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Robust Precision Manipulation With Simple Process
Models Using Visual Servoing Techniques With

Disturbance Rejection
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Abstract— This paper presents a high-performance vision-
based precision manipulation technique that does not rely on an
object, contact, or gripper model, which are challenging and often
times impractical to acquire. Instead, we utilize a simple process
model that roughly maps object velocities to actuator velocities,
and we maintain system efficiency and robustness via advanced
vision-based control techniques with disturbance rejection mech-
anisms. For obtaining simple models, we derive a set of actuator
coordination rules for achieving common task space motions.
The performance degradation due to modeling inaccuracies is
then minimized via the model predictive control framework
and a correction matrix method. Our experimental results show
that the proposed strategy results in high-performance precision
manipulation with minimal modeling effort.

Note to Practitioners—Compliant, soft robotic grippers make
it easier to grasp objects with various shapes and sizes; these
grippers adapt to the shape of the object, which provides
robustness to positioning errors and often removes the necessity
to precisely plan the contact locations. These advantages make
compliant grippers ideal to use in industrial settings as well as
in service robotics, where the variety of object shapes and sizes
are immense. On the other hand, for the tasks that require precise
object manipulation (e.g., for a peg-in-hole problem), these hands
are more challenging to control than their rigid counterparts: it
is harder to obtain their precise models, and they often do not
have enough proprioceptive sensors to calculate the full pose of
the system. In this paper, we propose solutions to utilize vision
feedback for positioning an object using compliant hands. These
solutions do not rely on precise models of the gripper or the
full knowledge of the gripper state. We adopt various control
techniques to provide precise positioning in steady state as well
as to maintain efficiency in the transient.

Index Terms— Dexterous manipulation, in-hand manipulation,
model predictive control (MPC), visual servoing.

I. INTRODUCTION

THE ability to conduct in-hand precision manipulation
adds dexterity to a robotic manipulator; the additional
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mobility supplied by the robot’s gripper helps the system
to work around obstacles and avoid joint singularities [1].
Moreover, lower finger inertias compared to the inertia of the
full arm allow energy efficient and precise positioning of the
target object. These features can be considered as building
blocks of a human-like dexterity, which is especially needed
for home/service robots.

In general, manipulation phenomena in robotics are chal-
lenging to model, and in-hand manipulation is no excep-
tion: for obtaining a reliable process model of an in-hand
manipulation task, one needs to have an accurate gripper
model, contact model, object model, and knowledge of the
contact locations [2]–[5]. Assuming this information is avail-
able along with the sensors that can measure the necessary
system states, a model-based strategy can be employed for
planning an in-hand manipulation task by calculating joint
positions and contact forces. Nevertheless, such an approach
poses practical challenges as each of these models are hard to
acquire precisely, especially in uncontrolled environments, and
any modeling imprecision reduces accuracy and robustness
while increasing the risk of task failure, i.e., dropping the
object. Moreover, sensors necessary for measuring the required
system states (i.e., joint encoders and force sensors) complicate
the hand designs.

Our approach to in-hand manipulation combines advanced
vision-based control techniques and system compliance to
allow working with very rough process models while main-
taining robustness and task execution efficiency. We derive
simple models that approximate actuator inputs for a set of
common (and often orthogonal) motions in task space for
the purpose of simplifying the modeling and planning steps.
Using these models with traditional image feature-based visual
servoing techniques [6], [7], which are already known to be
robust to modeling errors, can provide convergence in steady
state as we have shown in our previous work [8]. However,
significant performance degradation and robustness issues can
be observed in transient response when the error between the
derived model and the actual system is large (an example
can be seen from Fig. 1). Such performance degradation
can be crucial for a precision manipulation task, where the
expected/required system accuracy is usually high. Rather
than using traditional visual servoing schemes, the effect of
modeling inaccuracies can be minimized using algorithms with
disturbance rejection; in this paper, we use a vision-based
model predictive control (MPC) algorithm and a correction
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Fig. 1. Vision-based in-hand manipulation using simple models with (blue
line) and without (red line) MPC. (a) Region of the workspace, where the
simple models represent the system accurately. (b) In particular, difficult part
of the workspace where object roles over the fingertip, and the models get
inaccurate. The same model parameters and control gains are used for both
executions. It can be seen that even without MPC, the simple models coupled
with vision feedback can successfully meet the references in steady state, but
inefficiencies are observed when model inaccuracies are high. MPC strategy
helps to recover efficiency and reduces the risk of task failure.

matrix method. In this way, robustness and system efficiency
can be maintained even with very rough process models.
Moreover, the influence of unmodelled phenomena (e.g., fric-
tion and sliding) on the system performance can be reduced.

Our approach is an excellent choice, especially for precision
manipulation with adaptive/underactuated grippers [9]–[12].
These grippers are hard to model due to their elastic elements,
and estimating their adaptive behavior requires the knowl-
edge of the contact locations and force magnitudes. Acquir-
ing this information either requires a dense array of force
sensors or multiple joint encoders, which complicate their
mechanical design that was aimed to be simple and effective
in the first place. On the other hand, adaptive/underactuated
grippers mechanically provide a substantial amount of com-
pliance, which helps to maintain robust object–gripper inter-
action during manipulation. With our approach, simplified
models of these systems can be utilized, and compliance and
advanced visual servoing algorithms provide the robustness
and efficiency without the need for joint position or force
measurements. In this paper, we use underactuated grippers
such as the Model T42 and Model M2 (modified for actuating
the rigid finger) as our test beds [13]. Nevertheless, our method
can also be utilized for fully actuated grippers since similar

compliant behavior can be implemented using the methods
like [14] and [15], and in this way, the abovementioned
modeling and planning difficulties can similarly be overcome.

