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I
n this article, we present the Yale–Carnegie Mellon 
University (CMU)–Berkeley (YCB) object and model set, 
intended to be used to facilitate benchmarking in robotic 
manipulation research. The objects in the set are designed 
to cover a wide range of aspects of the manipulation prob-

lem. The set includes objects of daily life with different shapes, 
sizes, textures, weights, and rigidities as well as some widely 
used manipulation tests. The associated database provides 
high-resolution red, green, blue, plus depth (RGB-D) scans, 
physical properties, and geometric models of the objects for 

easy incorporation into manipulation and planning software 
platforms. In addition to describing the objects and models in 
the set along with how they were chosen and derived, we pro-
vide a framework and a number of example task protocols, 
laying out how the set can be used to quantitatively evaluate a 
range of manipulation approaches, including planning, learn-
ing, mechanical design, control, and many others. A compre-
hensive literature survey on the existing benchmarks and 
object data sets is also presented, and their scope and limita-
tions are discussed. The YCB set will be freely distributed to 
research groups worldwide at a series of tutorials at robotics 
conferences. Subsequent sets will be, otherwise, available to 
purchase at a reasonable cost. It is our hope that the ready 
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availability of this set along with the ground laid in terms of 
protocol templates will enable the community of manipulation 
researchers to more easily compare approaches as well as con-
tinually evolve standardized benchmarking tests and metrics 
as the field matures.

Benchmarking in Robotics Research
Benchmarks are crucial for the progress of a research field, al-
lowing performance to be quantified to give insight into the ef-
fectiveness of an approach compared with alternative 
methods. In manipulation research, particularly in robotic ma-
nipulation, benchmarking and performance metrics are chal-
lenging due largely to the enormous breadth of the application 
and task space researchers are working toward. The majority 
of research groups have, therefore, selected for themselves a set 
of objects and/or tasks that they believe are representative of 
the functionality that they would like to achieve/assess. The 
chosen tasks are often not sufficiently specified or general 
enough such that others can repeat them. Moreover, the ob-
jects used may also be insufficiently specified and/or not avail-
able to other researchers (e.g., they may have been 
custom-fabricated or are only available for purchase in certain 
countries). Unfortunately, such an approach prevents the anal-
ysis of experimental results against a common basis and, there-
fore, makes it difficult to quantitatively interpret performance.

There have been a limited number of efforts to develop 
object and model sets for benchmarking in robotic manipula-
tion. Most of these have focused on providing mesh model 
databases of objects, generally for object-recognition or grasp-
planning purposes (see [1]–[4], with a thorough overview 
provided in the “Related Work” section). There have, howev-
er, been a few instances of proposed object/task sets for which 
the physical objects are available to researchers. Access to the 
objects is crucial to performance benchmarking as many as-
pects of the manipulation process cannot be modeled, thereby 
requiring experiments to demonstrate success or examine 
failure modes.

Overview
In this article, we present an object set for robotic manipula-
tion research and performance evaluation, a framework for 
standard task protocols, and a number of example protocols 
along with experimental implementation. The object set is 
specifically designed to allow for widespread dissemination of 
the physical objects and manipulation scenarios. The objects 
were selected based on a survey of the most common objects 
utilized in the robotics field as well as the prosthetics and re-
habilitation literature (in which procedures are developed to 
assess the manipulation capabilities of patients) along with a 
number of additional practical constraints. Along with the 
physical objects, textured mesh models, high-quality images, 
and point-cloud data of the objects are provided together with 
their physical properties (i.e., major dimensions and mass) to 
enable realistic simulations. These data are all available online 
at http://rll.eecs.berkeley.edu/ycb/. The models are integrated 
into the MoveIt motion-planning tool [5] and the robot oper-

ating system (ROS) to demonstrate their use. The set will be 
freely distributed to research groups worldwide at a series of 
tutorials at robotics conferences and will be, otherwise, avail-
able at a reasonable purchase cost. Our goal is to do as much 
as possible to facilitate the widespread usage of a common set 
of objects and tasks to allow easy comparison of results be-
tween research groups worldwide.

In choosing the objects in the set, a number of issues were 
considered. The objects, many of which are commercial 
household products, should span a variety of shapes, sizes, 
weights, rigidities, and textures as well as a wide range of ma-
nipulation applications and challenges. In addition, several 
practical constraints were considered, including ease of ship-
ping and storage, reasonable overall cost, durability, perish-
ability, and product longevity (the likelihood that the objects/
products will be available in the future).

In addition to the object and model set, we provide a sys-
tematic approach to define manipulation protocols and bench-
marks using the set. The protocols define the experimental 
setup for a given manipu-
lation task and provide 
procedures to follow, and 
the benchmarks provide a 
scoring scheme for the 
quantification of perfor-
mance for a given proto-
col. To facilitate the design 
of well-defined future pro-
tocols and benchmarks, 
guidelines are provided 
through a template. The 
protocols and benchmarks 
are intended to generally 
be platform-independent 
to allow for comparisons of approaches across platforms. 
Along with the template and guidelines, we present a number 
of preliminary protocols and benchmarks. These serve both as 
examples of how to utilize the template and as useful proce-
dures for quantitatively evaluating various aspects of robotic 
manipulation. The implementation of these benchmarks on 
real robotic systems is also provided to demonstrate the 
benchmarks’ abilities to quantitatively evaluate the manipula-
tion capabilities of various systems.

We expect to continually expand on this work not only by 
our own efforts (adding more objects’ properties and addi-
tional benchmarks) but also, more importantly, via our web 
portal: http://www.ycbbenchmarks.org/. Through this web 
portal, the user community can engage in this effort, with 
users proposing changes to the object set and putting forth 
their own protocols, benchmarks, and so on. 

Related Work
For benchmarking in manipulation, specifying an object set 
is useful for the standardization of experimental conditions. 
Table 1 summarizes the object sets that have been proposed 
for manipulation tasks in the fields of robotics, prosthetics, 

The models are integrated 

into the MoveIt motion-

planning tool [5] and the 

robot operating system 

(ROS) to demonstrate  

their use.



•  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  September 201538

Table 1. Object data sets in the literature (sorted by year).

