional work, for at least eight hours per subject. One
rater then tagged the right-handed grasps in the video, includ-
ing the high level task name the subject was performing
and the object that was grasped. Examples for a task name
would be “wiping” and for the object “spray bottle”, “mop”
and “sponge”. The reliability of the tagging processwas evalu-
ated by sections of the videos that were tagged by two raters.
Agreement of the raterswas found to beCohen’s k ¼ 0:54 [18].

3.2 Applying the Object Classification

The final object classification was derived after the video
data was recorded and tagged with regard to grasp type,
high level object and task name. Reviewing the wide
range of grasping behavior through the video data and
generated object snapshots informed the development of
the classification.

The object categorization builds on the initial classification
as presented in our previous publication [18]. Wemake use of
the grasp classification and add the object classification layer.
The most common high level object names can be seen Fig. 6.
This object namedatawas then used to classify objects accord-
ingly. Because the name does not allow distinguishing grasp
locations, we reviewed generated grasp snapshots for each
object to pick a representative, most common grasp location
for each object. Therefore, we will use grasp location and
object interchangeably in the remainder in the paper. The pre-
cision of the assignment could be improved if each grasp
instance would be reviewed independently and the corre-
sponding grasp location assigned, however that would need
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a complete retagging of the data set, a significant amount of
work. We therefore think this intermediate step via the high
level object name is a good compromise.

Overall, different instances of the same high level object
were relatively consistent. This is mainly because a
given object was handled similarly multiple times and
many objects only had a few instances. Naturally, high level
objects with few instances are easier to classify accurately
since the diversity of the objects within the group goes
down. To accommodate object classes that are very diverse,
the raters are given the choice of not classifying an object.
By not considering these object classes that are very broad,
the overall precision of the classification can be improved.
For example, the “lid” and “small box” object descriptors
were too broad. Although “pan” was relatively specific, it
was grasped partly by the handle and partly by the pan
itself, so this variation in grasp location precluded a mean-
ingful classification.

A list of measured and weighted benchmark objects was
presented to the raters in order to better allow them to esti-
mate size and weight from the video. It was not possible to
measure the real objects, as the object classification was
derived sometime after the video recording and we did not
have access to all four locations. This step would increase
tagging accuracy, at the cost of a largely increased effort.
Furthermore, the accuracy of the classified data could be
increased if every grasp instance in the data set was
assessed individually. However, we believe that our
approach of picking representative instances is a good com-
promise between tagging effort, which already took hun-
dreds of hours of work, and precision of the results. The
current precision can be tested with inter-rater statistics.

3.3 Inter-Rater Agreement

On the full set of 406 objects, the two raters agreed 86 per-
cent of the time (Cohen’s k ¼ 0:47) on whether each object
type can be classified. Most of the “cannot classify” objects
were due to large variability within the object class. For the
further inter-rater analysis, all objects rated as “cannot clas-
sify” by at least one rater were discarded. For this analysis
this is necessary as data from both raters has to be present
in order to compare them.

The nominal classes can be directly compared using
Cohen’s k, and their inter-rater agreement values are

reported in Table 1 For the numerical values a Pearson cor-
relation [27] is shown.

Concerning the grasped dimension, the biggest disagree-
ments were rater 2 assigned b/c and rater 1 assigned c (30
objects) and where rater 2 assigned b/c and rater 1 b (19
instances). Those 49 objects make up a large part of the dis-
agreement, however as those are “neighboring” parameters
the resulting error in the classification is less than the low
classification rate would suggest. Overall, rater 2 had a
stronger tendency to assign b/c, he assigned this property
for 55 more objects than rater 1.

The confusion matrix for rigidity is relatively symmetric,
indicating that there was no systematic difference between
both raters.

For the roundness parameter the only common confusion
is between no roundness and roundness along a. The confu-
sion is symmetric, indicating no systematic bias.