This paper extends our previous work [16] with added
discussions, examples, and experiments: we provide additional
gripper-specific models, provide a comprehensive discussion
of the in-hand manipulation literature and novelty of our
method therein, experimentally show the accuracy of the mod-
els over the manipulation workspace, and analyze the advan-
tages of the MPC framework when modeling inaccuracies are
large, and present an analysis of the effect of MPC parameters
on the system performance. This paper is organized as follows.
The relating literature of in-hand precision manipulation is
provided in Section II. Modeling stage is explained for two
types of grippers in Section III. The use of the derived
models within a traditional visual servoing scheme, with the
correction matrix method and the MPC-based visual servoing
method are given in Section IV. The experimental results
are presented in Section V, and the conclusions are drawn
in Section VI.

II. RELATED WORK

This section covers the in-hand manipulation strategies
in the literature, and presents a discussion of the primi-
tives/synergies ideas in the trajectory generation and grasping
literature along with their resemblance with our method.
Following that we present methods that utilize vision feed-
back in in-hand precision manipulation and the use of MPC
framework in robotics applications.

A. In-Hand Manipulation

In the literature, various closed-form in-hand manipulation
models are presented depending on the contact model assump-
tion: the analysis in [17] assumes stationary point contacts with
no rolling or sliding; methods in [2], [3], and [18] assume
rolling point contacts while neglecting the sliding effect; and
a review on soft-contact modeling can be found in [19]. These
models are crucial to understand the in-hand manipulation
phenomena and its challenges. However, they are impractical
for manipulation planning due to the difficulties in acquiring
the necessary submodels, the sensor requirements and the
planning complexity.

1) Modeling Difficulties: The process model of an in-
hand manipulation task is composed of an object model,
a contact model, and a gripper model, and obtaining each
of them accurately can be challenging in many common
scenarios. In unstructured environments, object models are
not often available a priori. Even though there are methods
in the literature that do not rely on an object model for in-
hand manipulation [20], [21], they require a specific gripper
topology. For incorporating the contact models, the friction
coefficients between the object and the fingers need to be
known, along with the surface curvature at contact locations.
Even if this information is available, calculating sliding effects,
which occur frequently during in-hand manipulation, requires
switching between models, and introduces additional complex-
ity to planning [22]. Regarding the grippers, reliable models
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may be available via manufacturer for rigid types. However,
for adaptive/underactuated grippers, the models require the
knowledge of elastic element characteristics [18], which can
be highly nonlinear, hard to acquire, and may change over
time. While composing an overall process model, inaccuracies
in these submodels accumulate and cause significant perfor-
mance degradation both in transient and steady state, or may
even result in failure of the task, i.e., dropping the target
object.

2) Required Sensors: Model-based techniques require the
state of the system to be measured, i.e., gripper joint posi-
tions, contact locations, and/or contact forces. Acquiring this
information necessitates sensors such as joint encoders and
force/torque sensors, which complicate the hand design and
hamper its compactness.

3) Planning Complexity: Planning an in-hand manipulation
task, that is calculating joint locations throughout the trajectory
using the models, can be complicated depending on the type of
the gripper. For redundantly actuated hands, the redundancy
needs to be handled [23], whereas for underactuated hands,
since each joint cannot be controlled independently, the fin-
ger trajectories need to be estimated by taking the adaptive
behavior into account.

Our strategy is to avoid these difficulties by adopting sim-
ple modeling procedures, while handling inaccuracies using
advanced vision-based methods and system compliance. In our
applications, this strategy also eliminates the need for joint
encoders and force sensors.

B. Primitives/Synergies and the Effect of Compliance

Handling modeling and planning complexity is also required
in other robotics problems such as grasping. Grasp planning
is a complicated procedure if the problem is formulated
as deciding how to position the robotic fingers on a tar-
get object precisely for achieving a stable grasp. Instead,
inspired from neuroscience, researchers develop the concepts
of grasping primitives [24], eigengrasps [25], [26], and syn-
ergies [27], [28]. In these concepts, dominantly used motions
in task space are detected, and actuator inputs that generate
these motions are determined. Consecutively, it is shown that
a large set of grasping abilities can successfully be executed
using a small number of task space-actuator space relations.
Therefore, grasp planning is simplified to choosing the right
(or a combination of) primitives/synergies for a given target
object and scenario. Nevertheless, for these methods to be
generalized and be successful for a large variety of object
shapes and sizes, the system needs to have a degree of
compliance [29]. This can be achieved either mechanically
(e.g., as in adaptive grippers [9], [10], and [27]), or algorith-
mically [14], [15], and [27].

We apply a similar strategy to the in-hand precision manip-
ulation problem: we determine actuator inputs that generate
commonly used object motions in Cartesian space. By using
these relations, we obtain a rough model between the actuator
inputs and the object motion. Similar to grasping primi-
tives/synergies, we also rely on the system compliance for
keeping the contact with the object during manipulation.