Data Set Name Year Data Type Purpose

Number of 
Objects/ 
Categories

Physical Objects 
Available Website

1 BigBIRD [1] 2014 Meshes with 
texture + HQ 
images

Object  
recognition

100 No http://rll.eecs.berkeley.edu/
bigbird

2 Amazon  
Picking  
Challenge [7]

2014 Shopping list Grasping 27 Yes http://amazonpickingchallenge.
org/

3 SHREC'14 [2] 2014 Mesh models Object  
retrieval

8,987/171 No http://www.itl.nist.gov/iad/vug/
sharp/contest/2014/Generic3D/

4 SHREC'12 [21] 2012 Mesh models Object  
retrieval

1,200/60 No http://www.itl.nist.gov/iad/vug/
sharp/contest/2012/Generic3D/

5 The KIT object 
models  
database [19]

2012 Mesh with 
texture, stereo 
images

Recognition, 
localization, 
and  
manipulation

100 No http://i61p109.ira.uka.de/ 
ObjectModels WebUI/

6 VisGraB [22] 2012 Stereo images Manipulation 18 No http://www.robwork.dk/visgrab/

7 The object 
segmentation 
database [17]

2012 RGB-D images Object  
segmentation

N/A No http://users.acin.tuwien.ac.at/
arichtsfeld/?site=4

8 Toyohashi shape  
benchmark [23]

2012 Mesh models Object  
retrieval

10k/352 No http://www.kde.cs.tut.ac.jp/
benchmark/tsb/

9 The Willow 
Garage object 
recognition  
challenge [24]

2012 RGB-D images Object  
recognition

N/A No http://www.acin.tuwien.ac.at/
forschung/v4r/ 
mitarbeiterprojekte/willow/

10 SHREC'11 [25] 2011 Mesh models Object  
retrieval

600 No http://www.itl.nist.gov/iad/vug/
sharp/contest/2011/NonRigid/

11 Berkeley 3-D 
object data set 
[26]

2011 RGB-D data 
set of room 
scenes

Object  
detection

N/A No http://kinectdata.com/

12 RGB-D object 
data set [27]

2011 RGB-D Data 
set

Object  
detection and 
recognition

300/51 No http://rgbd-dataset.
cs.washington.edu/

13 The open GRASP  
benchmarking 
suite [20]

2011 Mesh with 
texture, stereo 
images

Grasping Uses KIT 
database

No http://opengrasp.sourceforge.
net/benchmarks.html

14 SHREC 2010 
[28]

2010 Mesh models Object 
retrieval

3168/43 No http://tosca.cs.technion.ac.il/
book/shrec_robustness2010.html

15 The Columbia 
grasp database 
[3]

2009 Mesh models Grasping ~8,000 No http://grasping.cs.columbia.edu/

16 Benchmark set 
of domestic 
objects [6]

2009 Shopping list Robotic  
manipulation

43 Yes http://www.hsi.gatech.edu/hrl/
object_list_v092008.shtml

17 Bonn  
architecture 
benchmark [29]

2009 Mesh models Object 
retrieval

2,257 No ftp://ftp.cg.cs.unibonn.de/pub/
outgoing/ArchitectureBenchmark

18 Engineering 
shape  
benchmark [30]

2008 Mesh models Object 
retrieval

867 No https://engineering.purdue.edu/
PRECISE/shrec08

19 3-D object 
retrieval  
benchmark [31]

2008 Mesh models Object 
retrieval

800/40 No http://www.itl.nist.gov/iad/vug/
sharp/benchmark/

20 McGill 3-D 
shape  
benchmark [ 32]

2008 Mesh models Shape  
retrieval

N/A No http://www.cim.mcgill.ca/~shape/
benchMark/

(Continued)
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and rehabilitation. Even though there have been many efforts 
that provide data sets of object mesh models that are useful 
for many simulation and planning applications as well as for 
benchmarking in shape retrieval, these data sets have limited 
utility for manipulation benchmarking for several reasons.

●● �Since most of them are not designed specifically for manip-
ulation benchmarking, the selected objects do not usually 
cover the shape and function variety needed for a range of 
manipulation experiments. 

●● �None of these databases provides the objects’ physical prop-
erties, which are necessary to conduct realistic simulations.

●● �Most importantly, the vast majority of objects in these sets 
are not easily accessible by other researchers, preventing 
their use in experimental work.

Exceptions to this include [6], which provides an online 
shopping list (though it is now outdated, with many dead 
links), and the recently announced Amazon Picking Chal-
lenge [7], which provides a shopping list to purchase objects 
meant for a narrow bin-picking task. In the prosthetics and 
rehabilitation field, commercial kits are available for upper-
limb assessment tests [8]–[11]. While demonstrating the ben-
efits of utilizing a standard set for manipulation assessment, 
the scope of these kits is limited for benchmarking in robotics 
as they are not representative of a wide range of manipulation 
tasks. Our effort is unique in that it provides a large amount 
of information about the objects necessary for many simula-
tion and planning approaches, makes the actual objects readi-
ly available for researchers to utilize experimentally, and 

Table 1. Object data sets in the literature (sorted by year). (Continued)

Data Set Name Year Data Type Purpose

Number of 
Objects/ 
Categories

Physical Objects 
Available Website

21 The Toronto 
Rehabilitation 
Institute hand-
function  
test [33]

2008 Commercial 
kit/no model 
data

Prosthetics 
and  
rehabilitation

14 No http://www.rehabmeasures.org/
Lists/RehabMeasures/PrintView.
aspx?ID=1044

22 GRASSP [9] 2007 Commercial 
kit/no model 
data

Prosthetics 
and  
rehabilitation

N/A Yes http://grassptest.com/

23 AIM@SHAPE 
shape  
repository [16]

2006 Mesh models General 1,180 No http://shapes.aim-atshape.net/
viewmodels.php

24 The Princeton 
shape   
benchmark [18]

2004 Mesh models Shape-based 
retrieval

1,814 No http://shape.cs.princeton.edu/
benchmark/

25 Mesh  
deformation 
data set [34]

2004 Mesh models Mesh  
transforma-
tion

N/A/13 No http://people.csail.mit.edu/sum-
ner/research/deftransfer/data.
html

26 NTU 3-D model 
benchmark [35]

2003 Mesh models Shape  
retrieval

1,833 No http://3d.csie.ntu.edu.tw/

27 SHAP [8] 2002 Commercial 
kit/no model 
data

Prosthetics 
and  
rehabilitation

— Yes http://www.shap.ecs.soton.ac.uk/

28 Action research 
arm test [10]

1981 Commercial 
kit/no model 
data

Prosthetics 
and  
rehabilitation

19 Yes http://saliarehab.com/actionre-
searcharmtestarat.html

29 Jebsen–Taylor 
hand-function 
test [11]

1969 Commercial 
kit/no model 
data

Prosthetics 
and  
rehabilitation

N/A Yes N/A

30 The ITI data-
base [36]

N/A Mesh models Object 
retrieval

544/13 No http://vcl.iti.gr/3d-object- 
retrieval/

31 Model bank 
library [37]

N/A Mesh with 
texture

General 1,200 No http://digimation.
com/3dlibraries/model- 
bank-library/

32 SketchUp [4] N/A Mesh with 
and without 
texture

General N/A No https://3dwarehouse.sketchup.
com/

33 RoboCup at 
home [38]

Multiple No data Manipulation N/A No http ://www.robocupathome.org/
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includes a wide range of objects to span many different ma-
nipulation applications.

We provide a detailed overview of prior related benchmark-
ing efforts, discussing their scope and limitations. For organiza-
tion purposes, we first discuss work primarily related to robotic 
manipulation (including vision and learning applications), then 
efforts in rehabilitation, including prosthetics.