The rater agreement for the object mass is shown in
Fig. 4. The plot shows that there is considerable disagree-
ment between raters, which is also reflected in the lower
Pearson correlation coefficient of 0.64. However, the general
trend holds that a heavier object is assigned a larger mass.
Objects heavier than 1,000 g or those that are fixed to the
environment were set to 1,000 g. That explains the lines
present at 1,000 g for both raters. In particular, rater 2 had
the tendency to set objects, like handles and knobs of
machines, which were connected via a hinge to the environ-
ment to be fixed to the environment. However, the classifi-
cation requires setting those objects to their actual weight,
as they are commonly handled as an individual object. This
explains many of the instances where rater two is at 1,000 g
and rater one has assigned a lower mass value. On the other
side, the bound at 1,000 g of rater 1 is more due to different
opinions about the object weight.

The agreement on the grasped dimension, as shown in
Fig. 5 shows a consistent trend in the assignment. Note that
the grasp size is a combination of the assigned object sizes
and the grasped dimension. Therefore this plots tests the

TABLE 1
The Table Shows the Inter-Rater Agreement

for the Object Classification

Agreement
[%]

Cohen’s
kappa

Pearson
Correlation

Cannot Classify 86 0.47
Grasped Dimension 66 0.52
Rigidity 81 0.63
Roundness 81 0.67
Size A 0.78
Size B 0.86
Size C 0.91
Grasp Size 0.77
Mass 0.64

Both the overall agreement and the Cohen’s kappa [36], respective the Pearson
correlation [27] are reported.

Fig. 4. The figure shows the mass classification of the two raters.
Objects that are fixed with the environment or that have more than
1,000 g mass were reduced to 1,000 g. Jitter was added to aid the visu-
alization and the plot uses a logarithmic scale.
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precision of the size assignment as well as the assignment of
the grasped dimension.

The correlation of the mass is lower than for the size val-
ues. The reason for this is likely due to the applied method-
ology—the mass is estimated based on the video recording,
and the size of the object is more directly observable. The
sizes B and C are the most relevant dimensions for grasping
and have the highest correlation values.

3.4 Estimation of the Error

All the 406 objects in the data set were classified by two differ-
ent raters. The object properties outlined in Section 2 served
as a guideline for the raters on how to classify the objects.

The error bars in the figures are calculated using a case
resampling bootstrap method [28]. Random samples are
taken from the original data set, with replacement. The
number of samples matches the length of the real data set.
Furthermore, the object properties are taken randomly from
one of the two raters’ classification data sets. Both random
samplings are based on a uniform distribution. The data
was resampled 1,000 times and 95 percent confidence inter-
vals were calculated based on the standard deviation of the
results. The reported mean corresponds to the data set that
is based on the merged classification of both raters.

3.5 Final Object Classification Data Set

The classifications of the two raters were combined in a
semi-supervised method. The differences in the parameters
were analyzed by rater 1, who made a final decision about
which rater’s assignment was correct. This step allowed cor-
recting obvious classification errors, and some of the differ-
ences revealed valuable information about limitations of the
classification. For the numerical parameters (size and mass),
the mean was taken. However, in particular for the mass,
some values were corrected—mostly objects that were

incorrectly assigned to be fixed to the environment were set
a real mass. The error bar estimation reflects the disagree-
ment of the raters, thus gives a clear estimate on how reli-
able the results are.

Note that the data set is not identical to [18] as we discard
instances that could not be classified and we only analyze
frequencies, whereas [18] also looks at the duration of grasps.
The full data set is available online for download [20].

3.6 Data Processing

Following the definition of the object properties, the maxi-
mum object size bin was set to “15þ cm”, and all larger val-
ues were included in it. Accordingly, in the a, b, and c
dimensions, 3,830, 497, and three (42, 5 and 0 percent of the
data set) instances, respectively, were set to 15þ cm.

The mass of all fixed objects, as well as all objects heavier
than 1 kg, were set to 1,000þ g. Only 475 instances are
heavier than 1,000 g and two instances are fixed to the envi-
ronment. Those two categories combined make up 5 percent
of the data set. By setting this weight limit, we set the focus
of our analysis onto the lower weights, which are more com-
mon. Furthermore, 1,000 g corresponds to a typical transi-
tion point from a one handed grasp to a two handed grasp
[13]. As the taxonomy used for defining the human grasp
types is focused on one handed grasps, we think this transi-
tion point offers a natural point for the cutoff.