However, different from the grasping case, our system requires
high precision: the success of a grasp is often measured
in a binary sense, i.e., dropping or not dropping the target
object. In that case, compliance provides a large enough error
margin to keep the object intact with the hand. Consequently,
imprecise motions of the fingers in grasping are tolerable.
In the case of in-hand precision manipulation, we do not
only need to maintain the contact with the object, but also
to move the object with high accuracy. The discrepancy
between the actual system model and the rough models can
generate significant errors in task space both in the transient
and the steady state. By using vision feedback in traditional
schemes [6], [7], convergence can be achieved in steady
state [8], while transient performance is still affected by
modeling errors. Robustness issues may also be observed if
the errors are high. We, therefore, design visual servoing
algorithms with disturbance rejection mechanisms to minimize
these modeling error effects. In Section II-C, the literature on
in-hand manipulation using vision feedback is covered.

C. Vision-Based In-Hand Manipulation

In the literature, visual servoing [30] is used for robotic
manipulation [31], control of mobile robots [32], and microro-
botics [33] among many other applications. The use of vision
feedback is preferable for in-hand manipulation since it allows
closing the loop in task space without complicating the hand
design. Nonetheless, these sensors are also needed to perceive
the state of the environment for many common manipulation
tasks that require relative positioning (e.g., peg-in-hole and
key insertion).

In [34], a vision-based control method is proposed within
the optimal control framework. By utilizing force sensors, this
method can also control the amount of applied force to the
object. A sensor fusion approach is proposed in [35], in which
vision feedback, force sensing, and joint feedback are used
to deal with the sliding motion and external disturbances.
Both of these methods rely on accurate hand and object
models. The experimental evaluation of these algorithms in the
literature is limited to a few case studies.

With a similar motivation to our approach, an adaptive
visual servoing algorithm is utilized in [36] and [37] for
reducing the dependence on accurate models. This algorithm
updates the visual-motor Jacobian during the execution by
minimizing the error between the observed and expected
velocities. A trust-region strategy is also employed to keep the
controller within the validity region of the Jacobian. If a good
initial model is available, this method is excellent to handle the
changes in Jacobian matrix due to contact location changes.
However, for the models as rough as the ones obtained in this
paper, large errors between the real and estimated Jacobians
may cause undesired, shaky motions in the transient, which
cause unstability. Moreover, these types of adaptive schemes
are sensitive to control lag and rely on the performance of
the lower level controller, since they operate in the kinematics
level. Due to these problems, we were not able to achieve a
stable precision manipulation performance using our simple
models with the proposed adaptive schemes in the literature.
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D. Model Predictive Control

One of the methods we use to minimize the effect of
modeling errors to the system performance is MPC [38]. Typ-
ically, in the MPC framework, the control signal is obtained
by solving an optimization problem over a finite horizon
in each control step of the execution. In robotics, MPC
is used in vision-based mobile robot navigation [39]–[41],
hybrid position/force control [42], bipedal locomotion [43],
vision-based control of underwater vehicles [44], robotic
heart surgery [45], [46], and recently in the control of soft
robots [47].

The popularity of the MPC framework in robotics lies in its
ability to handle constraints and disturbances: in MPC, kine-
matics, dynamics, and workspace constraints of a system can
easily be incorporated to the optimization problem. Similarly,
the effect of disturbances can be estimated and minimized by
using a disturbance model. In the simplest case, this model
assumes that the effect of disturbances will remain the same
with the previous step in the finite horizon. If a more accurate
model is available, a better disturbance rejection performance
can be achieved (e.g., the current disturbance model for
underwater vehicles in [44]). Alternatively, if the effect of
disturbances is known from the previous executions of the task,
these effects can be integrated to the optimization problem
directly (e.g., the disturbance caused by periodic heartbeat and
inspiration in heart surgery [46]). As a combination of these
two strategies, past experience can be modeled and integrated
to the optimization problem (e.g., the mobile robot using past
experiences to model terrain disturbances [40]). In our work,
we consider modeling errors as disturbances, and minimize
their effect using the MPC framework. We also utilize and
compare periodic and nonperiodic disturbance models for
repeating references.

III. OBTAINING SIMPLE MOTION MODELS

As explained in Section II-A, obtaining an accurate motion
model for the in-hand manipulation process is a challenging
and requires information such as object model, friction coef-
ficients, and contact locations, which are unavailable in many
manipulation scenarios. Instead our strategy is to utilize simple
models by actuator synchronization rules for common motions
in the task space; with the help of system compliance and
advanced visual servoing techniques, we show that high per-
formance precision manipulation can be realized even with
these rough models without any joint position feedback, force
feedback, or sophisticated planning schemes.

In this section, we explain how to derive the simple models
for two grippers designed in our laboratory, Model T42 and
Model M2, and then present a discussion on its generalization.
It is assumed that an initial stable grasp is maintained a priori.

A. Model T42 Gripper

Model T42 [Fig. 2(a) and (b)] has two identical opposing
fingers that have two joints and one actuator. The gripper
provides mechanical compliance during a precision grasp;
when the springs are active (not in the resting state), they
provide restoring force that keeps the contact with the object.

Fig. 2. Grippers used in our experiments. (a) Model T42. (b) Detailed schema
for Model T42. (c) Modified Model M2 with actuated rigid finger.

This gripper is capable of planar precision manipulation, and
since it has two degrees of freedom, the object pose cannot be
simultaneously controlled in all three dimensions of the planar
Cartesian workspace (position in the x-direction, position
in the y-direction, and orientation around the manipulation
plane), but in its 2-D submanifold.