Robotic Manipulation
The necessity of manipulation benchmarks is highly recog-
nized in the robotics community [12]–[14] and continues to 
be an active topic of discussion at workshops on robotic ma-
nipulation (see [15]). As mentioned earlier, the majority of 
prior work related to object sets has involved just object im-
ages and models (with varying degrees of information, from 
purely shape information to textural plus shape). Such work 
has often been created for research in computer vision (see 
[2], [16], and [17]). There have also been a number of shape/
texture sets designed for/by the robotics community, particu-

larly for applications such 
as planning and learning. 
The Columbia grasp da-
tabase [3] rearranges the 
object models of the 
Princeton shape bench-
mark [18] for robotic ma-
nipulation and provides 
mesh models of 8,000 ob-
jects together with a 
number of successful 
grasps per model. Such a 
database is especially use-

ful for implementing machine-learning-based grasp synthe-
sis algorithms in which large amounts of labeled data are 
required for training the system. A multipurpose object set, 
which also targets manipulation, is the Karlsruhe Institute of 
Technology (KIT) object models database [19] which pro-
vides stereo images and textured mesh models of 100 objects. 
While there are a large number of objects in this database, 
the shape variety is limited, and like the previously men-
tioned data sets, the exact objects are typically not easily ac-
cessible to other researchers due to regional product 
differences or variation over time, and they generally cannot 
be purchased in one place as a set.

There have only been two robotics-related efforts in 
which the objects are made relatively available. The house-
hold objects list [6] provides good shape variety that is ap-
propriate for manipulation benchmarking as well as a 
shopping list for making the objects more easily accessible to 
researchers. Unfortunately, the list is outdated, and most ob-
jects are no longer available. The three-dimensional (3-D) 
models of objects in [6] are not supplied, which prevents the 
use of the object set in simulations. Very recently, the Ama-
zon Picking Challenge [7] also provides a shopping list for 
items, but those were chosen to be specific to the bin-picking 
application and do not have models associated with them.

In terms of other robotic manipulation benchmarking ef-
forts, a number of simulation tools have been presented in the 
literature. The OpenGRASP benchmarking suite [20] pres-
ents a simulation framework for robotic manipulation. The 
benchmarking suite provides test cases and setups and a stan-
dard evaluation scheme for the simulation results. So far, a 
model-based grasp synthesis benchmark has been presented 
using this suite. VisGraB [22] provides a benchmark frame-
work for grasping unknown objects. The unique feature of 
this software is its utilization of real stereo images of the target 
objects for grasp synthesis as well as execution and evaluation 
of the result in a simulation environment. For gripper and 
hand design, benchmark tests [39], [40] are proposed for 
evaluating the ability of the grippers to hold an object, but 
only cylindrical objects are used.

Prosthetics and Rehabilitation
In the general field of rehabilitation and upper-limb pros-
thetics, there are a number of evaluation tools used by thera-
pists to attempt to quantify upper-limb function in humans. 
Some of these are commercially available, clinically verified, 
and have been substantially covered in the literature, includ-
ing normative data to compare a patient’s performance to 
baselines. While some tools are commonly used, other tests 
have only been proposed in the literature and not (yet, at 
least) been widely utilized. Many of these tests aim to evalu-
ate the ability of patients to perform tasks that contribute to 
activities of daily living.

The tests that are commercially available are the box-and-
blocks test [41]; the nine-hole peg test [42]; the Jebsen–Taylor 
hand-function test [11]; the action research arm test (ARAT) 
[10]; the graded redefined assessment of strength, sensibility, 
and prehension (GRASSP) test [9]; and the Southampton 
hand-assessment procedure (SHAP) [8]. The setups for the 
box-and-blocks and nine-hole peg tests are very specific, with 
evaluation based on timed movements of simple objects. The 
setup for the Jebsen–Taylor hand-function test includes objects 
for manipulation actions, such as card turning, and moving 
small (paper clips, bottle caps), light (empty cans), and heavy 
objects (1-lb weighted cans), but it utilizes a small number of 
objects of limited shape and size variety. The ARAT assesses 
upper-limb function, and its commercial set [43] contains ob-
jects such as wooden blocks of various sizes, glasses, a stone, a 
marble, washers, and bolts. The test proposes actions like plac-
ing a washer over a bolt and pouring water from one glass into 
another. The GRASSP measure has also been proposed for the 
assessment of upper-limb impairment. It is based on a com-
mercial kit available in [44]. Apart from a specialized manipu-
lation setup, the kit also includes the nine-hole peg test, jars, 
and a bottle. The SHAP setup includes some objects of daily 
living, such as a bowl, a drink carton, and a jar, together with 
some geometrical shapes. Patients are requested to perform a 
variety of manipulation tasks, mostly involving transporting 
objects but also including pouring a drink, opening the jar, 
and so on. Considering manipulation benchmarking in robot-
ics, the box-and-blocks, nine-hole peg, and Jebsen–Taylor 
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hand-function tests are far from providing an adequate object 
variety for deriving new benchmarks. Despite enabling a larger 
possibility of manipulation tasks than the previously men-
tioned setups, the GRASSP and SHAP setups are still bounded 
to a limited number of tasks, and both are pricey (currently 
around US$1,300 and US$3,000, respectively).

Some well-known tests that do not provide a commercial 
setup are the grasp-and-release test [45], the Toronto Rehabili-
tation Institute hand-function test [33], and the activities mea-
sure for upper-limb amputees (AM-ULA) [46]. The 
grasp-and-release test is proposed for evaluating the perfor-
mance of neuroprosthetic hands. For this test, detailed de-
scriptions of the objects are given, but the objects are not easily 
obtainable, and the set includes an outdated object, i.e., a vid-
eotape. The Toronto Rehabilitation Institute hand-function 
test (also known as the Rehabilitation Engineering Laboratory 
hand-function test [47]) evaluates the palmar (power) and lat-
eral (precision) grasp abilities of individuals using an object set 
comprising a mug, a book, a piece of paper, a soda can, dice, a 
pencil, and so on. Even though it is claimed that the objects 
used in this test are easily obtainable, maintaining the exact ob-
ject definitions is hard, and one of the objects is an outdated 
cellular phone. The AM-ULA defines several quality measures 
for assessing the manipulation tasks, and various daily activi-
ties are proposed for the assessment. The objects used in the 
AM-ULA activities are not standardized.

In addition to these tests, some works in the literature 
use their own setups for assessment. In [48], tasks such as 
using a hammer and nail, stirring a bowl, folding a bath 
towel, and using a key in a lock are proposed for evaluating 
an upper-limb prosthesis. In [49], the performance of a neu-
roprosthesis is evaluated by asking the patient to perform 
grasping and lifting tasks as well as phone dialing, pouring 
liquid from a pitcher, and using a spoon and fork. In [50], to 
evaluate the outcomes of a protocol for stoke rehabilitation, 

blocks, Lego bricks, and pegs are used together with daily 
life activities like folding, buttoning, pouring, and lifting. In 
[51], the outcomes of a neuroprosthesis are measured with 
the box-and-blocks test and clothes-pin relocation task to-
gether with the evaluation of actions of daily living, i.e., 
using a fork and a knife, opening a jar, and stirring a spoon 
in a bowl. But none of the 
above-mentioned assess-
ment procedures pro-
vides descriptions of the 
objects used.