4 RESULTS

4.1 General Statistics

After preprocessing the data, the remaining 9,100 grasp
instances and 306 objects are used for further analysis. This
number is lower to [18], as some instances are removed
because raters could not classify the object properly. The
first few objects are very common, about 2/3 of the objects
have less than 10 instances.

Fig. 6 shows the first 12 objects and their distribution
across the grasp types, and Table 2 shows their properties.
The most common grasp type is the medium wrap with
1,339 instances in the data set. The “mop” and “spray
bottle” objects are prevalent in that grasp type, accounting
for almost 50 percent of the data for that grasp. Precision
disk is heavily weighted by two objects, “towel” and to a
lesser degree, “sponge”. Therefore, those two objects will
dominate the object properties handled by this grasp type.
Also, many other grasp types are heavily influenced by
only a few objects. These common objects will potentially
distort the apparent characteristics of the grasp, rather than
giving a more comprehensive assessment of the grasp.
However, most grasps are used with many different objects
and should produce reliable results.

4.2 Overall Object Properties

Fig. 7 shows the statistics for the nominal values of the data
set. Object rigidity is dominated by rigid objects, which
make up about 58 percent. The fragile category is only 0.2
percent of the data set. Squeezable objects are 18 percent of
the data set and floppy objects are 24 percent.

For roundness, the data shows that a large proportion (61
percent ) of the non-floppy objects show roundness along the
long axis. Non-round objects make up 36 percent , whereas

Fig. 5. The figure shows the grasp size as determined by the two raters.
The grasp size is the length property of the object that best defines the
hand opening. A jitter of 1 mm was added to the data to help visualiza-
tion. Note that the grasp size is a combination of the size assignment
and the assignment of the grasped dimension.
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other symmetriesmake up for only 3 percent in the non-floppy
objects.Many objects in the data set are cylindrical and grasped
from the side, having “b/c” as the grasped dimension.

In about 94 percent of the grasp instances the smallest
dimension is equal to the grasped dimension (a/b/c, b/c,
or c). In 1 percent of the cases the grasped dimension is a/b
and in 4 percent of the cases it is b.

Concerning object size (Fig. 8), it is interesting to see that
for A, the largest dimension, values of 15þ cm dominate the
data set. This is the case for 55 percent of the non-floppy
objects. In all these cases the longest dimension cannot be
grasped, since it is larger than the human hand opening.
The second largest dimension, B, shows much smaller val-
ues. For B, only 7 percent of the sizes are too large to be
grasped and 89 percent of the dimensions are even smaller
than 7 cm. This means that most sizes are already well
within the graspable hand span (note that the non-prehen-
sile “platform” grasp does not require a small object dimen-
sion to execute). Concerning C, in 94 percent of the cases the
dimension is smaller than 5 cm.

As shown in Fig. 9, the mass of the objects is relatively
evenly distributed up to 400 grams. Heavier objects are

rare; only about 5 percent of the objects are heavier than
1,000 g. Furthermore, objects completely fixed to the envi-
ronment almost never occur, with only two instances in the
data set. The two large error bars at 100 and 400 g can be
explained by the towel object, which is very common, with
1,645 instances. Rater one assigned the towel 100 g, while
rater 2 assigned 400 g. Therefore, depending on which rater
value is used, a large number of instances are shifted
between those two bins.

Table 3 gives an overview of the distribution of the object
types in the data set. The most common objects are cylinders
(4,151 instances), irregular objects (1,807 instances) and
short prisms (573 instances). From all the possible objects
types, almost all have at least some instances. If the number
of instances is 0, but there is a range present, this means that
one of the raters had such an object assigned, but it was not
included in the merged data set.

4.3 Objects by Profession

The two professions work in very different environ-
ments. The housekeeper manipulates household and
cleaning objects in a home environment. On the contrary,
the machinist works in a highly specialized environment
with fewer everyday objects. As already shown in [18],
the machinist uses a more diverse set of grasp types,
and overall it seems that the tasks require a higher
degree of dexterity. A major difference from the house-
keeper data set is the presence of controls, lever arms
and other objects that are connected via a hinge to the
environment. These are commonly used to control lathes,
drills and other machine tools.

The overall statistics for the machinist and housekeepers
are shown in Figs. 7b and 7c respectively.

