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Primates, and particularly humans, are characterized by superior manual dex-
terity compared with other mammals. However, drawing the biomechanical
link between hand morphology/behaviour and functional capabilities in
non-human primates and fossil taxa has been challenging. We present a kin-
ematic model of thumb—index precision grip and manipulative movement
based on bony hand morphology in a broad sample of extant primates and
fossil hominins. The model reveals that both joint mobility and digit pro-
portions (scaled to hand size) are critical for determining precision grip and
manipulation potential, but that having either a long thumb or great joint
mobility alone does not necessarily yield high precision manipulation. The
results suggest even the oldest available fossil hominins may have shared
comparable precision grip manipulation with modern humans. In particular,
the predicted human-like precision manipulation of Australopithecus afarensis,
approximately one million years before the first stone tools, supports
controversial archaeological evidence of tool-use in this taxon.

1. Introduction

Enhanced manual grasping is considered to have been a key adaptation separ-
ating the earliest primates from other early mammals [1,2]. This ability
continued to evolve among primates to become most refined in humans; co-
evolving with bipedalism, tool-use, brain enlargement and language [1-7].
Compared with other primates, the anatomy of the human hand helps to facili-
tate unique abilities, including forceful precision pinch grips between the pad of
the thumb and the pads of the fingers and precision handling (manipulating
objects within one hand) [3,5]. These dexterous abilities and associated anatomy
are traditionally considered to have evolved in response to removing the hands
from the constraints of locomotion as well as the mechanical demands of inten-
sive tool-use and tool-production in our fossil hominin ancestors [3,5,8,9].
However, there is still much debate about the inferred manipulative capabilities
of early fossil hominins, particularly with regard to tool-use [10-16] and
potential subtle differences in precision grip movement or ability between
Neanderthals and modern humans [17-19]. Furthermore, other primates,
with markedly different hand morphology (e.g. hand proportions, thumb
mobility) compared with that of humans, are also capable of using several
different precision grips, including tip-to-tip or tip-to-side of the finger pre-
cision grips (rather than pad-to-pad as in humans), as well as in-hand
movements [20], especially during feeding, tool-use [21-34] or experimental
tool-making activities [35,36]. Unlike humans, the hands of other primates
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Figure 1. The thumb and index finger kinematic model. The model is based on three thumb segments (first metacarpal (Mc1), proximal phalanx (PP1) and distal
phalanx (DP1)) and four index finger segments (Mc2, PP2, second intermediate phalanx (IP2) and DP2) of associated hand specimens. The digits touch a circular
object of varying size (R, radius) and rotation (). The relative orientation of the fingertips, touching two opposing points at the object, is 3, (thumb) and 3,
(index finger). The area in which the object can be manipulated is then calculated. The three rightmost pictures show an example workspace (WS) of one repre-
sentative human for three object sizes. In those pictures, one feasible configuration between the digits and object for each object size is shown. The dots represent
the object positions for which a feasible configuration exists and therefore indicate the WS area. The shaded areas represent the positions the tip of thumb (green)

and index (red) finger. (Online version in colour.)

must balance the morphological and functional requirements
of locomotion, feeding and manipulation, all of which vary
tremendously across the order Primates. From an evolution-
ary standpoint, this prompts several questions about if and
how primate grasping is derived from the requirements
associated with feeding and/or locomotor behaviour, what
grasping abilities are unique to humans and when these
evolved, and what morphological constraints might limit
precision grasping.

These questions are not fully understood in part because
previous studies on primate grasping—and specifically pre-
cision grasping—have focused on digit posture (e.g. contact
between the hand and the object; [21,22,30]) or morphology
(e.g. length of the thumb relative to the fingers; [3-5,9]),
both of which have been difficult to link directly to dynamic
digit movement. Furthermore, investigation of the evolution
of grasping is limited to inferences from bony morphology
only, as this is all that is preserved in the fossil record
[10,14,37]. Experimental studies, including the kinematics
[38], electromyography of muscle use [8] or force experienced
by the digits [39] during particular grasping tasks provide
important information about the biomechanics of grasping,
but may not be logistically or ethically feasible on extant
primates and cannot be applied to extinct taxa. A lack of
methods enabling the quantification of digit movement and
dexterity directly from bony morphology has limited
our understanding of evolution and variation of precision
manipulation in primates.

Among the wide range of grip types within the primate
grasping repertoire, the thumb-index finger pinch is particu-
larly important for increased manual dexterity [3,40]. Nearly
all forms of precision grip and many power grips [41] involve
thumb-index opposition, making it the foundation of stable
human grasping of small objects. Furthermore, thumb—index
opposition was critical for tool-related behaviours in human
evolutionary history [42] and remains crucial in modern
humans for many precision manipulation tasks (e.g. hand-
writing, fine scraping) and nearly all types of human
in-hand manipulation (where a grasped object is positioned
by moving the fingers) [43]. It also provides the greatest

range of in-hand manipulation workspace (WS) compared
with grasps with more than two digits [44].

This study presents a novel method founded in mechanism
kinematics that allows us to estimate the precision manipulation
capabilities between the thumb (first ray) and index finger
(second ray) across a broad sample of extant primates and
fossil hominins. Here, we use “precision grip/grasp’ to refer to
a specific static thumb-index finger posture in which an
object is held between the fingertips, whereas ‘precision
manipulation” reflects the active movement of objects held
between the fingertips and generally requires complex individ-
ual digit control. The kinematic hand model is based on the
segment (i.e. metacarpal and phalanges) lengths of the thumb
and index finger from associated hand skeletons and inferred
or measured mobility (i.e. range of motion) of the first and
second ray joints [45] (figure 1). In particular, the model incor-
porates inferred variation in trapeziometacarpal joint mobility
across major primate clades (e.g. opposable versus pseudo-
opposable thumbs). The manipulation WS of a given hand is
calculated as the area over which the fingers can position a cir-
cular object of varying size while satisfying the mechanical
constraints of the model (see Material and methods). Thus,
WS is a measure of dynamic thumb—index manipulation, pro-
viding insights into both the range of locations over which an
object can be grasped by the thumb and index finger, as well
as the space over which the grasped object can be actively posi-
tioned by those digits after being grasped. As such, we consider
a hand with a larger thumb—index finger manipulation WS to
be one with a greater precision grip potential and overall
increased dexterity than a hand with a smaller manipulation
WS. Niewoehner et al. [19] used a similar method to investigate
precision grip ability in the Neanderthal hand. However,
our method differs from this previous study by employing
a full kinematic analysis quantifying for the first time the
manipulation WS. Furthermore, as our analysis is completely
automated, we were able to apply the method to a large
comparative sample, rather than qualitatively comparing a
Neanderthal to a modern human.