In our object set, we 
have included objects that 
are commonly used in 
these assessment proce-
dures (i.e., a mug, a bowl, 
a pitcher, washers, bolts, 
kitchen items, pens, a 
padlock, and so on). We 
also included objects that will allow designing protocols that 
focus on activities of daily living. Moreover, widely used ma-
nipulation tests such as the nine-hole peg and box-and-blocks 
tests are also provided.

Object and Data Set
The contents of the proposed object set are shown in Fig-
ures 1–8 and listed in Table 2. The objects in the set are divid-
ed into the following categories: 1) food items, 2) kitchen 
items, 3) tool items, 4) shape items, and 5) task items tests are 
also provided.

Object Choices
We aimed to choose objects that are frequently used in daily 
life and also went through the literature to take into account 
objects that are frequently used in simulations and 

Figure 1. The food items in the YCB object set. Back row, from left: a 
can of chips, a coffee can, a cracker box, a box of sugar, and a can of 
tomato soup. Middle row, from left: a container of mustard, a can of 
tuna fish, a box of chocolate pudding, a box of gelatin, and a can of 
potted meat. Front row: plastic fruits (a lemon, an apple, a pear, an 
orange, a banana, a peach, strawberries, and a plum).

Figure 2. The kitchen items in the YCB object set. Back row, from 
left: a pitcher, a container of bleach cleanser, and a container 
of glass cleaner. Middle row, from left: a plastic wine glass, an 
enamel-coated metal bowl, a metal mug, and an abrasive sponge. 
Front row, from left: a cooking skillet with a glass lid, a metal plate, 
eating utensils (knife, spoon, and fork), a spatula, and a white 
table cloth.
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experiments. We also benefit from the studies on objects of 
daily living [52] and daily activities checklists such as [53].

In compiling the proposed object and task set, we needed to 
take a number of additional practical issues into consideration.

●● �Variety: To cover as many aspects of robotic manipulation as 
possible, we included objects that have a wide variety of shapes, 

sizes, transparencies, deformabilities, and textures. Considering 
size, the necessary grasp aperture varies from 14 cm (the diam-
eter of the soccer ball) to 0.64 cm (the diameter of the smallest 
washer). Considering deformability, we have rigid objects to-
gether with foam bricks, a sponge, deformable balls, and articu-
lated objects. Regarding transparency, we have included a 
transparent plastic wine glass, a glass skillet lid, and a semitrans-
parent bottle of glass cleaner. The set includes objects with uni-
form plain textures, such as the pitcher and the stacking cups, 
and objects with irregular textures, like most of the groceries. 
Grasping and manipulation difficulty was also a criterion: for 
instance, some objects in the set are well approximated by sim-
ple geometric shapes (e.g., the box-shaped objects in the food 
category or the balls in the shape category) and relatively easy 

(b)(a)

Figure 8. The task items: (a) a black T-shirt and (b) a timer for 
accurate timing and as a manipulation object with a keypad.

(b)(a)

Figure 5. (a) The improvised box-and-blocks test objects: a set 
of 100 wooden cubes, two containers, and a height obstacle 
(container lid) between them. (b) The nine-hole peg test: wooden 
pegs are placed in holes and stored in the body of the box.

(b)(a)

Figure 6. The assembly object: (a) the toy airplane 
disassembled, including a toy power screwdriver, and (b) the 
fully assembled airplane.

Figure 7. The assembly object: Lego Duplo pieces.

Figure 3. The tool items in the YCB object set. Back row, from 
left: a power drill and wood block. Middle row, from left: scissors, 
a padlock and keys, markers (two sizes), an adjustable wrench, 
Phillips- and flat-head screwdrivers, wood screws, nails (two 
sizes), plastic bolts and nuts, and a hammer. Front row: spring 
clamps (four sizes).

Figure 4. The shape items in the YCB object set. Back row, from 
left: a mini soccer ball, a softball, a baseball, a tennis ball, a 
racquetball, and a golf ball. Front row, from left: a plastic chain, 
washers (seven sizes), a foam brick, dice, marbles, a rope, stacking 
cups (set of ten), and a blank credit card.
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Table 2. Object set items and properties.
Identi-
fication 
Number Class Object

Mass 
(g)

Dimensions 
(mm)

1 Food 
items

Chips can 205 75 # 250

2 Master chef can 414 102 # 139

3 Cracker box 411 60 # 158 # 210

4 Sugar box 514 38 # 89 # 175

5 Tomato soup can 349 66 # 101

6 Mustard bottle 603 58 # 95 # 190

7 Tuna fish can 171 85 # 33

8 Pudding box 187 35 # 110 # 89

9 Gelatin box 97 28 # 85 # 73

10 Potted meat can 370 50 # 97 # 82

11 Banana 66 36 # 190

12 Strawberry 18 43.8 # 55

13 Apple 68 75

14 Lemon 29 54 # 68

15 Peach 33g 59

16 Pear 49 66.2 # 100

17 Orange 47 73

18 Plum 25g 52

19 Kitchen 
items

Pitcher base 178 108 # 235

20 Pitcher lid 66 123 # 48

21 Bleach cleanser 1,131 250 # 98 # 65

22 Windex bottle 1,022 80 # 105 # 270

23 Winelass 133 89 # 137

24 Bowl 147 159 # 53

25 Mug 118 80 # 82

26 Sponge 6.2 72 # 114 # 14

27 Skillet 950 270 # 25 # 30

28 Skillet lid 652 270 # 10 # 22

29 Plate 279 258 # 24

30 Fork 34 14 # 20 # 198

31 Spoon 30 14 # 20 # 195

32 Knife 31 14 # 20 # 215

33 Spatula 51.5 35 # 83 # 350

34 Table cloth 1,315 2,286 # 3,352

35 Tool 
items

Power drill 895 35 # 46 # 184

36 Wood block 729 85 # 85 # 200

37 Scissors 82 87 # 200 # 14

38 Padlock 304 24 # 47 # 65

39 Keys 10.1 23 # 43 # 2.2

40 Large marker 15.8 18 # 121

41 Small marker 8.2 8 # 135

42 Adjustable wrench 252 5 # 55 # 205

Identi-
fication 
Number Class Object

Mass 
(g)

Dimensions 
(mm)

43 Tool 
items

Phillips  
screwdriver

97 31 # 215

44 Flat screwdriver 98.4 31 # 215

45 Nails [2, 2.7, 
4.8]

[4 # 25, 3 # 53, 
4 # 63]

46 Plastic bolt 3.6 43 # 15

47 Plastic nut 1 15 # 8

48 Hammer 665 24 # 32 # 135

49 Small clamp 19.2 85 # 65 # 10

50 Medium clamp 59 90 # 115 # 27

51 Large clamp 125 125 # 165 # 32

52 Extra-large clamp 202 165 # 213 # 37

53 Shape 
items

Mini soccer ball 123 140

54 Softball 191 96

55 Baseball 148 75

56 Tennis ball 58 64.7

57 Racquetball 41 55.3

58 Golf ball 46 42.7

59 Chain 98 1,149

60 Washers [0.1, 
0.7, 1.1, 
3, 5.3, 
19, 48]

[6.4, 10, 13.3, 
18.8, 25.4, 37.3, 
51]