In the machinist data set, 59 percent of the instances are
rigid cylinders, of which all are grasped with a grasped
dimension of b/c. The objects that are cylinders range from
handles of tools, controls of machines, to drill bits. Rigid

Fig. 6. General object statistics. The most common 12 objects are
highlighted, all other objects are only indicated in white separated by ver-
tical lines. One can see that some grasps are heavily weighted by some
of the most common objects. Grasps with fewer than 50 instances are
not plotted. Total number of instances is 9,100. The order of the legend
corresponds to the order within each bar.

TABLE 2
The Table Shows the Most Common 12 Objects

and Their Properties
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1645 towel - - - - f - 250
550 small knob 5 3 3 b/c r a 150
522 mop 15þ 4 4 b/c r a 400
451 spray bottle 15þ 6 4 b/c s - 400
440 sponge 10 6 3 c s - 17.5
259 rod-like handle 15þ 1 1 b/c r a 400
232 calipers 15þ 3 1 b/c r - 171
206 rod 15þ 1 1 b/c r a 300
200 vacuum 15þ 5 5 b/c r a 1000þ
190 hex wrench 10 1 1 b/c r a 30
187 writing utensil 15þ 1 1 b/c r a 20
174 micrometer 12 2 2 b/c r a 170

The Count column indicates the number of instances that object was found in
the data set. All of those objects could be classified accordingly. The abbrevia-
tions in the Rigidity column are: f. . .floppy, r. . .rigid, s. . .squeezable. Size val-
ues were rounded to the next integer.
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objects are present in 86 percent of the instances and floppy
and squeezable objects are present in the machinist data
with 6 and 8 percent, respectively. In terms of the grasped
dimension, it is dominated by b/c (78 percent ) and the
other properties are prevalent in 1–12 percent of the non-
floppy instances.

The housekeeper data set is heavily weighted by floppy
objects, which make up 42 percent of the instances. Further-
more, rigid and squeezable objects are also prevalent in
about 29 percent of the instances in the housekeeper data.
The large error bar of the rigid and squeezable categories
can be explained by the fact that rater 1 and 2 disagreed
whether spray bottle (9 percent of the housekeeper data) is
rigid or squeezable. Depending on that assignment a large
proportion of the data is shifted between rigid and squeez-
able. Cylinders are slightly less common as in the machinist
data set. In terms of the grasped dimension, both b/c and c

are common, in 66 and 30 percent of the non-floppy objects.
The other grasped dimensions appear in at most 2 percent
of the instances.

For the machinist data set, there are 30 different parame-
ter combinations of grasped Dimension, shape, roundness

Fig. 7. The figure shows the overall object statistics as well as the statistics per profession. The errorbars correspond to a 95 percent confidence
interval; the exact calculation is described in Section 3.4. Note that floppy objects are only shown in the Rigidity category. The other properies are
not assigned for floppy objects.

Fig. 8. The figure shows the histogram of the object size. The errorbars represent the 95 percent confidence. Object sizes larger than 15 cm were
reduced to 15 cm. Note that by defintion A � B � C and that floppy objects were excluded which reduces the instances to 6,938.

Fig. 9. Histogram of the object mass data. Object with mass greater
than 1,000 g and that are fixed to the environment are set to
1,000 g. Full data set with 9,100 instances is shown. The errorbars
show the 95 percent confidence interval.
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and rigidity, whereas for the housekeeper this number is 41.
However, to cover 90 percent of the instances, the machinist
data set needs the most common eight combinations and
the housekeeper needs only six.

4.4 Object-Grasp Type Relationship

The data set can be used to analyze the relationship between
the grasp type and object properties.

Fig. 10 shows the distribution of the grasp size (the
object dimension which defines the hand opening) and the
mass distribution for different grasp types. Violin plots
[29] are used to show detailed density estimates for each
grasp, due to the irregular shapes of the underlying distri-
butions. We use the R [30] implementation ‘vioplot’ with
standard parameters. The dot represents the median of the
data, and the thick line shows the 25th and 75th percentile.
The number on the right shows the number of samples for
each grasp. On top, the properties of power, intermediate
and precision grasps [4], [5], [31] are shown. An intermedi-
ate grasp requires both power and precision. The label
next to the grasp name indicates which of these three clas-
ses the grasp belongs to.