We apply this kinematic model to an extant primate
sample, including 1 = 360 associated hand specimens from
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38 species of extant hominoids, Old World and New World
monkeys and strepsirrhines, and a fossil hominin sample
comprising specimens with associated and complete thumb
and index fingers that span nearly four million years of
hominin evolution. The fossil hominin sample includes the
Pliocene fossil hominin Australopithecus afarensis composite
hand [10,11], Pleistocene fossil hominins Australopithecus
sediba MH2 [14], Homo neanderthalensis Kebara 2 [46], and
early Homo sapiens Qafzeh 9 [47] and Ohalo II H2 [48].
Although this kinematic model simplifies the complexity of
anatomy and movement in the primate hand, and particu-
larly that of the thumb, this simplicity makes the model
applicable to associated fossil specimens for which knowl-
edge about joint movements, soft-tissue anatomy or
possibly other bones (e.g. carpals) is unknown. This model
offers for the first time a method of assessing manipulative
movement within the hand based on bony morphology
alone. It can help to establish new links between behaviou-
ral studies and morphology, and may reveal potential
manipulative capabilities in taxa for which behavioural or
biomechanical studies have not yet been done (e.g. most
strepsirrhines) or are not possible (i.e. fossil taxa and kin-
ematic studies of most extant non-human primates). Here,
we focus on the thumb-index finger movement of several
extant primate taxa known for their dexterity (precision
grip ability, manipulative skills or tool use) and fossil homi-
nins. The model can be applied to extant and fossil primate
and non-primate taxa alike, and can be modified to include
different grips or ranges and planes of motion in future
biomechanical studies.

Using this kinematic model, we predict that humans will
have the largest thumb-index finger WS across all object
sizes and that non-human primate taxa considered to be most
dexterous in the wild and/or captivity—specifically African
apes, baboons, macaques and capuchin monkeys—will have
higher WS values than other primates [22,23,25-31]. We
expect Pongo to have a different WS from other dexterous
species because, although they are also adept tool-users, they
have short thumbs and often use a variety of finger-only and
non-hand (e.g. mouth or foot) strategies to grasp and use
tools [24,30,49]. Among fossil taxa, we hypothesize that
Au. afarensis will have a smaller thumb—index finger WS than
Au. sediba and later Homo, and that Au. sediba will group with
later Homo because of its long thumb [14]. We further predict
that H. neanderthalensis will have distinct WS pattern, though
not necessarily smaller, compared with early and recent
H. sapiens owing to differences in relative segment lengths of
the thumb [17].

2. Material and methods
2.1. Extant sample

Our dataset consists of 360 associated hand specimens from 38
primate species (figure 4 and electronic supplementary material,
table S2), including hominoids, Old World monkeys, New World
monkeys and several species of strepsirrhines (sexes pooled). The
human sample includes African, European and small-bodied
Khoisan individuals, all of which have very similar relative seg-
ment length proportions. Interarticular (IA) length of the first
and second metacarpals and maximum length of the proximal,
intermediate and distal phalanges of the first and second rays
were measured on associated osteological specimens (i.e. instead

of using species means for each segment). For part (1 = 230) of n

the sample that did not have IA length for the metacarpals,
total length (TL) was used to estimate IA length using regression
based on n = 130 specimens (electronic supplementary material,
figure S4)

IApa = 0.964 - TLya  (R? = 0.998)
IAme = 0.965 - TLye  (R? = 0.997).

The high correlation allowed transformation of TL measurements
to IA length without the introduction of significant error. Associ-
ated specimens with at least one segment outside a +2.50 range
were removed from further analyses. This included the removal
of five H. sapiens, two P. pygmaeus, two Macaca fascicularis, two
Loris tardigradus, two Tarsius syrichta, one Microcebus murinus and
one Nycticebus coucang individuals.

2.2. Fossil sample
Thumb and index finger segment lengths were measured directly
from the fossils (electronic supplementary material, table S2). The
Au. afarensis (3.9-2.9 Ma) composite hand is comprised fossils
that are not associated with the same individual [10,11], and
thus, there is debate regarding the hand proportions in this
taxon and the potential for human-like precision grip
[10,11,15,16,50]. However, we include Au. afarensis as an estimate
of the potential primitive condition in hominins. Specimens
included in the model are: Mcl AL333w-39, PP1 AL333-69
and DP1 AL33-159 for the thumb, and Mc2 AL333-48, PP2
AL333-93, IP2 AL333-32 and DP2 is a mean length of the
only two non-pollical distal phalanges, AL333w-11 and -50.
Australopithecus sediba (1.98 Ma) MH2 is the only (published)
almost complete hand of early fossil hominin individual, and its
morphology demonstrates a mosaic of primitive, African ape-like
features and derived, human-like features [14]. MH2 is missing
the distal phalanx of the index finger (DP2). Therefore, two
models of Au. sediba were constructed estimating the length of
the DP2 based on both a ratio of IP2/DP2 length in Pan
troglodytes and in H. sapiens.

2.3. The kinematic model

The thumb and index finger are each modelled as a three link
model, such that the basal joint is the trapeziometacarpal joint
in the thumb and the metacarpophalangeal (McP) joint in the
index finger (figure 1). The model and calculations are done in
Matlab (MathWorks Inc., Natick, MA). The segment lengths are
derived from the associated osteological hand specimens, but
act as kinematic link lengths in the model. Thus, the joint centres
are located at the end of the bone in the model, whereas in rea-
lity, the joints centres are located in the centre of the epiphyses.

It is assumed that the carpometacarpal joints of the thumb
and index finger derive from a single point in morphospace,
even though morphologically they are separated (Mcl articula-
tes with the trapezium, whereas the Mc2 articulates with the
trapezoid and capitate in a more distal and medial anatomical
position). Thus, the assumed distance between the trapeziometa-
carpal joint and the McP joint of the index finger is the IA length
of the Mc2.

The thumb and index finger are restricted to movement in a
single plane, even though the primary plane of movement for
both digits is not coplanar. All joints are decoupled (i.e. can func-
tion independently), and each joint has one degree of freedom,
acting as a hinge joint in flexion and extension only. Thus, abduc-
tion and adduction of the thumb and other out-of-the-plane
movements are not modelled. Primates vary strongly in the mor-
phology of the trapeziometacarpal joint and range of mobility.
Therefore, the limit of movement for this joint follows the
group mean estimations of flexion by Rose [45] for Homo
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Figure 2. Relative segment lengths of the thumb and index finger in extant primates. The sum of all segments within each specimen is scaled to 1. The Pan sample
includes both chimpanzees and bonobos combined, as digit proportions were very similar between the two species. The H. sapiens sample includes African,

European and small-bodied Khoisan individuals. (Online version in colour.)

(37.6°), great apes (32.8°), cercopithecoids (21.4°), colobines (12.5°),
New World monkeys (10.6°) and strepsirrhines (10.6°). The same
value was used for all species within the respective groups.
Although these values are estimated from the bony morphology
[45], they are measured in a variety of different primate species
and incorporate important differences in opposable (hominoids
and Old World monkeys) and pseudo-opposable (New World
monkeys and strepsirrhines) thumb mobility across the breadth
of our sample [4]. The limit of movement for all other joints is
based by necessity on the maximum range of motion in human
joints, because this information is not known for all non-human pri-
mates. Maximum flexion values for the index finger are 85.5°, 102°
and 72° for the McP, first interphalangeal joint (IP]), and second IPJ,
respectively [51]. In the thumb, maximum flexion of the McP is 59°
and the IP] is 67° [52].

In the kinematic model, the digits move to grip a circular
object (figure 2) that varies in size, with a radius (scaled to
hand size) of R=0 (i.e. where the thumb and index finger
touch) to R=10.3. The object sizes are scaled to the size of
the hand, such that a radius of 1 is equal to the TL of rays 1
and 2. Only a single point on the fingertip can contact to the
object, the digits must oppose each other perfectly on the
object (i.e. 180° apart on the object), and the digit and object
must be non-intersecting (i.e. collisions limit the range of
motion). When both digits are fully extended (i.e. straight), the
angle between them is 90°. The relative angle B between
the diameter connecting the grasp points and the distal finger
segments (DP1, DP2) is restricted to [—90...90] degrees.