61 Foam brick 28 50 # 75 # 50

62 Dice 5.2 16.2

63 Marbles N/A N/A

64 Rope 18.3 3,000 # 4.7

65 Cups [13, 14, 
17, 19, 
21, 26, 
28, 31, 
35, 38]

[55 # 60, 60 # 
62, 65 # 64, 70 
# 66, 75 # 68, 
80 # 70, 85 # 
72, 90 # 74, 95 
# 76, 100 # 78]

66 Blank credit card 5.2 54 # 85 # 1

67 Rope 81 3,000

68 Task 
items

Clear box 302 292 # 429 # 149

69 Box lid 159 292 # 429 # 20

70 Colored wood 
blocks

10.8 26

71 Nine-hole peg 
test

1,435 1,150 # 1,200 
# 1,200

72 Toy airplane 570 171 # 266 # 280

73 Lego Duplo 523 N/A

74 T-shirt 105 736 # 736

75 Magazine 73 265 # 200 # 1.6

76 Timer 102 85 # 80 # 40

77 Rubik’s Cube 94 57 # 57 # 57
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for grasp synthesis and execution, while other objects have 
higher shape complexity (e.g., the spring clamps in the tool cat-
egory, or the spatula in the kitchen-items category) and are 
more challenging for grasp synthesis and execution. Consider-
ing these aspects, the proposed set has a superior variety com-
pared with the commercially available sets [8], [11], [41], [42], 
[44], which are designed to address some particular manipula-
tion aspects only.

●● �Use: We included objects that are not only interesting for 
grasping but that also have a range of manipulation uses. 

For example, a pitcher and 
a cup; nails and a ham-
mer; and pegs, cloths, and 
rope. We also included as-
sembly items/tasks: a set 
of children’s stacking cups, 
a toy airplane (Figure 6) 
that must be assembled 
and screwed together, and 
Lego Duplo bricks (Figure 
7). In addition, widely 
used standard manipula-
tion tests in rehabilitation, 
such as an improvised 
box-and-blocks [41] and a 
nine-hole peg test [42], are 
included. As mentioned 
above, these tasks are in-
tended to span a wide 

range of difficulty, from relatively easy to very difficult. Fur-
thermore, the ability to quantify the task performance was 
also prioritized, including aspects such as level of difficulty, 
time to completion, and success rate, among others.

●● �Durability: We aimed for objects that can be useful in the 
long term, and, therefore, avoid objects that are fragile or 
perishable. In addition, to increase the longevity of the ob-
ject set, we chose objects that are likely to remain in circu-
lation and change relatively little in the near future. 

●● �Cost: We aimed to keep the cost of the object set as low as 
possible to broaden accessibility. We, therefore, selected 
standard consumer products, rather than, for instance, cus-
tom-fabricated objects, and tests. The current cost for the 
objects is approximately US$350.

●● �Portability: We aimed to have an object set that fits in a 
large-sized suitcase and be below the normal airline weight 
limit (22 kg) to allow easy shipping and storage.
After these considerations, the final objects were selected 

(Table 2 and Figures 1–8). Objects 1–18 are the food items, in-
cluding real boxed and canned items as well as plastic fruits, 
which have complex shapes. Objects 19–34 are kitchen items, 
including objects for food preparation and serving as well as 
glass cleaner and a sponge. Objects 35–52 form the tool items 
category, containing not only common tools but also items—
such as nails, screws, and wood—with which to utilize the 
tools. The shape items are objects 53–67, which span a range 
of sizes (spheres, cups, and washers), as well as compliant ob-
jects such as foam bricks, rope, and chain. The task items are 
objects 68–77, and they include two widely used tasks in reha-
bilitation benchmarking (box-and-blocks [41] and nine-hole 
peg test [42]) as well as items for relatively simple and complex 
assembly tasks (a Lego Duplo set and children’s airplane toy, 
respectively). Furthermore, the set includes a black T-shirt for 
tasks like cloth folding as well as a magazine and a Rubik’s 
cube. We include a timer in the kit (Figure 8), which not only 
provides accurate timing of the task but also serves as a manip-
ulation object with a keypad. While there are an unlimited 
number of manipulation tasks that might be able to be done 
with these objects, we provide some examples for each catego-
ry in Table 3 (with an in-depth discussion of tasks and proto-
cols in the “Conclusions and Future Work” section).

Object Scans
To ease adoption across various manipulation research approach-
es, we collected visual data that are commonly required for grasp-
ing algorithms and generate 3-D models for use in simulation. 
We used the same scanning rig used to collect the BigBIRD data 
set [1]. The rig, shown in Figure 9, has five RGB-D sensors and 
five high-resolution RGB cameras arranged in a quarter-circular 
arc. Each object was placed on a computer-controlled turntable, 
which was rotated by 3° at a time, yielding 120 turntable orienta-
tions. Together, this yields 600 RGB-D images and 600 high-reso-
lution RGB images. The process is completely automated, and the 
total collection time for each object is under 5 min.

We then used Poisson surface reconstruction to generate 
watertight meshes [54] (Figure 10). Afterward, we projected 
the meshes onto each image to generate segmentation masks. 
Note that Poisson reconstruction fails on certain objects with 
missing depth data; specifically, transparent or reflective re-
gions of objects usually do not register depth data. We will 

Table 3. The suggestions for manipulation tasks.

Object Category Suggested Tasks

Food items • �Packing/unpacking the groceries

Kitchen items • Table setting
• �Wipe down table with sponge and 

Windex
• Cooking scenarios

Tool items	 • Nailing
• Drilling
• �Unlocking the padlock using the key
• Placing the pegs on the rope
• �Unscrewing a bolt using the wrench
• �Cutting a paper with the scissors
• Writing on a paper
• Screwing the nut on the bolt

Shape items • �Sorting marbles into the plastic blocks
• �Unstacking/stacking the cups
• �Placing the washers onto the bolt

Task items • Box-and-blocks test
• �Toy-plane assembly/disassembly
• Nine-hole peg tests
• Lego assembly/disassembly
• Cloth folding

Our goal is to do as much

as possible to facilitate

the widespread usage of

a common set of objects

and tasks to allow easy

comparison of results

between research  

groups worldwide.
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later provide better models for these objects using algorithms 
that take advantage of the high-resolution RGB images for 
building models.

In total, for each object, we provide the following:
●● 600 RGB-D images
●● 600 high-resolution RGB images
●● segmentation masks for each image
●● calibration information for each image
●● �texture-mapped 3-D mesh models.

The object scans can be found online at [55].

Models
Based on the scans of the objects, there are several ways in 
which object models can be easily integrated into a variety of 
robot simulation packages. For example, in the MoveIt [5] 
simulation package, the mesh can be used as a collision ob-
ject directly. Furthermore, a unified robot description format 
(URDF) file can be automatically constructed to integrate 
with ROS [56]. This provides a way to specify mass proper-
ties and can link to alternate representations of the mesh for 
visualization and collision. Integration with the OpenRAVE 
[57] simulation package is similarly straightforward where 
we link to the display and collision meshes from a KinBody 
XML file. Using the scans, we have created URDF and Kin-
Body files for all of the objects in the data set, provided 
alongside the scans at [55].