We generate a rough Jacobian that relates Cartesian space
motion of the object and the actuator velocities with the fol-
lowing simple observations that are also as depicted in Fig. 3.
Moving the actuators to opposite directions by the same
amount moves the object along the x-direction while rotating
it; moving the object in the negative x-direction rotates the
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Fig. 3. Manipulation with Model T42 hand. (a) Initial grasp configuration, (b) and (c) when the motors are moved in the opposite direction with the same
amount the object moves left or right (depending on the direction), and (d) and (e) when the motors are moved in the same direction with the same amount,
the object is moved up or down (depending on the direction).

object clockwise and vice versa [Fig. 3(b) and (c)]. If we
neglect the motion in the y-direction, these relations between
the object motion and actuator velocities are expressed as
follows:

Vox = Kxq̇1 = −K x q̇2 (1)

Voy = 0 (2)

Voθ = −K θx q̇1 = Kθx q̇2. (3)

Here, Vox and Voy are the linear velocities in the
x- and y-directions, Voθ is the angular velocity around the
manipulation plane normal, q1 and q2 are actuator positions,
and Kx and Kθx are scalars.

Our second observation is that moving the actuators to the
same direction in the same amount moves the object along the
y-direction while rotating it [Fig. 3(d) and (e)]. The rotation
direction depends on whether the object is at the right or left
side of the gripper’s symmetry axis. If the object is at the
right side, moving the object to the +y-direction rotates it
counterclockwise and vice versa. The amount of rotation is
related to the distance of the object to the symmetry axis: no
rotation is observed on the symmetry axis, and the amount of
rotation increases by going further than the axis. If the motion
along the x-direction is neglected, these relations are expressed
as follows:

Vox = 0 (4)

Voy = Kyq̇1 = Kyq̇2 (5)

Voθ = −pKθyq̇1 = −pKθyq̇2. (6)

Here, p is the distance of the object to the symmetry axis
and Ky and Kθy are constant scalars.

As mentioned earlier in this section, since Model T42 has
two degrees of freedom, it can only control the object pose
within the 2-D manifold of the 3-D workspace (if controlled
sliding can be applied on the object, this 2-D manifold can be
altered; this aspect is out of the scope of this paper, but will
be our future work). By combining (1)–(6), we have derived
the following three Jacobians to be used in the visual servoing
loop: for mapping the velocities in the x- and y-directions to

the actuator velocities, the (1) and (5) are combined

[
q̇1
q̇2

]
= J sx,y

[
Vox
Voy

]
=

⎡
⎢⎢⎣

1

Kx

1

Ky

− 1

Kx

1

Ky

⎤
⎥⎥⎦

[
Vox
Voy

]
. (7)

For mapping translational velocity in the x-direction and
rotational velocity around the manipulation plane, we com-
bine (1) and (6) as follows:

[
q̇1
q̇2

]
= J sx,θ

[
Vox
Voθ

]
=

⎡
⎢⎢⎣

1

Kx
− 1

pKθy

− 1

Kx
− 1

pKθy

⎤
⎥⎥⎦

[
Vox
Voθ

]
. (8)

Similarly for translational velocity in the y-direction and
rotational velocity around the manipulation plane, we combine
(3) and (5)

[
q̇1
q̇2

]
= J s y,θ

[
Voy
Voθ

]
=

⎡
⎢⎢⎣

1

Ky
− 1

Kθx
1

Ky

1

Kθx

⎤
⎥⎥⎦

[
Voy
Voθ

]
. (9)

The accuracy of these Jacobians for representing the hand
object system varies at different parts of the workspace. As can
be seen from Fig. 4, the Jacobian in (7) represents the system
more accurately at the center of the workspace, whereas the
accuracy drops toward the boundaries. If no vision feedback is
utilized, these inaccuracies can cause large positioning errors
of the object. Vision feedback provides robustness to the
inaccuracies by closing the loop in the task space, but if the
modeling errors are large and are not handled explicitly with
advanced control techniques, large deviations from the optimal
path in the image space can be observed as also demonstrated
in Fig. 1.

B. Model M2 Gripper

Model M2 is an asymmetric gripper with one underactuated
finger identical to Model T42 and one flat actuated finger as
can be seen from Fig. 2(c). For this gripper, a similar approach
to the Model T42 case can be followed due to the similar
topology. Nevertheless, Model M2 is specifically useful and
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Fig. 4. Precision of the Jacobian in (7) designed for Model T42. Starting
from the point at the center, pure horizontal (red lines), and vertical (blue
lines) velocity signals are given. Dashed and solid lines represent ideal and
actual trajectories, respectively. The accuracy of the Jacobian drops as the
system moves toward the workspace boundaries.

designed for rolling/sliding the target object on the flat finger,
and in order to exploit this property, we choose to design
the Jacobian accordingly: in this design, the workspace is
partitioned in such a way that the first column of the Jacobian
is dedicated to align the velocity vector

V ox y =
[

Vox
Voy

]

with the direction of the flat finger surface, and the second
column is for sliding/roling the object along that finger as
explained in detail as follows.