Soft tissues and muscle forces are not considered nor does the
model take into account muscular and neural couplings between
finger joints (which are not known or available for the majority of
the specimens considered); this model is purely kinematic. There-
fore, whether it is biologically possible for a given hand to apply
forces in a particular direction, whereas grasping the object in a
given configuration is not tested. However, the simplicity of the
model makes it applicable to fossil specimens for which only
information about bony morphology is preserved. Human joint
ranges of motion were used for all joints of the fossil H. sapiens
and H. neanderthalensis specimens, because overall hand mor-
phology is generally very similar [18]. Given the mosaic

human-like and Pan-like morphology of Au. afarensis and Au.
sediba hands, two models were created for each; one using a
Pan joint limit for the trapeziometacarpal joint and human joint
limits for the remaining joints, and the other using a human
limits for all joints.

2.4. Workspace calculation

To determine the area over which an object can be manipulated, a
circular object is placed into the model. The object has two grasp-
ing points: index finger (red dot) and thumb (green dot; figure 1).
The parameters of the object are the centre location p € R? and
orientation («). Furthermore, for each object position the relative
orientation of fingertip and object (8; and ;) can be varied. For
a given object location p, there are infinite object rotations « and
hand configurations defined by 8; and B,. In order to count an
object position p as valid, only one set of «, 8; and 3, that results
in a feasible configuration (where both fingertips are able to touch
their respective grasping points and each joint is within its defined
limits) is necessary. Multiple solutions for one position will not
give an additional benefit in the WS calculation.

For the actual calculation, the plane is discretized into equally
spaced points, where the interpoint distance in x- and y-directions
is dx. A smaller distance results in a finer grid, which leads to a
higher precision of the WS calculation. For the actual WS calcu-
lations, dx is set to 0.01. For each location in the WS, the object is
rotated between a = 0-360°. In our case, one revolution of the
object is discretized into 120 steps. Furthermore, the relative angle
between object and finger is varied, B;= —90° to 90°. Those
angles are discretized into the same number of bins as «. For each
of those configurations (p, a, B, B2), it is checked whether a feasible
finger configuration exists. Overall, the sum of all object positions p,
where at least one valid grasp configuration of « and 8 was found
will determine the hand WS.

N .
_ a2 _ ~_f1, 3validgrasp forany o, B, B,
WS = dx zl: a;, where a; = { 0, otherwise

We look at a large diversity of primates that vary greatly in hand
morphology and body mass. To facilitate comparison of hands of
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widely different sizes, all of the thumb and index finger segment
lengths for each individual are normalized to a common length of 1

Mcl + PP1 + DP1 + Mc2 + PP2 +IP2 + DP2 = 1.

This is the most straightforward normalization, as it relies only
on parameters that are used for modelling the hand, as body
mass is not known for most osteological specimens.

3. Results

3.1. Relative segment lengths in extant primates

A key morphology that has been linked to precision grip ability
is the length of the thumb relative to the fingers [3,5]. The broad
comparative primate sample we have collected here demon-
strates substantial variation in thumb-to-index finger length
ratio and the relative segment lengths within each ray (figure
2). Within the index finger, most of the variation across primates
is in the length of the metacarpal and proximal phalanx, whereas
all segments within the thumb vary strongly. Humans are dis-
tinct among primates in having the longest thumb relative to
their index finger, which facilitates the ability to oppose the
pad of the thumb to the distal digits and provides greater control
of an object during precision handling [3-5]. However, other
primates show a variety of different thumb—index finger pro-
portions to accommodate requirements of locomotion or
feeding, including reduced thumb length (e.g. Presbytis),
reduced index finger length (e.g. Loris), elongated finger length
(e.g. Pan, Hylobates) or reduced metacarpals, but elongated pha-
langes (e.g. Daubentonia; figure 2 and electronic supplementary
material, figure S1) [4,53,54]. The primate taxa documented as
being particularly dexterous during feeding or tool-use also
vary greatly in their thumb-index finger proportions (figure
2). At one extreme, Pongo and less so Pan have a relatively
long index finger and short thumb, whereas at the other extreme,

Papio and less so Sapajus, show the opposite proportions with a
relatively long thumb and are more similar to H. sapiens in this
way. This variation in relative segment lengths has biomechani-
cal consequences for thumb—index finger opposition.

3.2. Thumb —index finger workspace in extant primates
The precision grip WS for each individual and each taxon
was calculated for grasping and manipulating a circular
object varying in size (scaled to hand size) from R=0 to
0.3, increasing incrementally by 0.01 (figure 1). The WS for
R =0 corresponds to the area over which the tips of the
thumb, and the index finger can touch. As the size of the
object increases up to R=0.3, the WS increases until a
point when the object size becomes a constraint on digit
movement. The WS for all primates was zero for objects
with an R > 0.3 (about the size of a ripe cantaloupe for the
average human hand). Figure 1 shows an example WS for a
representative human. The general behaviour is similar for
all primate taxa, but the y-intersect and the maximum
height and position vary for each individual and species.
Figure 3 and table 1 show the average and peak precision
manipulation WS relative to object size in a sample of primate
taxa that vary substantially in their locomotor and feeding
behaviours, relative digit/segment lengths or inferred trape-
ziometacarpal joint mobility (figures 2 and 4 and electronic
supplementary material, figure S2; also see Material and
methods). Across all samples, humans have the largest
WS for all objects with an R < 0.15 (slightly larger than a
tennis ball for the average human hand; figure 3). The peak
human WS is substantially higher and at a smaller object
size (R = 0.08) than those of all other primates (table 1 and
electronic supplementary material, table S1). Within non-
human primates, Gorilla have the closest WS to humans,
followed by Pan (including both chimpanzees and bonobos),
but the peak WS for all African apes is at a much larger
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Table 1. Position of the peak workspace and object size for a sample of extant and fossil primate taxa. The real object size corresponds to the object size that n
is achieved by scaling the relative object size back to real world units. Australopith ‘human’ and ‘Pan’ refer to use of human versus Pan trapeziometacarpal joint
range of motion in two separate kinematic models. In Au. sediba MH2, the length of the DP2 was also inferred using both human and Pan DP2/IP2 proportions

(see Material and methods).
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object size than that of humans. Papio and Macaca mean and
peak WS is broadly similar to that of Pan, both being slightly
better at manipulating mid-sized objects but slightly less
adept with very small or very large objects, despite a substan-
tially different thumb-index finger ratio (figures 2 and 3) and
lower trapeziometacarpal joint mobility (see Material and
methods). Sapajus shows a large range of intraspecific vari-
ation (as reflected in the segment lengths in figure 2), but its
peak WSis for relatively small objects and its overall WS is gen-
erally similar to Gorilla for manipulating smaller objects even
though Sapajus has more limited thumb mobility. However,
Sapajus falls below African apes, Papio and Macaca in manipu-
lating larger objects (R > 0.07). Pongo, with a relatively short
thumb, has a much smaller WS than all other taxa, apart
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from manipulating relatively large objects (R > 0.18; electronic
supplementary material, figure S2).