Once in a simulation environment, a variety of motion 
planners and optimizers can use these models either as colli-
sion or manipulation objects. Some algorithms, such as Co-
variant Hamiltonian Optimization for Motion Planning [58], 
require signed-distance fields to avoid collisions, which can 
be computed from the included watertight meshes. Other 
cases, such as Constrained Bi-directional Rapidly-Exploring 
Random Tree [59], compute collisions directly using an opti-
mized mesh collision checker.

In many cases, collision checking is a computational bot-
tleneck for motion planning. Execution time can be reduced 
using a simplified mesh produced either by hand or with au-
tomatic decimation methods [60]. We have not yet provided 

simplified meshes in this data set, but we view this as an op-
portunity in future work to further explore mesh approxima-
tion algorithms and their impact on motion-planning 
problems using the standardized benchmarks.

Functional Demonstration of Integration  
into Simulation Software
The entire pipeline is shown in Figure 11. Here, we see the 
HERB robot [61] preparing to grasp the virtual drill object. This 
demonstration uses an in-
tegration of ROS and 
OpenRAVE. The ROS is 
used to provide communi-
cation between the various 
hardware and software 
components of the robot, 
while OpenRave handles 
planning and collision 
checking.

Inside OpenRAVE, the 
HERB robot uses CBiRRT, 
the Open Motion Plan-
ning Library [62] library, and CHOMP to plan and optimize 
motion trajectories. Using these tools, chains of several actions 
can be executed in sequence. The simulation environment also 

Figure 9. The BigBIRD object-scanning rig: the box contains a 
computer-controlled turntable.

(b)(a)

Figure 10. The point-cloud and textural-data overlays on two 
YCB objects: (a) the mustard bottle and (b) the power drill.

(b)(a)

Figure 11. (a) The screen-capture from the OpenRAVE 
simulation and planning environment showing the HERB robot 
[34] planning a grasp of the power drill object in the set. (b) The 
actual grasp being executed by the robot on the physical object.

A variety of motion 

planners and optimizers 

can use these models  

either as collision or 

manipulation objects. 
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provides a mechanism for incorporating feedback from per-
ception systems, which similarly benefit from this data set. The 

provided images, meshes, 
and physical objects can 
all be used as training data 
for various object-detec-
tion and pose-estimation 
algorithms, which can 
then be incorporated into 
the manipulation pipeline.

Access to both the 
physical object and a cor-
responding model for 
simulation is important 

for developing and testing new planning and manipulation al-
gorithms. This data set vastly reduced the time required to set 

up this example by providing access to object models and 
meshes that have already been prepared for this purpose. This 
has removed the burden of scanning or modeling new objects 
and provides benchmark environments that streamline experi-
mental design.

Protocol Design for Manipulation
A standard set of objects and associated models is a great start-
ing point for common replicable research and benchmarking 
in manipulation, but there must be a sufficient amount of 
specification about what should be done with the objects to di-
rectly compare approaches and results. Given the wide range 
of technical interests, research approaches and applications 
being examined in the manipulation research community, 
along with how quickly the field moves, we cannot possibly 
provide sufficient task descriptions that will span the range of 
interests and remain relevant in the long term. Instead, we seek 
to lay the groundwork for those to be driven by the research 
community and subcommunities. We, therefore, focus on two 
efforts: developing a framework for task protocols, setting, for-
matting, and content guidelines to facilitate effective commu-
nity-driven specification of standard tasks; and a preliminary 
set of example protocols that we believe are relevant for our re-
spective communities and approaches, along with experimen-
tal implementation of those, including reporting the 
performance outcomes.

To enable effective community-driven evolution of proto-
cols and benchmarks, the web portal associated with this ef-
fort [63] will serve as a jumping-off point. Protocols proposed 
by the community will be hosted at this portal, allowing them 
to be easily posted, shared, and cited, as well as easily updated 
as researchers give feedback and identify shortcomings. The 
portal will provide a forum for discussions on individual pro-
tocols and will provide links to matured protocols that meet 
the standards laid out in the template.

Protocol Guidelines
While developing protocols and benchmarks, one challeng-
ing aspect is to decide on the level of detail. Providing only 
high-level descriptions of the experiment (in other words, 
setting too few constraints) makes the repeatability of a 
benchmark, as well as its ability to assess the performance, 
questionable. Variations caused by incomplete descriptions 
of test setups and execution processes induce discrepancy in 
measurements and would not speak to some quantifiable 
performance. On the other hand, supplying too many con-
straints may limit a protocol’s applicability and, therefore, 
narrow down its scope. For example, due to the variety of 
utilized hardware by different research groups in the robotics 
field, satisfying constrained hardware descriptions is not usu-
ally possible or preferred.

The aim of this section is to provide guidelines that help 
to maintain both reliable and widely applicable benchmarks 
for manipulation. For this purpose, five categories of infor-
mation are introduced for defining manipulation protocols, 
i.e., 1) task description, 2) setup description, 3) robot/

Protocol and Benchmark Template  
for Manipulation Research 

Manipulation Protocol Template

Reference number/
version

Authors

Institution

Contact information

Purpose

Task description

Setup description �Description of the  
manipulation environment: 

�List of objects and their  
descriptions: 

�Initial poses of the objects:

�Robot/hardware/ 
subject description

�Targeted robots/hardware/ 
subjects:

�Initial state of the robot/ 
hardware/subject with respect to 
the setup: 

�Prior information provided to the 
robot/hardware/subject:

Procedure

Execution constraints

Manipulation Benchmark Template

Reference number/
version

Authors

Institution

Contact information

Adopted protocol

Scoring

Details of setup

Results to submit

The objects in the set are 

designed to cover a wide 

range of aspects of the 

manipulation problem.
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hardware/subject description, 4) procedure, and 5) execution 
constraints. These categories are explained below, and, for 
the template, see “Protocol and Benchmark Template for Ma-
nipulation Research.”

●● �Task Description: The task description is the highest level 
of information about the protocol. It describes the main 
action(s) of a task and (most of the time implicitly) the ex-
pected outcome(s). In this level, no constraints are given 
on the setup layout or how the task should be executed. 
Some task description examples are pouring liquid from a 
pitcher to a glass, hammering a nail on a piece of wood, or 
grasping an apple.

●● �Setup Description: This category provides the list of objects 
used in the manipulation experiment and their initial poses 
with respect to each other. In addition, if there are any other 
objects used as obstacles or clutter in the manipulation sce-
nario, their description and layout will be described. As dis-
cussed above, the usage of nonstandard objects introduces 
uncertainty to many manipulation experiments presented 
in the literature. We believe that removing uncertainties in 
this category of information is crucial to maintain well-de-
fined benchmarks. Providing the YCB object and model set 
is a step toward that purpose. In addition, in the protocols 
proposed in this article, the initial poses of the objects are 
accurately provided. Naturally, a task description can have 
various setup descriptions designed to assess the manipula-
tion performance in different conditions.