Let us call the angle of the velocity vector and the angle
between the rigid finger and the gripper base β and φ,
respectively. The angle φ can directly be derived from the
actuator encoder since the finger is rigid, and β can be
calculated as

β = atan2(Voy, Vox). (10)

The error between these angles is defined as

eαφ =
{

Voy ≥ 0 π + φ − β

Voy < 0 φ − β.
(11)

Our aim is to make this error zero by moving the object
along the x-axis so that the velocity vector is aligned with
the direction of the flat finger surface. For this purpose,
the velocity in the x-direction can be selected as

Vox = −Keeαφ (12)

where Ke is a positive scalar. Here, we use the same relation
in (1), only by replacing Vox with its value in (12)

eαφ = − Kx

Ke
q̇1 = Kx

Ke
q̇2. (13)

For the component of the velocity vector along the flat finger
surface direction, we first calculate a rolling/sliding velocity
Vs . This can be done by the inner product of the finger vector

F f =
[

cos φ
sin φ

]

Fig. 5. In-hand manipulation with Model M2 gripper using the Jacobian
obtained in Section III-B in the image-based visual servoing loop. The object
follows a trajectory (green line) toward a reference point that is indicated with
a yellow circle. The velocity vector is aligned with the flat finger direction,
and the object is rolled on the flat finger toward the reference point.

and the velocity vector

Vs = V T
ox y

F f. (14)

In order to slide/role the object by keeping the rigid finger
steady and making the underactuated finger reconfigure against
it, we have

Vs = Ksq̇1, q̇2 = 0. (15)

Using (13) and (15), we obtain the following Jacobian:
[

q̇1
q̇2

]
= J sx,y

[
e
Vs

]
=

⎡
⎢⎣

− Ke

Kx

1
Ks

Ke

Kx
0

⎤
⎥⎦

[
e
Vs

]
. (16)

A trajectory obtained by using this Jacobian in visual
servoing loop can be seen from Fig. 5, where the parameter
Ke is set to a high value relative to Ks so that the object is
aligned with the flat finger (to the sliding/rolling trajectory)
quickly and then the rolling action takes over. Alternatively,
these motions can be applied sequentially.

C. Notes on the Simple Models

In these two examples, the derivations of the simple models
are based on simple intuitions about the gripper–object system
(e.g., moving fingers to the left will make the object move
left). For more complicated systems with higher degrees of
freedom, these intuitions may be nontrivial to get. At this
point, hand synergies framework [28] is instrumental to reduce
the dimensionality of the gripper fingers for encompassing
fundamental motions.

It is also crucial to maintain the grasp stability during
the manipulation process. In underactuated/adaptive grippers,
passive system compliance provides us a major advantage to
maintain the stability by their elastic elements: the stability
and manipulability analysis for underactuated systems in [48]
states that any unconstrained motion of the hand object system
requires an elastic element for restoring the contact in order
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to maintain stability. While deriving these models and using
them in the control loop, this principle should also be taken
into account, i.e., the elastic elements that help to keep contact
with the object need to be kept loaded during the operation.

Assuming that the grasp stability is maintained as discussed
above, objects with different shapes and sizes go through
similar motions when the proposed actuation rules are applied.
The main reason for this similar behavior is the compliance of
the system. Compliance creates a basin that moves the system
toward the minimum energy configuration, which is the case
when the applied forces on the object are collinear. Therefore,
contact frames that are used to construct the grasp matrix,
and therefore, the structure of the matrix are very similar for
objects with different shapes and sizes.

IV. VISUAL SERVOING USING SIMPLE MODELS

In this section, the use of the simple models with traditional
image-based visual servoing scheme is presented, and two
robust methods are proposed, namely, a correction matrix
method and vision-based MPC.

A. Conventional Image-Based Visual Servoing

Generally, visual servoing schemes generate velocity refer-
ences for the object using a proportional control rule

V Cam
o = −λJ+

int e. (17)

Here, V Cam
o indicates the velocity reference for the object

expressed in the camera frame, e is the feature error vector,
J int is the interaction matrix, J+

int is its pseudo inverse,
and λ is the diagonal gain matrix (in our 2-D implementation
we use a point feature and the interaction matrix for point
features, which is diagonal in 2-D [6]). Our error vector is the
difference between the reference and current point locations
in the x- and y-directions of the image space. Nevertheless,
any other type of image features can be utilized in the
presented framework. The resulting velocity reference needs
to be transformed from the camera coordinate frame to the
hand coordinate frame

V hand
o = J hand

Cam V Cam
o . (18)

In order to project this velocity to the actuator space, we use
inverse of the hand Jacobian J−1

h and the transpose of the
grasp matrix GT [49] as follows:

q̇ = J−1
h GT V hand

o (19)

where

q̇ =
[

q̇1
q̇2

]
.

By combining the transformations in (17)–(20), we obtain
a visual-motor Jacobian J that projects feature velocities
in image space to actuator velocities

J = J−1
h GT J hand

cam J+
int . (20)

In our framework, the derived Jacobians replace the J−1
h GT

part of the projection. If we consider the Model T42 hand,

we need to choose one of the Jacobians in (7), (8), or (9),
which are used to project V hand

o to the actuator space

q̇ = J s V hand
o . (21)

Object velocity expressed in the hand frame should still be
transferred to the camera frame to obtain a control rule for
actuators

q̇ = −λJ s J hand
cam J+

int e. (22)

By replacing J−1
h GT with J s , we remove the necessity of an

object model, a contact model, and a detailed gripper model.
The matrices J hand

cam and J+
int require the transformation

between the camera and gripper frames and camera intrinsic
parameters, respectively, both of which are often available
in many robotics applications.

Of course J s is a rough approximation for J−1
h GT . How-

ever, visual servoing techniques provide robustness to these
inaccuracies (including the errors in J hand

cam and J+
int ) and

achieve convergence. Still, these inaccuracies affect the tran-
sient response of the system. To improve the transient response
and robustness, we propose the following schemes.

B. Correction Matrix Method

The adaptive algorithms mentioned in Section II-C estimate
the visual-motor Jacobian [ J matrix in (20)] by iteratively
minimizing the difference between the calculated and mea-
sured feature locations. These methods may lead to a loss of
contact with the object while exploring the parameter space,
since inaccuracies during the transient of the adaptation result
in undesired, shaky motions. Moreover, within the framework
of this paper, those adaptation schemes are not preferred as
they alter the derived Jacobians, and gripper-specific charac-
teristic motions cannot be maintained (e.g., the one designed
for Model M2 in Section III-B).