Across our primate sample, there are some general patterns
in precision manipulation WS despite differences in thumb—
index finger proportions and joint mobility (figure 4).
Although there is large variation in WS for small object sizes
up to about R = 0.1, manipulation WS generally converges
across all primates, including humans, for the larger R > 0.15
objects (figure 4). In general, all taxa show their greatest WS
with a relative object size of around R = 0.1, whereas manipu-
lation of objects with an R = 0 is similar or smaller to the WS of
R =0.2 objects. The only exceptions to this general primate
pattern are humans (and fossil hominins, see below), New
World monkeys (Cebus, Alouatta and with some overlap,
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Sapajus) and aye-ayes (Daubentonia), in which the WS for R = 0
is substantially greater than that of R =0.2.

These results highlight the enhanced human ability to
precision grasp small objects, but also reveal that different com-
binations of relative thumb—index finger proportions and joint
mobility can produce similar manipulation capabilities (figure 4
and electronic supplementary material, figure S2).

3.3. Thumb—index finger proportions and
manipulation workspace in fossil hominins

While there are some subtle differences, fossil hominin finger
proportions, manipulation WS values all fall within the range
of recent H. sapiens variation (figure 4). Australopith
hands demonstrate a combination of Pan-like and human-
like morphology and thus inferring mobility of the thumb
is challenging. Therefore, we created two models each for
Au. afarensis and Au. sediba using either a Pan-like or

human-like trapeziometacarpal range of motion (see Material
and methods). Furthermore, the Au. afarensis composite
hand is based on unassociated fossils from multiple individ-
uals, and thus this study presents only one possible estimate
of precision manipulation in this taxon. The Au. afarensis
thumb-index proportions here are generally similar to those
of H. sapiens but with a slightly longer index finger (figure 4;
electronic supplementary material, figure S3). In contrast, the
associated MH2 hand of Au. sediba demonstrates a relatively
long thumb, particularly the first metacarpal, compared with
other fossil hominins and recent H. sapiens (figure 4 and elec-
tronic supplementary material, figure S3) [14]. Despite this
variation in morphology and mobility, the mean manipula-
tion WS for all Au. afarensis and Au. sediba thumb and index
finger kinematic models fall within the recent H. sapiens
range of variation. Using a Pan-like range of trapeziometacar-
pal mobility, both australopiths fall slightly below the mean
and peak WS of H. sapiens and H. neanderthalensis, especially
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for small objects (R < 0.1; figure 5 and table 1). When using a
human-like range of trapeziometacarpal mobility, Au. afarensis
has the same mean and peak manipulation WS as recent
H. sapiens, whereas Au. sediba falls out slightly higher than
recent H. sapiens and fossil Homo, in particular for object sizes
R >0.08.

Given their generally recent human-like morphology, all
H. neanderthalensis and early H. sapiens kinematic models used
a recent human range of motion at the trapeziometacarpal
joint. However, compared with recent H. sapiens, some fossil
Homo specimens demonstrate subtle differences in thumb-—
index finger proportions (figure 4 and electronic supplementary
material, figure S3). H. neanderthalensis demonstrate distinct
pollical proportions with a relatively longer pollical distal
phalanx but shorter proximal phalanx [17]. Early H. sapiens
Qafzeh 9 has a relatively longer thumb than Ohalo II H2,
although both fall within the range of variation of recent
H. sapiens (figure 4). Despite these differences, all fossil Homo
generally have a similar mean and peak manipulation WS for
a relatively small object size, although H. neanderthalensis and
early H. sapiens Qafzeh 9 have slightly higher WSs for very
small objects (R > 0.05; figure 5).

Overall, there is little variation in the potential thumb-—
index finger WS across australopiths (especially using
human range of mobility), fossil Homo, and recent H. sapiens
despite subtle differences in thumb—-index finger proportions
and potential thumb mobility.

4. Discussion

This study models, for the first time, digit movement during
precision grasping and manipulation in a broad sample of

humans, non-human primates and fossil hominins. Our
kinematic thumb-index finger model allows one to assess
tip-to-tip precision manipulation potential from the bony
morphology of associated hand skeletons. This model is lar-
gely based (by necessity of available data) on human
kinematics, and thus likely provides the most realistic esti-
mate of digit movement in humans and fossil hominins,
while perhaps overestimating or underestimating precision
grip potential in non-human primates (see Material and
methods). Although the model incorporates variation in
thumb mobility (e.g. opposable versus pseudo-opposable
thumbs), it does not incorporate the complexity of additional
planes of motion (e.g. abduction—adduction), muscle and
tendon function, or neurological and myological couplings
across segments or digits as these data are unknown for the
vast majority of extant primates and are unavailable for
fossil specimens. This model also does not take into consider-
ation the associated cognitive or ecological factors that may
be required for or promote particular grasping behaviours.
The simplicity of the model, however, makes it ideal for
comparative analyses across extant and fossil primate and/
or non-primate taxa alike, and offers a novel method of asses-
sing how variation in bony morphology can affect digit
movement. With further research, the model can be adapted
to include different ranges of motion in multiple planes and
potentially different grasping behaviours (e.g. pad-to-pad
or power grip) between the thumb, index finger or other fin-
gers. Nevertheless, results from the current model provide
support for our hypotheses and also reveal several general
patterns in primate thumb-index finger precision manipu-
lation potential, despite large variation in hand morphology.

Across our broad sample of primates, the highest
manipulation WS for all taxa is for non-zero object sizes
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when the tip of the thumb and index finger are not touch-
ing. The majority of primates demonstrate a similar WS
pattern, in which maximal WS is generally between a relative
object size of R=0.05 and 0.15 (figure 4 and electronic
supplementary material, figure S2). This similar pattern is
also a consequence of the similarity of segment length pro-
portions between primates, where many species have similar
ratios between two adjacent segments. This ‘sweet spot’
around the maximal WS is a balance of trade-offs: grasping
an object can be thought of as extending the length of the
digit by the object radius to increase the WS size, but as the
object gets larger relative to the size of the hand, it begins to
collide and interfere with digit movement. Across primates,
different combinations of thumb-index finger proportions
and joint mobility can provide a similar manipulation WS.
For example, a relatively short thumb but high trapezio-
metacarpal joint mobility, as in African apes and Hylobates,
yields similar WS values as a relatively long thumb and limited
thumb mobility of many Lemuriformes and Lorisiformes [55].
Although the dexterity of great apes has been well documented
[20-24,27,32], recent experimental studies suggest that the
manipulative abilities in some strepsirrhines may be underesti-
mated [56,57], and our results offer support for future research
in these taxa. At the same time, these results also demonstrate
that a relatively long thumb—a key morphological feature
often linked to precision grip ability in extant and fossil apes
[4,5,10,14,58]—does not necessarily translate into greater
thumb-index finger manipulation. Although humans and
fossil hominins have a higher manipulation WS, especially
for smaller objects, several strepsirrhines, including Propithecus
and most Lorisiformes, have a similar or higher thumb—index
finger ratio compared with humans (owing to a markedly
reduced length of the index finger), but substantially lower
mean manipulation WS. However, the segment proportions
of most non-human primates are at a biomechanical disadvan-
tage relative to the human proportions, such that even with
higher human-like trapeziometacarpal joint mobility, their
WSs are substantially lower than that of humans. These results
highlight the functional importance of joint mobility and a
kinematic ‘balance” in hand proportions.

