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Abstract This work proposes a framework for tracking a desired path of
an object held by an adaptive hand via within-hand manipulation. Such
underactuated hands are able to passively achieve stable contacts with ob-
jects. Combined with vision-based control and data-driven state estimation
process, they can solve tasks without accurate hand-object models or multi-
modal sensory feedback. In particular, a data-driven regression process is
used here to estimate the probability of dropping the object for given manip-
ulation states. Then, an optimization-based planner aims to track the desired
path while avoiding states that are above a threshold probability of dropping
the object. The optimized cost function, based on the principle of Dynamic-
Time Warping (DTW), seeks to minimize the area between the desired and
the followed path. By adapting the threshold for the probability of dropping
the object, the framework can handle objects of different weights without
retraining. Experiments involving writing letters with a marker, as well as
tracing randomized paths, were conducted on the Yale Model T-42 hand.
Results indicate that the framework successfully avoids undesirable states,
while minimizing the proposed cost function, thereby producing object paths
for within-hand manipulation that closely match the target ones.

1 Introduction

Within-hand dexterity enables robots to achieve efficient, human-like manip-
ulation skills by reducing unnecessary large whole-arm motions and other
compensatory actions, such as re-grasping. This often requires, however, ac-
curate models of the hand-object system and multi-modal sensory feedback
for planning and control [3, 15, 8]. Underactuated hands, such as the one
shown in Fig. 1, passively achieve stable contact thanks to their adaptability.
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Fig. 1: The Yale T-42 hand writing “ISER”.

They allow pure vision feedback-based manipulation even without accurate
hand-object models [4]. Using a data-driven approach, vision feedback can
further enable the prediction of manipulation states, such as rolling, sliding,
singularities and object dropping [6].

In tasks, such as handwriting or painting, the object must be moved along
a desired path. Directly tracing such a path without considering the undesired
states exposes the execution to risks, such as dropping the object. This work
focuses on path planning for within-hand manipulation to trace a reference
path, while avoiding to drop the object. Accordingly, given a reference path
7T, the objective is to plan a path so as to find path 7*:

7% = arg min diff(7, 77), subject to: w(q,q) > K, Vg€ mand g €7, (1)

where diff(w, 1) is the path difference, w € [0,1] is the risk estimate given a
configuration along the path and its derivative, and K is a risk threshold.

For measuring path difference, this work uses the Dynamic Time Warping
(DTW) distance [14, 10, 16], which minimizes the area between two curves
given their time parameterization. DTW is preferred over Hausdorff distance
[2], which does not reason about the order of states along a path. It is also
preferred over the Fréchet distance [1, 9, 17, 18], which can lead to non-
robust behavior, where small input variations can significantly distort the
output [7].

2 Technical Approach

Planning the joint motions of a robotic hand so as to move a grasped object to
a target pose often requires accurate hand-object models, which are difficult
to obtain. Instead, the proposed method: a) utilizes vision feedback for gen-
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erating velocity references in the task space, b) projects the velocities to the
joint space via rough approximations, and c) relies upon passive adaptability
of the underactuated hands for maintaining stable object contact [4].

Accordingly, the planner reasons only about the configuration of the held
object. A regression and classification process is used which evaluates the
validity of moving the held object in a particular direction from a given
configuration. The objective of the planner is to find a path that minimizes
the distance to the reference path, while also ensuring that the paths remains
valid (safe) as shown in Fig. 2.
Classifier: The classifier is based
on previous work [6], which uses vi- .
sual and actuator measurements to J \
detect four manipulation states, i.e. ANANRY
object rolling (normal operation), k’ . N
sliding, near drop, and stuck in a sin- 5
gularity. This work adopts the same . :
framework, and trains a classifier for <
detect.ing states .that would cause Fig. 2: A reference path 7+ and a path
dropping the object. Nevertheless, tracking it, where 71 consists of piece-
the approach does not use actua- wise straight line segments connecting set
tor measurements as features, since points. The valid region Cyq1iq is defined
these data are not available for of- by the classifier. Path 7* must remain
fline planning. Instead, the classifier within Cyatsq and minimize the area be-
. . c 7. T tween it and 7T. The initial and final
is trained with the object position points g,, ¢, are within Coara.
and its velocity along the trajectory.
Therefore, the classifier output w in Eq. (1) corresponds to the probability
of the state being safe given the object’s position and reference velocity. The
training used state vector machines (SVM) with a radial basis function.

An object configuration ¢ € C is valid under the following constraint:

valid(q) = { L w(g,q) = K (2)

0, otherwise

where w is the classifier output, and K is the risk-parameter. The valid con-
figuration space is therefore based on the classifier, C,qa = {Vg € C :
valid(q) = 1}. The risk-parameter K allows for the same classifier to be
used in challenging scenarios without requiring it to be retrained. For exam-
ple, heavier objects can increase the risk that the object gets dropped during
within-hand manipulation. In such cases, K should be increased, making the
system more conservative and discouraging the object to get close to risky
states. Conversely, lowering K would allow exploration of object states closer
to the boundaries of C, 434, which might be desirable for higher quality paths
for lighter objects.