The first three rows of the plots in Fig. 10 show the distribu-
tion of the grasp size and mass for the three high level grasp
classes. Power grasps are generally applied to large and heavy
objects. In terms of the mass and grasp size, intermediate and
precision grasps seem to be used for similar objects.

4.5 Grasp Selection by Object Type

Usually humans have a clear idea how an object type is
grasped. For example, one generally assumes that a cylinder
would be grasped from the side. In order to quantify this

TABLE 3
Number of the Instances of the Shape Classes in the Data Set

Zingg’s Number Object Type Number Instances

Equant 1 Cubic 17 � 13
2 Cubic Cylinder 21 � 511
3 Sphere 116 � 27

Prolate 4 Long Prism 68 � 179
5 Cylinder 4151 � 559
6 Long Ellipse 0 � 3
7 Long Ellipsoid -

Oblate 8 Short Prism 573 � 428
9 Short Ellipse 7 � 17
10 Disk 86 � 87
11 Short Ellipsoid -

Bladed 12 Irregular 1807 � 454
13 Ellipse A 91 � 149
14 Ellipse B -
15 Ellipse C 1 � 3
16 Ellipsoid 0 � 3

The number of instances and the width of the 95 percent interval is shown. The
shapes are shown in detail in Fig. 3. The table only contains non-floppy objects
(6,938 instances).

Fig. 10. Grasp Size andmass distribution for each grasp type. The average distribution for power, precision and intermediate grasps is shown on top. The
symbols next to the grasp name indicate towhich group on top each of the grasps belong to. For example the round symbols indicate a power grasp.Grasp
types with fewer than 50 instances are not plotted. Total number of instances for grasp size is 6,938 (floppy objects are excluded) and 9,100 for mass.
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relationship, Fig. 11 shows how object type relates to grasped
dimension. Most object types have a clear preferred way to
approach them. Long objects are usually grasped from the
side, rather than using the longest dimension. A disk is usu-
ally grasped from the top (grasped dimension a/b), whereas
a short prism is grasped by the smallest dimension. Irregular
objects unsurprisingly show the largest variation in the
grasped dimension.

4.6 Grasp Use over All Objects

One interesting way to utilize the results presented in this
paper is to examine the smaller subset of grasp types that
can be used to grasp the most objects, given the fact that
many grasps can be used for effectively the same purpose.
For example the “mop” object (see Fig. 6) is grasped with a
medium wrap, index finger extension, adducted thumb,
and stick grasps. By looking over all combinations of grasps
and objects, we can assess the versatility of a subset of
grasps at handling the largest number of objects in the data
set, and calculate a “grasp span” score for each. A grasp set
with a high span score is a versatile set which is able to han-
dle a wide variety of different objects. This methodology is
explained in more detail in [19].

Fig. 12 shows these results, with the optimal set of grasp
types for a given number of allowable grasps in the subset
and the corresponding fraction of the number of objects in
the set that the set is used for (“Grasp span score”). The
results show that the most important grasp type is the
medium wrap, which is also the most frequent grasp in
the data set, followed by the lateral pinch and the thumb
two-finger grasp. Adding successive grasps yield a decreas-
ing benefit in the grasp score where the score shows an
asymptotic behavior and reaches 1 for the full set of all
grasps. This asymptotic behavior is expected from the grasp
span, since the first few grasps ought to be most important in
determining the overall functionality of a hand. Because of
this effect, results only up to five grasps are presented. While
the choice of the first two or three grasps is quite important,
after that it is possible to exchange lesser important grasps
and achieve a very similar span score.

5 DISCUSSION

5.1 Overall Object Properties

Overall, the object property data can be useful in a number
of areas, such as robotic hand design and testing, defining

rehabilitation goals and tasks, and designing haptic interfa-
ces or other devices the hand interacts with.