Instead, we propose to calculate a projection matrix that
maps the unit vector of current object velocity to the unit
vector of the desired velocities

V̄
hand∗
o = HV̄

handcur

o . (23)

In (23), V̄
hand∗
o and V̄

hand cur

o signify desired and current unit
vectors, respectively, in the hand coordinate frame. In this
formulation, it is preferred to calculate the projection between
the unit vectors rather than the vectors with magnitudes
in order to avoid velocity fluctuations and achieve smoother
motions.

The unit vectors can be calculated by using desired and
current image trajectories

V̄
hand∗
o = J hand

cam J+
int v f d

/
∣∣J hand

cam J+
int v f d

∣∣ (24)

V̄
hand cur

o = J hand
cam J+

int v f /
∣∣J hand

cam J+
int v f

∣∣. (25)

where v f and v f d
are current and desired feature velocity

vectors, respectively. The H matrix can then be used as a
correction term in the projection

q̇ = −λJ s H J hand
cam J+

int e. (26)

Next, we propose our second method for improving the
system efficiency based on MPC.
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C. Vision-Based Model Predictive Control

Typically, in the MPC framework, the control signal is
obtained by solving an optimization problem considering the
future time instances of the process in each control step.
The formulation of the problem includes a system model,
a disturbance model, and the constraints of the task. Using the
models, the future states are predicted, and the error between
the future reference and state values are minimized also
considering the additional constraints and weight parameters.
We utilize generalized predictive control formulation in which
the cost function aimed to be minimized is defined as

A(U) =
N∑

j=1

δ( j)[ŷ(t + j |t) − w(t + j)]2

+
N∑

j=1

γ ( j)[	u(t + j − 1)]2. (27)

Here, ŷ(t + j |t) is the predicted system state at the future
instance t + j calculated at time t (considering both the system
model and the effect of the disturbance), w(t + j) is the value
of the reference signal at time t + j , δ( j) and γ ( j) are the
weighting parameters, N is the optimization window size, and

	u(t) = u(t) − u(t − 1) (28)

U = [u(t), u(t + 1), . . . u(t + j − 1)] (29)

where u(t) is the system input. As traditionally used in visual
servoing framework, u(t) is applied as a velocity reference to
the system. By minimizing the cost function in (27), the error
between the reference and the state is aimed to be decreased to
zero while minimizing the effect of disturbance and penalizing
the total control.

The parameters δ( j) and γ ( j) determine the characteristic
of the convergence. We chose to use an exponential weight
for δ( j) as

δ( j) = αN− j (30)

where 0 < α < 1. By this way, the later values of the
error are penalized more than the earlier values, and a smooth
convergence can be achieved. We chose to use a constant pos-
itive γ ( j) value, which penalizes the actuator efforts equally
throughout the optimization window.

The state prediction ŷ(t + j |t) is calculated as a sum
of the system model component ys and the estimate of the
disturbance on the state yd as

ŷ(t + j|t) = ys(t + j |t) + yd(t + j |t). (31)

We use a step response type system model, which is the
sum of the effect of the efforts applied to the current state
measurement

ys(t + j |t) = y(t) +
j∑

i=1

gi	u(t + i). (32)

Here, gi are the model parameters and y(t) is the last measured
system state. In our implementation, we use a single gi value
(i.e., g1 = g2 . . . = g j ) that we obtained experimentally by
operating the system at the center of the workspace.

The effect of disturbance (yd) can be incorporated in various
ways. If disturbance is not directly measurable or predictable
for the future values of the system state, then it can be assumed
that its effect at the last control step will continue to be the
same in the future steps. In this case, the disturbance can be
estimated as the difference between the last measured state
and the effect of control input on the previous state

yd(t + j |t) = y(t) − (y(t − 1) + g1	u(t)). (33)

Alternatively, if the reference signal is periodic, the dis-
turbance is consistent throughout the periodic cycle, and the
system already completed one full period, then the effect of
the disturbance measured at the previous cycle can be used as
an estimate

yd(t+ j|t)= y(t)−(y(t−τ + j)+g1	u(t−τ+ j)) (34)

where τ is the number of control steps that correspond to one
period of the reference signal. Such an approach is also used
in robotic heart surgery where the disturbances are consistent
and periodic [46].

With such a formulation of state prediction, every deviation
from ys will be considered as disturbance, which will be
minimized by the optimization procedure. The optimization
problem is

arg minU A(U) (35)

which has the following explicit solution:
U = (PT P + γ I)−1GT (W − F) (36)

where I is an N × N identity matrix, and

P =

⎡
⎢⎢⎢⎢⎢⎣

αN−1 g1 0 0
αN−1g1 αN−2 g2 0
αN−1g1 αN−2 g2 αN−3g3

· · ·
0
0
0

...
. . .

...