●● �Robot/Hardware/Subject Description: This category pro-
vides information about the task executor. If the protocol is 
designed for a robotic system, the initial state of the robot 
with respect to the target object(s) and a priori information 
provided to the robot about the manipulation operation 
(e.g., the semantic information about the task, whether or 
not object shape models are provided.) are specified in this 
category. In addition, if the protocol is designed for a spe-
cific hardware setup (including sensory suite), the descrip-
tion is given. If the task executor is a human subject, how 
the subject is positioned with respect to the manipulation 
setup and a priori information given to the subject about 
the task at hand are described here.

●● �Procedure: In this category, actions that are needed to be 
taken by the person who conducts the experiment are ex-
plained step by step.

●● �Execution Constraints: In this category, the constraints on 
how to execute the task are provided. For instance in the 
box-and-blocks test, the subject is expected to use his/her 
dominant hand and needs to transfer one block at a time, 
or, if the task is to fetch a mug, the robot may be required 
to grasp the mug from its handle. In “Protocol and Bench-
mark Template for Manipulation Research,” we provide a 
template for easily designing manipulation protocols using 
the aforementioned categories.
The proposed template and categories have several advan-

tages as follows.
●● �The categorization helps researchers think about the proto-

col design in a structured way. 

●● �It separates high-level task description from setup and 
robot/hardware/subject description so that protocols can 
be designed for analyzing different scenarios of the same 
manipulation problem.

Furthermore, describing setup and robot/hardware/subject 
separately allows platform-independent benchmark designs. 
Especially in the robotics field, the researchers usually have 
limited access to hardware. The designer may prefer to im-
pose few constraints on the robot/hardware/subject descrip-
tion category to increase the applicability of the protocol. The 
amount and specifics of the detail in a given protocol will nat-
urally vary based on the particular problem being examined, 
and therefore the insight of the authors about the intended 
application will be crucial in crafting an effective set of task 
descriptions and constraints. Related to this point, we antici-
pate protocols to be regularly improved and updated with 
feedback from the research community.

Benchmark Guidelines
After the task description, the second major part of each pro-
tocol is the specification of the associated benchmark, which 
details the metrics for scoring performance for the given pro-
tocol. Benchmarks allow the researchers to specify the per-
formance of their system or approach and enable direct 
comparison with other approaches. The following categories 
of information are introduced for defining manipulation 
benchmarks.

●● �Adopted protocol: A well-defined description can be ob-
tained for a manipulation benchmark by adopting a proto-
col that is defined considering the above-mentioned 
aspects.

●● �Scoring: Providing descriptive assessment measures is cru-
cial for a benchmark. The output of the benchmark should 
give reasonable insight of the performance of a system. 
While designing the scoring criteria, it is usually a good 
practice to avoid binary (success/fail) measures; if possible, 
the scoring should include the intermediate steps of the 
task, giving partial points for a reasonable partial execution.

●● �Details of setup: In this field, the user gives detailed infor-
mation about setup description that is not specified by the 
protocol. This could include the robot type, gripper type, 
grasping strategy, motion-planning algorithm, grasp syn-
thesis algorithm, and so on.

●● �Results to submit: This field specifies the results and scores 
that need to be submitted by the user. Moreover, asking the 
user to submit the detailed reasoning for the failed attempts 
and the factors that bring success would help researchers 
who analyze the results. Therefore, having explicit fields for 
result analysis would be a good practice (see example 
benchmarks in [64]).

Ycb Protocols and Benchmarks
While this protocol structure definition (and the template 
provided in “Protocol and Benchmark Template for Manipu-
lation Research”) helps to guide the development of effective 
task specification for various manipulation benchmarks, we 
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have developed a number of example protocols to both pro-
vide more concrete samples of the types of task definitions 
that can be put forward as well as specific and useful bench-
marks for actually quantifying performance. We have defined 
five protocols to date:

●● pitcher–mug protocol
●● gripper-assessment protocol
●● table-setting protocol
●● block pick-and-place protocol
●● peg-insertion learning-assessment protocol.

From each protocol, a benchmark of reported perfor-
mance is derived with the same name. We have implemented 

each of the protocols ex-
perimentally and reported 
the benchmark perfor-
mance of our implemen-
tations for each. All these 
protocols and bench-
marks and the results dis-
cussed in this section can 
be found at [64]. We have 
also implemented the 
box-and-blocks test for 

maintaining a baseline performance of this test for robotic 
manipulation. 

YCB Pitcher–Mug Protocol and Benchmark
One of the popular tasks among robotics researchers is pour-
ing a liquid from a container. This task is interesting as it ne-
cessitates semantic interpretation and smooth and precise 
manipulation of the target object. A protocol is designed for 

executing this manipulation task. The protocol uses the pitch-
er and the mug of YCB object and model set and provides 
scenarios by specifying ten initial configurations of the pitch-
er and the mug. By standardizing the objects and providing 
detailed initial state information, it aims at maintaining a 
common basis of comparison between different research 
groups. The benchmark derived from this protocol uses a 
scoring scheme that penalizes the amount of liquid that re-
mains in the pitcher or spilled on the table. This benchmark 
was applied using the HERB robot platform [61], which can 
be seen in Figure 12. The reported results show that the task is 
successfully executed for eight of ten pitcher–mug configura-
tions. For the two failed cases, the robot is able to grasp the 
pitcher but cannot generate a suitable path for pouring the 
liquid. This shows the importance of planning the manipula-
tion task as a whole rather than in segments.

YCB Gripper-Assessment Protocol and Benchmark
The abilities of a robot’s gripper affect its manipulation per-
formance significantly. In the literature and in the commercial 
market, various gripper designs are available, each of which 
has different manipulation capabilities. The protocol defines a 
test procedure for assessing the performance of grippers for 
grasping objects of various shapes and sizes. This protocol uti-
lizes objects from the shape and tool categories of the YCB 
object and model set. Using this protocol, a benchmark is de-
fined based on a scoring table. We applied this benchmark to 
two grippers designed in Yale GRAB Lab, the Model T and 
Model T42 [65], which are shown in Figure 13. The results 
show that the Model T can provide successful grasp for only a 
limited range of object sizes. This gripper is not suitable for 
grasping small and flat objects. However, the ability to inter-
lace its fingers increases the contact surface with the object 
and brings an advantage, especially for grasping concave and 
articulated objects. The Model T42 is able to provide stable 
power grasps for large objects and precision grasps for small 
objects. This model is also successful in grasping flat objects 
thanks to its nail-like fingertips. However, not being able to 
interlace its fingers brings a disadvantage while grasping artic-
ulated objects. Using the same benchmark for evaluating dif-
ferent gripper designs not only provided a basis of 
comparison but also gave many clues about how to improve 
the designs.

YCB Protocol and Benchmark for Table Setting
Pick-and-place is an essential ability for service robots. The 
benchmark assesses this ability by the daily task of table set-
ting. The protocol uses the mug, fork, knife, spoon, bowl, and 
plate of the YCB object and model set. These objects are 
placed to predefined initial locations, and the robot is expect-
ed to replace them to specific final configurations. The bench-
mark scores the performance of the robot by the accuracy of 
the final object poses. This benchmark can also be applied in 
a simulation environment, since the models of the objects are 
provided by the YCB object and model set. A URDF file that 
spawns the scenario for Gazebo simulation environment is 

Figure 12. The HERB robot implementing the pitcher—mug 
benchmark.