Results from this kinematic model offer support for most
of our hypotheses. First, we predicted that extant humans
would have the largest thumb-index finger WS for all
object sizes compared with other primates. Humans have a
much higher mean and peak WS for small-to-medium objects
(i.e. R=0.0-0.15; R = 0—35 mm for an average human hand
size) than all other extant primates. This is consistent with
comparative biomechanical and behavioural studies high-
lighting the enhanced human ability to securely hold and
manipulate small objects between the thumb and index
finger [3,5,23,30]. However, humans have a slightly lower
WS than other dexterous primates for larger objects
(i.e. R > 0.15), suggesting that the human hand is particularly
well suited to manipulate smaller objects (figure 3 and elec-
tronic supplementary material, figure S2). These results thus
provide further empirical support for Napier’s [3, p. 652]
original observation that thumb-index finger precision
grips are key to human manipulative abilities. Although
our current model does not investigate the manipulative
WS of pad-to-pad precision grips that are distinct to
humans, it is interesting that even a tip-to-tip precision grip
model—a grip that many other primates are capable of
using—shows a potential optimization for smaller objects in

humans relative to other taxa. As to why the human hand n

may have evolved to be particularly adept at manipulating
small- and medium-sized objects may be related to a particu-
lar focus in our early evolutionary history on flake tool-use
[12], food foraging or processing of small items similar to
that of extant baboons [59], or any number of other manipu-
lative behaviours [11,16]. We predict that modelling the
distinctive pad-to-pad precision grip, in which the distal IPJ
is extended rather than flexed, will further highlight the
enhanced human ability to manipulate small objects in
particular compared with other primates.

Second, we predicted that non-human primates tradition-
ally considered more dexterous in the wild and/or captivity
would have higher WS values than other non-human primates.
This hypothesis is partially supported by the high mean WS in
Gorilla and the high WS specifically for small objects in Sapajus
(as well as Cebus). Although Gorilla do not regularly use tools in
the wild like their chimpanzee cousins, they often use the
thumb and index finger to grasp small objects [30,60] and
exhibit a larger variety of precision grips during food prep-
aration [27,60,61]. Similarly, Sapajus has evolved myological
and neurological features that facilitate digit individualiza-
tion [62] and a ‘functionally” opposable thumb [26]. Sapajus
exhibits considerable manipulative skills with small food
items between the thumb and index finger, compared with
the whole-hand grip strategies of other New World monkeys
(i.e. Saimiri and Saguinus; [26,63,64]). Although Sapajus is
more well known for its nut-cracking activities, these are
done with large (i.e. 25% of their body mass) stone anvils that
require bimanual power grips rather than precision grasping
[65]. Cebus has a similarly high WS for small objects and is
also known to manipulate leaves as tools in the wild [66]. How-
ever, Alouatta demonstrate similar WS values to Sapajus and
Cebus and are not known to have enhanced manipulative
skills in the wild or captivity (though this has not yet been
studied). Furthermore, the other primates known to be particu-
larly dexterous—Pan, Papio and Macaca—have the same mean
and peak manipulation WS as the general ‘primate” pattern
(despite large variation in thumb-index proportions and
joint mobility), which does not support our hypothesis that
these taxa would have higher thumb-index finger manipu-
lation than other primates. Pongo, as predicted, demonstrates
a much lower mean and peak thumb-index finger WS com-
pared with all other primates (except Presbytis) for small- and
medium-sized objects (R < 0.18), which may help to explain
why they often use within-finger grips or the mouth to
manipulate objects [24,49] (electronic supplementary material,
figure S2).

Third, we found general support for our predictions among
the fossil taxa. Overall, all fossil australopiths and Homo fall
within the range of variation in recent H. sapiens manipulation
WS. Using either Pan-like or human-like trapeziometa-
carpal joint mobility, Au. afarensis mean thumb—-index finger
WS falls at or just slightly below the recent H. sapiens and
fossil Homo means (figure 4). This study uses just one possible
hand configuration for Au. afarensis with thumb—index finger
proportions that are similar to recent H. sapiens. Other research
has demonstrated that hand proportions in Au. afarensis
may be more similar to Gorilla [15]. Furthermore, Au. afarensis
Mcl and trapezium articular morphology suggests that
range of motion at this joint may have been more similar to
Pan [50,67] and thus it is possible that Au. afarensis may have
had a smaller thumb-index manipulation WS than later
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hominins and was, in particular, less adept at manipulating
small objects.

Using a Pan-like trapeziometacarpal joint mobility, Au.
sediba falls below the recent and fossil Hormo mean WS despite
having a relatively longer thumb (figures 4 and 5; electronic
supplementary material, figure S3). Like Au. afarensis, the Pan-
like model for Au. sediba has a lower WS for manipulating
small objects (R < 0.1), highlighting the importance of thumb
mobility (rather than thumb length in this case) for fine-tuned
precision manipulation (figure 5). However, the trapeziometa-
carpal morphology of the Au. sediba Mcl indicates a larger
range of mobility than Au. afarensis [14], suggesting that
human-like Au. sediba model may be a better estimate of
thumb—index manipulation in this early fossil hominin. Using
human-like trapeziometacarpal mobility, Au. sediba has a
slightly higher mean WS than recent H. sapiens, but generally
has the same manipulation WS as recent and fossil Homo, as
predicted. Nevertheless, the fact that the Au. afarensis and
Au. sediba thumb—index manipulation potential falls generally
within the Homo range of variation is consistent with previous
suggestions that both australopiths may have been capable of
at least some human-like precision grips [5,14,16,67]. This func-
tional assessment is further supported by archaeological
evidence of tool-use in Au. afarensis-bearing deposits at 3.4 Ma
[12] and the first recognizable stone tools at approximately
2.6 Ma [68]. These results also suggest that Au. afarensis may
have had greater dexterity than is required for cutting with a
stone [32], including manipulative and tool-related behaviours
that may not preserve in the archaeological record.