αN−1g1 αN−2 g2 αN−3g3 · · · gN

⎤
⎥⎥⎥⎥⎥⎦

(37)

F =

⎡
⎢⎢⎢⎢⎢⎣

yd(t + 1|t) + y(t)
yd(t + 2|t) + y(t)
yd(t + 3|t) + y(t)

...
yd(t + N |t) + y(t)

⎤
⎥⎥⎥⎥⎥⎦

(38)

W =

⎡
⎢⎢⎢⎢⎢⎣

w(t + 1)
w(t + 2)
w(t + 3)

...
w(t + N)

⎤
⎥⎥⎥⎥⎥⎦

. (39)

Even though control input is calculated for the next N
control steps, only the first control input u(t) is sent to the
system, and the optimization problem is solved again with
newly acquired data in the next step

V Cam
o = u(t) (40)

V Cam
o is projected to the actuator space with (18) and

then (21).
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The advantages of using this MPC formulation over conven-
tional image-based visual servoing (IBVS) rule are multifold.
First, MPC takes into account the effect of disturbances on the
system: any deviation from the step response model will be
considered as a disturbance and will be minimized. By this,
we do not only overcome the friction effects, but also the
imperfections of the kinematics model. Second, we have much
more control over the transient response of the system than
we had with IBVS due to the additional parameters δ and γ .
Therefore, smooth transitions can be achieved and torque
limits can be imposed. Moreover, if the future values of the
reference signal are known, convergence can be maintained
faster since these values are taken into account in the optimiza-
tion. Finally, with the MPC framework, additional constraints
can be added to this optimization problem such as workspace
constraints and task specific constraints, which could be
desired for many precision manipulation scenarios. However,
an explicit solution with additional constraints may not always
exist and iterative solvers may be needed. In this case, high
computational power is necessary as this optimization is run
in every control step. Alternately, a self-triggering mechanism
can be designed as in [44].

V. EXPERIMENTAL RESULTS

We conducted vision-based Cartesian positioning experi-
ments with the Model T42 gripper using the Jacobian obtained
in (7). The performances of the IBVS algorithm, correction
matrix method, and MPC algorithm are tested and compared
with the test setup presented in Fig. 6(a) using cylindrical
and rectangular objects in various sizes as can be seen from
Fig. 6(b). The camera is set to 512 × 1024 pixels resolution
and 30 f/s capture rate. The distance of the camera to the
object top surface is 18.5 cm. At the center of the workspace
and at the object level, one pixel approximately corresponds
to 0.23 mm. In each experiment, the object is placed on a
stand, it is pinch grasped by the gripper, and then the stand is
removed so that the object is manipulated without the plane
support. The positions of the target objects are kept consistent
in all experiments with a template on the stand, and the
initial position of the stand was aligned with a static fixture.
We evaluated the performance of the algorithms using step
references and continuous periodic references.

A. Step Response Results

A sequence of step references is applied to the system for
assessing the performance of our controller and the results are
given in Fig. 7. For the cylindrical objects, the object starts
at set point 1 presented in Fig. 8, and set points 2–10 are
applied sequentially. When the error remains two pixels or less
for 1 s, the next set point is sent to the system. For the
rectangular objects, the same procedure is executed except that
the objects start at set point 5, and points 6–8 are applied (set
points 1–4 are not realizable for all rectangular objects since,
while moving from the initial grasp configuration to these
set points, the object slides beyond the operable workspace
that a stable grasp cannot be maintained). For each object,
IBVS, correction matrix, and MPC methods are applied.
The optimization window size of MPC is set to 50 cycles.

Fig. 6. Experimental setup. (a) Layout. (b) Objects used in the experiments:
cylinders with 2-, 3-, and 4-cm diameters, and rectangular prisms with
dimensions 2 × 4, 3 × 5, and 4 × 6 cm. The objects’ weights vary between
12 and 75 g.

For each method, the experiment is repeated five times, and
the total time for visiting all the set points and the total
travel distance in image space are presented for all the objects
in Fig. 7. Also, an example of trajectories with the medium
cylinder is presented for all the algorithms in Fig. 9. In Fig. 7,
the MPC method is almost always more efficient than the
conventional IBVS and the correction matrix method in terms
of both the travel distance and time spent to complete the
trajectory. The trajectories in Fig. 9 also show that our methods
make the system follow a trajectory closer to the optimal one
while traveling between the set points. This is due to the
disturbance rejection mechanisms.

B. Effect of High Model Inaccuracy

The advantage of MPC can also be seen clearly at the
challenging parts of the workspace. An example is presented
in Fig. 1. In Fig. 1(a), the object is manipulated at the
center of the workspace, where the derived simple models
have small errors. In this case, the gains of both IBVS
and vision-based MPC are tuned for the fastest convergence
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Fig. 7. Experiments with the cylindrical (top) and rectangular (bottom) objects. Time elapsed to complete the task and total distances traveled are presented.
Each box represents five experiments with the same object.

with minimum deviation from the optimal trajectory in image
space and minimum overshoot. The change of position of
the object over time in x-direction is presented in Fig. 10.
It can be seen that both algorithms make the object follow
a close-to-optimum trajectory, whereas MPC provides faster

convergence. In the case of Fig. 1(b), the experiment is
conducted in a challenging part of the workspace, where the
object roles over the tip of the finger, and the accuracy of
the simple models drop significantly. In this experiment, the
controller gains are kept the same with the previous trial.
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Fig. 8. Step references (red) and the circular reference (blue) used in the
experiments.

Fig. 9. Trajectories followed by the medium size cylinder with IBVS
(green line), the correction matrix method (blue line), and vision-based MPC
algorithm (cyan line). Red points signify the set points while dashed red
lines are the optimal path in the image space. The set points are supplied
sequentially.

Fig. 10. Position of the tracked object feature in the x- direction for the
experiment shown in Fig. 1(a) (the motion in the y- direction is negligible).
Black dashed line: reference signal, red line: IBVS algorithm, and blue line:
vision-based MPC algorithm.