For the objects within this data set, the object properties
vary surprisingly little. The objects are relatively lightweight,
with about 92 percent of the objects below 500 g and in only
about 5 percent of instances the grasped object heavier than
1,000 g. This fits related work showing that the majority of
objects in lifting activities were less than 300 g [32] and to
[33] who compiled a list of everyday objects that pose a chal-
lenge for patients with motor impairments. In a three finger
tripod grasp, a female hand can produce an average of 15.7
pounds (7.1 kg) of force with their non-dominant hand [34].
Even for a very slippery object, the hand should be able to lift
most of the objects with ease. However, the task based force
requirement is not taken into account. One can only specu-
late on how the task will change the force requirement, but at
least for pure transportation and object lifting, the human
hand is rarely operated near its maximum strength. In the
complementary paper [21] it is shown that in about 60 per-
cent of instances the grasp force is directly correlating to lift-
ing the object. Therefore, in 40 percent of the instances the
grasp force is dictated by the task, rather than the mass of the
object. This implicates force requirements for artificial hands
as well as peak forces needed for feedback in haptic devices.
Also in hand rehabilitation it might be beneficial to focus on
objects lighter than 500 g.

A similar observation can be made for the grasp size of
the objects. The hand is rarely challenged to produce a large
hand opening to accommodate the object, likely due in large
part to the objects being designed to accommodate grasp-
ing. In 5,747 of the cases (83 percent of the non-floppy
objects), the grasp size is less than 5 cm, and in 6,827 instan-
ces (98 percent of the non-floppy objects), it is opened less
than 10 cm. This suggests a natural hand aperture range for
robotic hand designs, as well as a range for test objects to
determine the grasping capabilities of a particular design.
This also suggests that devices designed for the hand, such
as haptic devices or other tools, may be most comfortable if
they require a hand opening of less than 5cm.

The grasps that handle the objects with the largest size
(Fig. 10) are, “large diameter”, “sphere-3 finger” and

Fig. 11. Comparison between the object type and the grasped dimension.
Uncommon combinations with less than 50 instances are not plotted.
Floppy objects are excluded which reduces the number of instances to
6,938. The order in the legend corresponds to the order within each bar.

Fig. 12. Optimal grasp sets for any given number of grasps. Adding more
grasps gives diminishing returns and already five grasps are close to the
maximum score of 1. Medium wrap and lateral pinch are shown to be
particularly important grasps overall.
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“medium wrap”. Interestingly, those grasps are not
strongly biased toward heavy objects; only the medium
wrap grasp is in the highest mass range (Fig. 10). On the
other side of the spectrum, the smallest objects are handled
with “thumb-2-finger”, “thumb-index finger”, “adduction”
and “writing tripod”. All these grasps have a very low
median grasp size of about 1 cm. It seems that for each
grasp type there is a relatively narrow mass and size range
they are used for.

5.2 Grasped Dimension

The grasped dimension is related to both the task and the
object. We believe it fits into the object classification better,
as for each grasp location the actual grasped dimension
seems to be fairly stable. Furthermore, the grasped dimen-
sion is defined in conjunction with the object dimensions,
which are inherently linked to the object properties.

As shown in Figs. 7 and 11, subjects have a clear ten-
dency to grasp objects by the smallest dimension of the
object. In about 94 percent of objects grasped (excluding
floppy objects), the smallest dimension was the relevant
grasped dimension, being either a/b/c, b/c, or c. This
confirms the results found in another study where ellip-
tical shaped cylinders were grasped. In that case the sub-
jects grasped the minor axis in 67 percent of the trials
[35]. This bias seems to be at least partly based on the
restrictions the object size imposes. For the largest
dimension a, 84 percent of the instances are larger than
10 cm, which already needs a relatively large hand open-
ing, thus might not be favored by humans. Both b and c
dimensions are usually much smaller. Only 8 and 0 per-
cent of the objects are larger than 10 cm for the b and c
dimension respectively. This data shows our 15 cm cut-
off hides little detail of grasping behavior. Thus, it is
typically feasible to grasp either of these dimensions,
from the perspective of hand opening size. These results
suggest that robotic hands and grasp planners should be
designed to facilitate gripping the smaller dimensions of
common objects, and generally avoid grasping by the
largest object dimension. This heuristic seems to make
intuitive sense with many common objects.

5.3 Object Types

As summarized in Fig. 3 and Table 3, those types that have
established common names (disk, cylinder etc.) are more
frequent than the object types that do not. That shows that
the object type assignment is aligned with the general per-
ception about objects categories.