Finally, the results do not support for our prediction that
H. neanderthalensis (represented here only by Kebara 2) will
have distinct, though not necessarily smaller, manipulation
WS pattern compared with early and recent H. sapiens
owing to differences in relative segment lengths of the
thumb [17]. H. neanderthalensis has a similar mean WS and
identical peak WS for the same relatively small object size
as that of recent H. sapiens (figure 4 and table 1). When WS
is viewed across different object sizes, H. neanderthalensis
falls above the recent H. sapiens WS range of variation for
very small objects (R < 0.05; figure 5). However, early
H. sapiens Qafzeh 9 displays a similar WS pattern suggesting
that potential increase in thumb-index precision grip of
small objects is not related to the distinct H. neanderthalensis
thumb proportions. The inclusion of additional associated
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Supplementary Figure 1. Relative segment lengths of the thumb and index finger in selected
extant primates. The sum of all segments of one specimen is scaled to 1. Each species is colored
differently and the grey dots in the background represent the full primate sample.
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Supplementary Figure 2. Workspace values relative to object size in a sample of extant and extinct
primates. The bold lines represent the mean value for each taxon and the lightly shades areas represent
the standard deviation. The maximal workspace line represents the highest achievable workspace for
each object size and was determined by finding the combination of segment lengths that resulted in the
highest possible workspace. Humans and fossil hominins have a much higher workspace compared with
all other primates. Presbytis, with a markedly reduced length of the index finger, has the lowest
workspace values for a large range of object sizes (R=0-0.15). Pongo has also has a low thumb-index
finger ratio due to a relatively long index finger, however, the larger range of motion at the
trapeziometacarpal joint results in a slightly larger workspace than Presbytis. Daubentonia has the
lowest workspaces for R > 0.15, but for smaller object sizes, the workspaces are well within the range of
the primate sample. This atypical behavior is a direct consequence of its unique segment proportions,
including a second metacarpal that is shorter than the second proximal phalanx.
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Supplementary Figure 3. Relative segment lengths of the thumb and index finger in extinct
primates. The sum of all segments for of specimen is scaled to 1. The length of the missing DP2 in Au.
sediba is estimated using the ratio of IP2/DP2 of H. sapiens (resulting in a longer DP2, with other
segments relatively shorter) and Pan (resulting in a shorter DP2, with other segments relatively longer).
The other segments of Au. sediba changed too as the sum of all segments is scaled to 1.
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Supplementary Figure 4. Comparison of interarticular and total length for the metacarpal bones.
A regression of first (above) and second (below) metacarpal interarticular length relative to total length.
The regression line has a y-intersect at 0 and is fitted to all data points. The high correlation between

these two variables means that total length can be used to infer the interarticular length with little error.
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Supplementary Table 1. Position of the peak workspace and object size for the full comparative
sample. The real object size corresponds to the object size that is achieved by scaling the relative object
size back by to real world units. Australopith “human” and “Pan” refer to use of human versus Pan
trapeziometacarpal joint range of motion in two separate kinematic models. In Au. sediba MH2, the
length of the DP2 was also inferred using human versus Pan DP2/IP2 proportions (see Materials and
Methods).

relative real object
Group Species N peak object size size R
workspace
(R) (mm)
Hylobates lar 5 0.027 0.11 22.2
Pongo pygmaeus 10 0.022 0.14 37.5
L Pan troglodytes 8 0.028 0.1 26.2
Hominoidea X
Pan paniscus 5 0.029 0.11 28.6
Homo sapiens 46 0.043 0.08 19
Gorilla gorilla 5 0.031 0.1 28.7
early H. sapiens Qafzeh 9 1 0.044 0.08 2.9
early H. sapiens Ohalo Il H2 1 0.042 0.07 2.5
H. neanderthalensis 1 0.043 0.08 3
Fossils Au. sediba MH2 (Pan) 1 0.04 0.09 2.4
Au. sediba MH2 (Human) 1 0.044 0.08 2.1
Au. afarensis comp (Pan) 1 0.04 0.08 2.4
f‘:u:]f:r: )8"5’5 comp 1 0.042 0.08 24
Presbytis cristata 9 0.016 0.16 18
. . Papio hamadryas 7 0.03 0.1 15.6
Cercopithecidae
Macaca mulatta 7 0.028 0.1 11.4
Macaca fascicularis 17 0.028 0.1 10
Sapajus apella 6 0.027 0.08 7.9
Platyrrhini Cebus albifrons 9 0.029 0.08 8.7
Alouatta semiculus 6 0.029 0.08 11.5
. Tarsius syrichta 9 0.026 0.09 43
Tarsiidae .
Tarsius bancanus 9 0.023 0.11 5.8
Lepilemur leucopus 7 0.029 0.08 4
Varecia variegata 9 0.026 0.1 10.6
Lemur catta 12 0.026 0.09 6.8
Hapalemur griseus 12 0.029 0.09 5.1
Eulemur mangoz 6 0.027 0.09 6.5
Eulemur macaco 7 0.027 0.09 7.5
. Eulemur fulvus 12 0.026 0.09 7
Lemuriformes . .
Propithecus verreauxi 10 0.029 0.09 9.6
Propithecus diadema 5 0.028 0.09 12.4
Indri indri 7 0.027 0.1 17.7
Avahi laniger 9 0.024 0.11 7.4
Microcebus murinus 11 0.027 0.09 2
Cheirogaleus medius 6 0.028 0.09 2.7
Cheirogaleus major 7 0.028 0.09 3.9
D. madagascariensis 7 0.029 0.08 10
Nycticebus coucang 13 0.03 0.09 4
Loris tardigradus 9 0.029 0.09 2.9
Otolemur garnettii 6 0.031 0.08 4.4
L Otolemur crassicaudatus 9 0.03 0.08 43
Lorisiformes .
Galago senegalesis 10 0.028 0.08 2.5
Galago moholi 7 0.029 0.08 2.5
Galago demidoff 10 0.031 0.08 2.1
Euoticus elegantulus 11 0.031 0.09 4.2




Supplementary Table 2. Raw segment length measurement data for selected species. All units of
the segment measurements (Mc1, PP1, DP1, Mc2, PP2, IP2, DP2) are in mm and the museum keys are
as follows: AMNH: American Museum of Natural History New York, HMNH: Harvard Museum of
Natural History, YPM: Yale Peabody Museum, UM-APC: University of Massachusetts Amherst, ZMB:
Museum fir Naturkunde Berlin, NMW: Naturhistorisches Museum Wien, UV: University of Vienna,
UNI-FI: University of Florence, MRAC: Musée royal de L’ Afrique central, SMF: Senckenberg Museum
Frankfurt, NME: National Museum of Ethiopia, WITS: University of this Witwatersrand, TAU: Tel

Aviv University

Group Species Key Mcl PP1 DP1 Mc2 PP2 1P2 DP2
Alouatta semiculus AMNH 23330 21.1 21.4 12.6 30.1 30.3 18.8 10.2
Alouatta semiculus AMNH 23334 211 19.8 12.5 28.4 28.7 18.8 111
Alouatta semiculus AMNH 23337 18.6 19.5 11.8 25.8 26.9 17.3 9.8
Alouatta semiculus AMNH 23335 215 19.3 12.6 28.5 28.6 17.4 10.4
Alouatta semiculus AMNH 23329 22.8 21.8 13.2 313 31.2 19.7 11.5
Alouatta semiculus AMNH 14660 22.0 233 14.8 32.0 32.2 20.5 12.7