The position of the object with respect to time is presented
in Fig. 11 in the x- and y-directions. In this particularly difficult
case, even though a simple combination of our models with

Fig. 11. Position of the tracked object feature in the x- and y- directions for
the experiment shown in Fig. 1(b). Black dashed line: reference signal, red
line: IBVS algorithm, and blue line: vision-based MPC algorithm.

Fig. 12. Trajectory of the object for the part of the workspace where the
modeling inaccuracies are high. Red line: IBVS algorithm and blue line:
vision-based MPC algorithm. The trajectories are drawn on the image taken
from the initial position of the system.

the traditional image-based visual servoing technique makes
the system converge to the reference position in the steady
state, the manipulation is much more efficient when the MPC-
based approach is employed; MPC provides approximately
five times faster convergence and makes the object follow a
trajectory that is much closer to the optimum comparing to
the IBVS algorithm. MPC also improves the robustness of
the system since it prevents large trajectory deviations, and
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TABLE I

EXPERIMENTAL RESULTS WITH THE CIRCULAR REFERENCE

therefore, reduces the risk of dropping the object by keeping
it in the manipulation workspace.

Another example can be seen from Fig. 12. Here, the object
is moved toward a region where the modeling inaccuracies
are high and the difference between the commanded veloc-
ity and actual velocity differs significantly as also demon-
strated in Fig. 4. When the conventional visual servoing
method is used, the system still converges, but deviates
from the optimal trajectory by following an arc like path
(as in Fig. 4). This results in a spiral motion, causes a
significant inefficiency and brings a risk of moving out of
the operable workspace. MPC compensates for the model-
ing inefficiency, and pushes the system toward the optimal
trajectory.

C. Periodic Signal Tracking

The circular reference shown in Figs. 7 with 15 pixel
radius and period of 20 s is applied to the system for three
periods. For this set of experiments, MPC with two different
disturbance estimation methods are evaluated. In the first case,
the effect of the disturbance is calculated by the information
of the previous control step as in (33). In the second case,
the effect of disturbance is calculated by the information of the
previous period as in (34). The performance of the algorithms
is evaluated with all the target objects, and the average error
values over the three periods are presented in Table I. Here,
it is observed that the correction matrix method degrades the
performance. The reason is that this method necessitates larger
amount of motions for estimating the velocity direction and
for correcting it; small motions in the image space results
with quantization errors, and correction cannot be conducted
accurately. MPC methods, however, improve the performance
of the system significantly. We observe that the periodic MPC
enhances the tracking performance even more as it has a more
accurate estimation of the disturbance for the future steps of
the optimization.

Fig. 13. Position of the tracked object in the x- direction for varying α
values. Red dashed line: α = 0.668, blue dashed line: α = 0.670, and magenta
dashed line: α = 0.666. The γ value is set to 0.002 in these experiments.

Fig. 14. Position of the tracked object in the x- direction for varying γ values.
Red dashed line: γ = 0.002, blue dashed line: γ = 0.0017, and magenta
dashed line: γ = 0.003. The α value is set to 0.668 in these experiments.

D. Effect of MPC Parameters

The α parameter in (30) and γ and N parameters in (27)
are used to adjust the behavior of the MPC algorithm.
In Figs. 13 and 14, the convergence of the system is presented
for varying α and γ values, respectively, for the trajectory
presented in Fig. 1(a). It can be seen from Fig. 13 that, while
keeping γ values the same, high α values effectively cause an
under damped system resulting in faster convergence together
with overshoot and oscillations. For lower values of α, the later
values of the error are penalized more than the earlier ones,
therefore the system has a smoother, but slower convergence.
In Fig. 14, we can see that high γ values slow down the
system response as it penalizes the sum of inputs in the overall
optimization window. Low γ values do not necessarily result
in a faster convergence to the desired set point, since using
the same α value still penalizes the earlier and later values
of the error in the same way. However, much higher settling
time is observed. In our experience, γ parameter is very useful
for the precision manipulation controller for keeping the inputs
within the bandwidth of the system, and therefore maintaining
the stability.
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The window size parameter N cannot be tuned independent
of the other parameters: N determines the number of samples
considered in the optimization process. The values of both α
and γ parameters depend on N as their effect is distributed
among the samples.

VI. CONCLUSION

In this paper, we present a strategy for conducting effi-
cient vision-based in-hand manipulation with simple process
models. The performance degradations due to the modeling
inaccuracies are minimized using a correction matrix method
and the MPC framework. The experimental results show
that correction matrix and MPC methods improve system
efficiency by providing faster and smoother step response.
MPC shows a superior performance and also enhances the per-
formance in signal tracking, where correction matrix method
fails. The use of periodic disturbance models in MPC provides
even better results in periodic signal tracking, since the effect
of disturbance in the future control steps can be estimated
more accurately.

MPC framework is also ideal for introducing workspace
and task constraints to the process. In our next work, we aim
to develop vision-based learning algorithms for detecting the
workspace constraints of the system and integrating them to
the optimization procedure. We also plan to utilize our strategy
for scenarios that require interactions with the surroundings,
and analyze the performance of the system when external
disturbances exist.

We also investigate conducting controlled sliding using
vision feedback. Our methods with disturbance rejection are
robust to object sliding (which occasionally occurs in our
experiments) even though we do not explicitly consider it
in our models or control scheme. However, controlling sliding
means, in the Model T42 example, determining the control-
lable 2-D submanifold of the 3-D workspace; therefore, this
ability can extend the workspace and the system dexterity
substantially.
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