(b)(a)

Figure 13. The grippers compared with gripper assessment 
benchmark: (a) Model T and (b) Model T42.

A URDF file that spawns 

the scenario for Gazebo 

simulation environment

is given. 
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given at http://rll.eecs.berkeley.edu/ycb/. A snapshot of this 
setting can be seen in Figure 14.

YCB Block Pick-and-Place Protocol and Benchmark
Manual dexterity and the manipulation of small objects are 
critical skills for robots in several contexts. The block pick-
and-place protocol is designed to test a robot’s ability to 
grasp small objects and transfer them to a specified location. 
This task is an important test of both arm and gripper hard-
ware and motion planning software, as both contribute to 
overall dexterity. Points are awarded based on completion 
and precision of the manipulation. We executed this test on 
the HERB robot [61], as seen in Figure 15. An image of the 
printed layout with the placed blocks after task completion 
can be seen in Figure 16. The results show that the robot is 
not able to succeed in precise pick-and-place task. The main 
reason is the utilized open-loop grasping approach. The 
robot executes a robust push grasp strategy, which allows it 
to grasp the blocks successfully. However, the pose of the 
block with respect to the gripper is not known precisely 
after the grasp. This prevents placing the blocks accurately 
to the target locations.

YCB Peg-Insertion Learning-Assessment  
Protocol and Benchmark
The peg-insertion learning-assessment benchmark is de-
signed to allow comparison among various learning tech-

niques. The benchmark measures the performance of a 
learned peg-insertion action under various positioning per-
turbations. The perturbations are applied by moving the peg 
board to a random direction for certain amount of distance. 
We applied this benchmark to assess the performance of a 
learned linear-Gaussian controller using a PR2 robot [66] 
(Figure 17). The state of the controller consists of the joint 
angles and angular velocities of the robot as well as the posi-
tions and velocities of 
three points in the space 
of the end effector (three 
points to fully define a 
rigid body configuration). 
No information is avail-
able to the controller at 
run time except for this 
state information. The re-
sults show that the 
learned controller shows 
reasonable performance, 
with four successes out of 
ten trials, for the case of 5-mm position perturbation to a 
random direction. This success rate can be achieved by exe-
cuting the controller for only 1 s. However, the performance 
does not improve, even if the controller is run for a longer 
period of time. In the case of 10-mm position perturbation, 
the controller fails completely. We are planning to learn the 
same task with different learning techniques and compare 
their performances using the benchmark.

Figure 15. The HERB robot implementing the peg-insertion 
learning-assessment benchmark.

Figure 17. The PR2 executing the peg-insertion learning-
assessment benchmark.

(b)(a)

Figure 16. (a) and (b) The results of the block pick-and-place 
benchmark.

Figure 14. The simulation environment for the table-setting 
benchmark. This environment can be spawned using the URDF 
provided at http://rll.eecs.berkeley.edu/ycb.

The Model T42 is able 

to provide stable power 

grasps for large objects  

and precision grasps  

for small objects. 
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Box-and-Blocks Test
As mentioned in the “Related Work” section, the box-and-
blocks test [41] is a widely used assessment technique that is 
utilized in prosthetics and rehabilitation fields. The test eval-
uates how many blocks can be grasped and moved from one 
side of the box (Figure 18) to the other in a fixed amount of 
time. We believe that the application of this test can also be 
quite useful for assessing the manipulation capabilities of ro-
bots. To establish a baseline performance for this test for ro-
botic manipulators, we applied the box-and-blocks test with 
a PR2 robot (Figure 18) by implementing a very simple heu-
ristic rules. The robot picks a location from a uniform distri-

bution over the box and 
attempts to pick up a 
block. The gripper’s pose 
aligns with the length of 
the box. The gripper is 
then closed and checked 
if it is fully closed. If the 
gripper closes fully, this 
means no blocks have 
been grasped and, there-
fore, the robot chooses a 
new location to attempt 
another pick. The robot 

repeats this heuristic until the gripper is not fully closed. 
When a grasp is detected, the robot moves to the destination 
box and releases the block. By using this heuristic, we run ten 
experiments of 2 min each and report the results at [64].

Conclusions and Future Work
This article proposes a set of objects and related tasks as 
well as high-resolution scans and models of those objects, 
intended to serve as a widely distributed and widely utilized 
set of standard objects to facilitate the implementation of 
standard performance benchmarks for robotic grasping 
and manipulation research. The objects were chosen based 

on an in-depth literature review of other object sets and 
tasks previously proposed and utilized in robotics research, 
with additional consideration to efforts in prosthetics and 
rehabilitation. Furthermore, a number of practical con-
straints were considered, including a reasonable total size 
and mass of the set for portability, low cost, durability, and 
the likelihood that the objects would remain mostly un-
changed in years to come. High-resolution RGB-D scans of 
the object in the set were completed, and 3-D models have 
been constructed to allow easy portability into simulation 
and planning environments. All of these data are freely 
available in the associated repository [55]. Over the course 
of 2015, 50 objects sets will be freely distributed to a large 
number of research groups through workshops/tutorials as-
sociated with this effort. Additional object sets will be made 
available to purchase otherwise.

While a common set of widely available objects is a 
much-needed contribution to the manipulation research 
community, the objects themselves form only part of the 
contribution of the YCB set. The generation of appropriate-
ly detailed tasks and protocols involving the objects is ulti-
mately what will allow for replicable research and 
performance comparison. We make inroads into that prob-
lem in this article by proposing a structure for protocols 
and benchmarks, implemented in a template as well as six 
example protocols. We hope that specification of protocols 
and benchmarks will become subcommunity driven and 
continually evolving. Specific aspects of manipulation and 
other specific research interests will naturally require differ-
ent task particulars (i.e., specified and free parameters). We, 
therefore, plan to involve the research community in this 
effort via our web portal [63]. We will work toward having 
the majority of such protocols come from the user commu-
nity rather than the authors of this article. In addition, we 
plan to have on this portal a records-keeping functionality 
to keep track of the current world records for the different 
tasks and protocols, along with video and detailed descrip-
tions of the approaches utilized, generating excitement, 
buzz, motivation, and inspiration for the manipulation 
community to compare approaches and push forward the 
state of the art.

Other efforts that we plan to undertake include more de-
tail about the objects proposed, including information about 
the inertia of the objects, as well as frictional properties be-
tween the objects and common surfaces. Additionally, we 
will expand our treatment of the modeling of the objects, in-
cluding addressing the tradeoffs between number of triangles 
in a mesh and the reliable representation of the object geom-
etry. Furthermore, before final publication and distribution 
of the object set, we will seek additional input from the re-
search community on the specific objects in the set.

It is our hope that this article will help to address the long-
standing need for common performance comparisons and 
benchmarks in the research community and will provide a 
starting point for further focused discussion and iterations on 
the topic.

The OpenGRASP 

benchmarking suite [20] 

presents a simulation 

framework for robotic 

manipulation.

Figure 18. The PR2 executing the box-and-blocks test.
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