Cebus albifrons AMNH 15485 18.9 14.5 10.4 25.9 19.4 124 10.3
Cebus albifrons AMNH 23403 16.7 143 9.6 23.9 18.3 124 9.4
Cebus albifrons AMNH 23401 18.0 15.9 12.0 23.4 21.2 135 10.7
Cebus albifrons AMNH 23399 18.3 16.7 10.8 24.7 21.7 143 9.9
Platyrrhini Cebus albifrons AMNH 15484 15.3 13.5 10.0 23.8 18.1 12.3 10.0
Cebus albifrons AMNH 200753 16.7 14.4 10.4 24.0 19.8 135 9.8
Cebus albifrons AMNH 14017 17.8 16.0 10.7 24.1 21.7 13.8 9.7
Cebus albifrons AMNH 201434 13.6 12.2 7.7 19.9 16.5 11.2 6.8
Cebus albifrons AMNH 201288 18.3 16.3 10.9 25.0 20.2 13.7 10.0
Sapajus apella AMNH 188037 16.6 13.6 9.1 22.4 18.1 11.8 7.6
Sapajus apella AMNH 95129 16.7 15.0 9.8 24.0 20.3 13.8 9.0
Sapajus apella AMNH 80169 12.9 12.4 8.2 20.2 16.8 10.7 8.1
Sapajus apella HMNH 61405 17.7 10.5 5.3 27.4 18.6 10.2 6.2
Sapajus apella YPM MAM 7577 17.0 123 6.3 25.5 18.8 123 5.4
Sapajus apella YPM MAM 6873 15.9 14.0 10.2 21.9 19.1 11.4 8.8
Macaca fascicularis UM-APC 217 18.0 10.9 5.8 31.7 19.0 10.8 53
Macaca fascicularis UM-APC 281 19.8 11.6 6.3 31.7 19.3 10.7 7.1
Macaca fascicularis HMNH 35611 20.4 11.3 5.2 32.0 19.3 10.7 6.3
Macaca fascicularis HMNH 35612 19.7 12.8 6.1 32.5 20.3 12.2 7.2
Macaca fascicularis HMNH 35656 18.5 12.3 5.8 30.4 18.6 11.4 6.6
Macaca fascicularis HMNH 35658 16.3 9.5 4.5 25.7 15.8 9.0 5.6
Macaca fascicularis HMNH 35694 16.3 10.0 5.3 27.2 17.1 104 6.1
Macaca fascicularis HMNH 35729 17.9 11.0 6.3 30.4 19.5 10.5 6.4
Macaca fascicularis HMNH 35727 16.1 9.6 5.0 27.1 17.1 104 5.9
Macaca fascicularis HMNH 35736 19.2 10.9 5.9 28.9 18.1 12.2 6.5
Macaca fascicularis HMNH 35735 16.6 10.6 5.0 25.3 17.1 10.5 53
Macaca fascicularis HMNH 37349 16.2 10.9 5.3 26.0 17.8 10.2 6.1
Macaca fascicularis HMNH 37406 18.0 11.6 5.2 26.3 18.9 12.6 7.4
Cercopithecidae Macaca fascicularis HMNH 37407 18.3 11.9 4.5 28.4 18.6 124 7.4
Macaca fascicularis HMNH 37415 18.2 11.3 5.3 29.4 19.0 11.0 7.4
Macaca fascicularis HMNH 37416 18.3 11.3 5.5 28.8 18.5 11.0 7.1
Macaca fascicularis HMNH 57836 19.3 12.1 6.8 30.5 20.4 12.4 7.0
Macaca mulatta UM-APC 319 20.9 12.5 6.7 31.8 20.0 11.2 6.7
Macaca mulatta UM-APC 279 21.2 12.8 6.2 36.7 21.2 13.2 10.3
Macaca mulatta UM-APC 318 18.1 12.0 5.8 31.6 18.9 12.3 8.3
Macaca mulatta UM-APC 320 20.8 11.5 5.6 32.1 19.4 11.2 6.7
Macaca mulatta UM-APC 224 21.0 12.0 6.5 36.6 21.2 11.9 7.5
Macaca mulatta UM-APC 286 21.4 12.6 6.2 35.2 25.7 17.0 9.6
Macaca mulatta UM-APC 231 22.1 13.2 6.8 26.6 22.2 13.2 7.3
Papio hamadryas AMNH 200847 27.1 14.7 9.0 41.8 21.7 12.2 8.5
Papio hamadryas NMW 772 42.2 21.6 12.3 64.4 33.2 20.4 12.4
Papio hamadryas NMW 825 23.9 12.2 7.3 35.6 18.9 11.0 9.2
Papio hamadryas NMW 847 27.9 16.2 8.2 42.4 23.7 11.7 8.4




Supplementary Table 2. Continued

Group Species Key Mcl PP1 DP1 Mc2 PP2 1P2 DP2
Papio hamadryas NMW 28584 28.2 14.7 9.0 41.7 213 15.1 9.4
Papio hamadryas NMW 43411 35.1 18.1 10.3 56.0 26.4 16.0 12.2
Papio hamadryas NMW 22755 34.7 18.9 10.7 57.4 28.7 17.5 14.0
Presbytis cristata HMNH 35666 18.5 11.6 5.7 36.4 25.2 15.0 7.2
Presbytis cristata HMNH 35669 18.2 9.8 5.5 36.6 24.5 15.0 7.8

Cercopithecidae Presbytis cristata HMNH 35640 17.5 9.6 5.2 35.0 24.2 14.0 7.4
Presbytis cristata HMNH 35678 18.0 9.9 4.3 35.0 24.4 14.6 6.9
Presbytis cristata HMNH 35675 16.5 9.3 4.8 33.2 23.8 15.3 6.9
Presbytis cristata HMNH 35688 16.7 8.2 4.4 32.7 22.7 134 6.2
Presbytis cristata HMNH 35683 18.4 9.5 5.2 36.3 25.4 14.4 6.3
Presbytis cristata HMNH 37396 17.7 10.3 6.0 35.5 23.4 14.8 6.9
Presbytis cristata HMNH 37665 16.0 7.6 4.6 33.0 223 13.6 6.0

. NME Mc1 333w-39;
Au. afarensis comp H Mc2-5 333w-48; w-16; 56; W-89 37.8 26.0 19.0 56.9 37.4 22.3 13.7