The object types also seem to have very specific grasp-
ing patterns associated with them (Fig. 11). Long objects
are usually grasped in a wrap grasp where the grasped
dimension is b/c. A disk, as one would expect, is usually
grasped along the a/b dimension, or from the side in a
few rare instances. The strong relationship between object
types, grasped dimension and the expected intuitive
results show, for example, that some basic heuristics may
be sufficient to use “human-like” grasping strategies in
robotic systems. These results could also be used to better
design devices where the intended grasp orientation is
clear to the user.

5.4 Most important Grasp Types

The fact that the most frequent type of object is a cylinder
fits well to the result of the grasp span analysis, where the
most important grasp type to handle most of the objects is
the medium wrap (Fig. 12). The median mass it handles is
400 g with a grasp size of 4.5 cm. The second most impor-
tant grasp, the lateral pinch, is used on smaller and more
lightweight objects (median mass 150 g, median grasp size
2 cm). The third most important grasp, the thumb-2 finger
grasp, adds functionality by grasping even smaller and
more lightweight objects (median mass 105 g, median grasp
size 1 cm). This small set of versatile grasps, especially the
medium wrap and lateral pinch grasps, can be used as a
useful starting point for designing general purpose robotic
manipulators, especially anthropomorphic ones.

5.5 Differences between Professions

The results do show significant differences in objects han-
dled between the housekeepers and machinists. House-
keepers handle squeezable and floppy objects (such as
towels and sponges) more often, whereas the machinists
almost always handle rigid objects. However, in both cases
cylindrical objects dominate the data set and they are virtu-
ally always grasped along the circumference (grasped
dimension b/c, see Fig. 11). Also, for the other object types,
the grasped dimensions are fairly stable between the profes-
sions. This suggests that the results for other professions
should have many common characteristics, though future
work with other professions could confirm this. Thus, the
results presented should provide useful information about
human object handling in general, regardless of the exact
environment of interest.

6 CONCLUSIONS AND FUTURE WORK

The paper presents an object classification for grasping.
The objects found both in the housekeeper and the
machinist environments were classified successfully
according to the presented scheme. The results can help
to better understand the overall types of objects that
humans frequently encounter, as well as what strategies
are used to successfully grasp them.

The objects handled in our data set are surprisingly small
and lightweight. In order to grasp 90 percent of the objects
in the data set the way the human did, a hand should be
able to grasp objects 7 cm wide and a mass of 700 g. Further-
more, it has been shown that the human has a clear ten-
dency to grasp the smallest dimension of the object. These
results can translate directly to performance specifications
for a robotic hand, in terms of maximum grip aperture and
payload capacity, to handle a certain percentage of common
objects in human environments. Gripping by the smallest
object dimension is likely a useful heuristic to use for grasp
planning algorithms. Designing devices for human grasp-
ing beyond the 7 cm aperture, 700 g values may be unneces-
sary for human-like performance. In the environments the
videos were taken, most of the objects are designed for
human interaction. Therefore, the size of the actual grasp
location might have been selected to fit the human hand. At
this point it is unclear how those results translate to other
environments that are not man-made.

FEIX ET AL.: ANALYSIS OF HUMAN GRASPING BEHAVIOR: OBJECT CHARACTERISTICS AND GRASP TYPE 321



In terms of future work, there are a number of limitations
of the study presented here that might be addressed. While
we believe that our approach provides a nice balance
between effort required and generalizability, a study struc-
ture providing much more detailed measurements could
help reduce uncertainty in the object properties assigned.
However, we believe that the sheer number of samples con-
sidered helps to minimize any effects of imprecise object
attributes. Perhaps a more important factor is related to lim-
itations based on the nature of the grasping tasks that the
subjects performed. Since we placed most of our emphasis
on the correlation between grasps and object properties, we
hope that the nature of the task specifics would have a mini-
mal effect on the results, but it would still be informative to
perform the study with a wider range of subjects and tasks.
Overall, the current results should already be useful in
defining performance specifications for robot hands, inspir-
ing useful heuristics for grasp planners, helping to align
rehabilitation goals with real-world hand usage, and to
design devices for consistent grasp behavior within the
comfortable range of common objects encountered.
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