. NME Mc1 333w-39;
Au. afarensis comp P Mc2-5 333w-48; w-16; 56; W-89 37.8 26.0 19.0 56.9 37.4 22.3 13.7
Au. sediba MH2 H WITS MH2 37.7 24.5 15.1 50.0 315 16.6 121
Fossils Au. sediba MH2 P WITS MH2 37.7 24.5 15.1 50.0 31.5 16.6 8.7
Homo neanderthalensis TAU Kebara 2 45.3 31.4 26.6 68.6 43.7 25.9 21.6
Homo sapiens Ohalo 1l H2 TAU Ohalo Il H2 44.0 30.8 21.7 68.0 41.3 25.6 16.9
Homo sapiens Qafzeh 9 TAU Qafzeh 9 44.3 33.5 23.8 62.1 41.7 26.2 18.3
Gorilla gorilla AMNH 81652 42.4 24.1 18.4 82.6 47.4 30.1 16.7
Gorilla gorilla AMNH 90194 47.3 29.6 18.4 92.0 54.0 32.7 19.3
Gorilla gorilla ZMB 18515 49.6 30.0 23.7 93.1 55.7 37.4 16.6
Gorilla gorilla NMW 792 44.9 34.4 17.3 88.3 51.1 32.1 17.9
Homo sapiens AMNH 204072 49.8 31.3 22.6 71.7 42.2 25.7 17.2
Homo sapiens AMNH 172124 48.3 33.9 25.6 74.2 46.8 28.1 20.4
Homo sapiens WITS 1301 40.7 28.7 19.6 62.7 374 213 16.0
Homo sapiens WITS 1408 42.0 31.0 20.4 61.2 40.5 233 14.4
Homo sapiens WITS 1501 42.8 321 235 65.6 41.2 25.2 19.8
Homo sapiens WITS 1576 44.0 31.4 225 64.9 38.9 245 18.8
Homo sapiens WITS 1689 49.2 33.1 23.2 72.1 40.5 25.2 17.4
Homo sapiens WITS 1791 44.5 29.8 23.8 62.4 40.7 24.1 16.9
Homo sapiens WITS 1918 41.0 27.7 213 61.4 36.6 20.4 143
Homo sapiens WITS 1925 37.1 27.8 20.0 60.0 38.4 22.2 16.5
Homo sapiens WITS 1947 39.9 28.3 221 61.0 374 21.4 17.9
Homo sapiens WITS 2012 42.1 28.4 20.9 63.6 37.9 223 16.0
Homo sapiens WITS 2087 37.9 27.1 19.6 57.5 37.9 22.0 17.3
Homo sapiens WITS 2191 43.0 30.8 21.4 63.5 40.3 24.4 16.3
Hominoidea Homo sapiens WITS 3156 46.9 325 25.2 71.2 435 26.4 18.5
Homo sapiens WITS 3314 44.2 29.5 22.0 63.6 39.8 23.2 16.5
Homo sapiens WITS 3316 43.9 31.2 22.7 68.1 43.0 25.6 16.3
Homo sapiens WITS 3360 46.3 33.1 24.0 64.3 43.7 25.9 18.4
Homo sapiens WITS 3364 50.6 35.9 26.8 76.1 43.7 27.3 20.8
Homo sapiens WITS 3369 42.8 30.9 23.3 62.8 40.7 24.0 18.8
Homo sapiens WITS 3372 46.4 33.5 229 72.6 45.0 27.3 18.6
Homo sapiens WITS 3388 49.0 35.2 26.1 74.2 45.7 29.0 19.0
Homo sapiens WITS 3448 49.5 35.1 24.8 72.0 44.9 26.6 19.6
Homo sapiens WITS 3664 445 30.5 24.7 66.0 38.7 23.2 18.4
Homo sapiens WITS 3529 45.9 334 24.1 66.2 42.5 25.2 19.1
Homo sapiens WITS 3606 43.2 30.0 22.7 66.4 40.5 22.6 18.1
Homo sapiens WITS 178 44.0 315 229 64.4 41.8 24.6 18.4
Homo sapiens WITS 188 39.2 28.1 20.0 55.5 35.7 213 17.0
Homo sapiens WITS 1472 46.5 323 20.0 62.3 38.8 24.6 17.0
Homo sapiens WITS 2097 34.9 24.9 19.6 53.5 32.7 19.8 15.2
Homo sapiens WITS 906 447 29.6 22.0 63.7 384 22.2 17.9
Homo sapiens UV S22 42.5 28.2 20.1 60.6 36.5 20.9 15.6
Homo sapiens UV s45 37.4 25.5 17.3 57.8 34.5 18.1 13.8




Supplementary Table 2. Continued

Group Species Key Mcl PP1 DP1 Mc2 PP2 1P2 DP2
Homo sapiens UV S56 37.6 26.6 19.3 58.5 34.6 20.8 14.5
Homo sapiens UV S54 40.7 28.8 20.2 58.8 37.2 20.7 16.1
Homo sapiens UV S59 39.3 27.6 19.5 59.7 35.0 19.9 14.5
Homo sapiens UV S38 38.9 26.4 18.5 55.2 32.6 19.5 14.7
Homo sapiens uv s7 375 27.1 19.3 55.2 34.3 19.0 13.8
Homo sapiens UV S26 41.6 28.4 19.3 61.1 36.8 20.5 15.9
Homo sapiens uv s17 333 24.0 16.8 52.0 33.2 18.5 13.9
Homo sapiens UV S52 45.0 32.6 22.5 65.5 40.6 24.9 17.0
Homo sapiens UNI-FI 4865 47.4 35.3 24.8 713 46.1 27.2 19.1
Homo sapiens UNI-FI 4887 40.5 29.8 22.3 61.8 40.5 24.3 17.2
Homo sapiens UNI-FI 4868 39.0 28.7 19.2 59.1 38.6 239 15.5
Homo sapiens UNI-FI 4880 40.6 30.9 214 63.1 38.0 23.9 17.3
Pan paniscus MRAC 29052 40.6 26.1 18.7 86.2 48.9 324 17.4
Pan paniscus MRAC 29044 41.2 25.8 15.1 85.6 44.6 27.2 15.9
Pan paniscus MRAC 27696 39.6 25.6 15.5 87.5 48.0 30.7 15.8
Pan paniscus MRAC 29042 36.6 24.4 19.9 815 45.9 30.5 18.6
Pan paniscus MRAC 29045 39.0 25.7 15.9 84.2 45.2 30.1 15.2

Pan troglodytes AMNH 89351 34.2 23.6 19.1 81.3 46.9 30.0 15.2
Pan troglodytes AMNH 89353 41.0 27.8 20.9 95.7 55.6 35.2 18.5
Pan troglodytes AMNH 89355 37.3 27.2 18.6 81.8 48.8 30.4 15.7
Hominoidea Pan troglodytes AMNH 90189 40.5 25.8 17.6 88.4 50.0 34.3 17.8
Pan troglodytes HMNH 11772 31.8 22.2 16.1 714 41.6 27.2 13.4
Pan troglodytes NMW 25124 38.9 25.1 18.9 84.8 51.3 289 16.5
Pan troglodytes NMW 13528 38.0 24.0 18.3 88.4 50.0 30.3 15.9
Pongo pygmaeus AMNH 18010 34.3 19.2 10.2 77.6 53.1 27.3 14.4
Pongo pygmaeus AMNH 200898 37.8 22.8 12.8 81.0 56.4 32.6 18.2
Pongo pygmaeus AMNH 90395 325 16.6 10.2 73.9 50.8 26.2 13.1
Pongo pygmaeus HMNH 5154 39.2 22.7 12.8 89.1 55.7 333 15.8
Pongo pygmaeus NMW 798 51.0 31.5 7.3 100.6 74.7 42.8 25.1
Pongo pygmaeus NMW 795 33.9 16.7 9.1 76.8 49.1 27.7 12.0
Pongo pygmaeus NMW 797 37.9 23.6 7.0 85.9 52.9 31.9 15.0
Pongo pygmaeus NMW 800/B 5414 42.4 24.3 13.1 92.0 62.8 35.8 18.2
Pongo pygmaeus NMW 654 35.8 21.1 10.1 79.8 52.8 27.4 12.5
Pongo pygmaeus NMW 799 53.8 32.5 15.2 114.0 73.6 42.0 19.9
Hylobates lar HMNH 35945 315 16.8 9.8 58.5 38.3 24.8 10.8
Hylobates lar HMNH 41421 32.6 19.3 9.5 61.5 43.2 31.6 12.2
Hylobates lar HMNH 41476 373 23.3 9.3 63.3 44.0 29.7 12.2
Hylobates lar HMNH 41504 36.0 19.0 9.1 64.1 42.4 25.3 11.3
Hylobates lar HMNH 41537 30.0 18.6 9.7 52.3 36.6 24.8 12.6



	Estimating thumb-index finger precision grip and manipulation potential in extant and fossil primates
	Introduction
	Material and methods
	Extant sample
	Fossil sample
	The kinematic model
	Workspace calculation

	Results
	Relative segment lengths in extant primates
	Thumb-index finger workspace in extant primates
	Thumb-index finger proportions and manipulation workspace in fossil hominins

	Discussion
	Data accessibility
	Acknowledgements
	Funding statement
	Authors’ contributions
	Competing interests
	References