Curve Similarity through Dynamic Time Warping: Let ¢ € C C R?
represent the 2-dimensional configuration of the held object. Given two paths
m = {q:(t),t € {1,T1}} and m = {q2(t),t € {1,T2}]}, where ¢;(t) maps
to configurations along the corresponding path, and ¢ represents a discrete

valid
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time parameterization of the path. Assume that a correspondence map exists
¢ = [1(t), d2(t)] between m; and o, such that a configuration ¢ (¢1(¢)) €
71 maps to a configuration ga(¢2(t)) € my for t € {1,...,T}, where T =
max(Ty,T>). With a slight abuse of notation, let v(¢;) be a vector between
corresponding mapped points at time ¢ along 7y, 2. The similarity measure
[14] between these paths is the following:

T
diff(my, m2) = 3 [1v(é1) = v(é-1)lle (3)
i=2

Traditionally, DTW involves computing the correspondence map ¢ such

that Eq. 3 is minimized. Because dynamic programming principles hold for
DTW, this lends itself nicely to an incremental search. This also assumes,
however, that there are two complete paths available for comparison. In this
application, one of these paths is discovered on the fly. To accommodate this,
the proposed search process imposes a series of constraints while solving the
dual of DTW so as to obtain a path that optimizes Eq. 3.
Optimizing DTW through Informed Search: Similar to the above dis-
cussion, C,4;4 denotes the valid configuration space of the object, i.e., the
manipulator is not in an undesirable state (singularity, dropping or sliding ob-
ject). This subspace is defined through the classifier. Given a sequence of tar-
get object configurations QT = {q¢{", q5 , ..., q;} € C, the reference path 7 is
composed of piecewise linear segments connecting subsequent pairs of points
in Q. The objective then is to compute a continuous curve 7 : [0, 1] = Cyaid,
which minimizes Eq. 3 relative to the reference path 77, i.e. diff(w, 7).

In order to use Eq. 3, a time parameterization over m, 7" must be em-
ployed. This is defined by discretizing the reference path using a fixed-length
4, essentially enforcing a constant velocity over the path. The correspondence
map can then be defined as ¢ = [¢(t), ¢ (t)] for N timesteps, where N stands
for the number of § segments in 7. Furthermore, the optimization is con-
strained, such that 7(0) = ¢, 7(1) = ¢ € Cyatia, and only monotonic paths
are explored. The monotonicity requirement enforces that corresponding con-
figurations can only be reached by prior time steps, which prevents sudden
“jumps” along the reference path.

Computing 7 can then be accomplished by utilizing an A* search rooted at
¢ and terminating at q}“ . Each search node keeps track of its correspondence
map index ¢, which determines which point on 7 the node is mapped to.
The search proceeds by expanding valid configurations by a § amount at each
iteration, constrained in the 8 cardinal directions for computational efficiency.
The search nodes are visited in order according to the evaluation function
Flqt)) = glq(t),q" () + h(q(t)), where q(t) € m and ¢ (t) € 7. The cost
of a node g is then computed from Eq. 3 given the duration of the path that

corresponds to the search node. Let m = M, then:
m

na(®)) = 5 - (lla(t) — * (1)l — 6+ k). (1)

k=0
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Fig. 3: (Left) iSST selects the black vertex to expand from; 8 possible directions are considered;
(Middle) A heuristic is computed for each possible direction using Eq. 4, (Right) Directions with
the lowest heuristic whose edges lie wholly in the valid configuration space are added to the tree.

The heuristic represents the minimum required area to the reference path

for a path starting from ¢(t) to latch on to the reference path 7+ (¢). The
best case involves the paths 7+ and 7 approaching one another at a rate of
2 % § per time step. This is therefore an admissible heuristic for the search
process.
Efficient DTW Optimization: Although the A* process described above
manages to produce appropriate solutions, as shown in Section 3, there are
some drawbacks which warrant the use of an alternative process. Primarily,
as the resolution of the search increases (i.e. by decreasing the value of 4),
the A* process increasingly depends on the validation of subsequent search
nodes to be fast. Despite the classifier calls being relatively quick, they incur
a measurable cost, and accordingly the number of calls to the classifier could
be viewed as an objective to minimize. Furthermore, A* can only provide
solutions up to the selected resolution. To alleviate these issues, an alternative
search process is proposed, based on an informed asymptotically optimal
sampling-based planner (iSST [12, 13]) that does not require access to a
steering function [11].

The heuristic described in Eq. 4 can be directly applied in this method,
allowing it to reduce the number of validity checks, as well as guiding the
search process. Along with randomly sampling in the configuration space,
the method also makes use of maneuvers (i.e. guided samples), which in
this case will be similar to the A* (8 cardinal directions). An illustration
of this is shown in Figure 3. The initial solution returned by the method,
while not guaranteed to be optimal as in A* can be improved upon, due
to the asymptotically-optimal property of iSST. This allows an anytime per-
formance, which is a desirable property for execution of trajectories on real
robots.
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3 Simulation Results

The search framework was implemented using both an A* approach, as well
as iSST [12]), a heuristically-guided, asymptotically-optimal tree planner that
propagates a single control during each iteration. A visual comparison of the
expansion process for both is shown in Fig. 4. For each simulated evaluation,
a reference path is generated by uniformly sampling the set points with the
following constraints: (1) the start and goal are valid, (2) there are at least 4
total set points, and (3) at least 1 of the set points is invalid. These constraints
ensure that directly tracing the reference path results in a failure state.

The two alternatives are compared in terms of average success rate, com-
putation time, and solution cost. Both methods are evaluated with two clas-
sifiers: 1) simulated, which partitions C,q1;4 using a random distribution of
obstacles and uses standard collision-checking to determine state validity;
and ii) trained, which invokes the trained classifier to determine state valid-
ity. Fifty trials with different randomized reference paths were tested. A trial
was counted as successful if it found a solution within 60 and 300 seconds for
simulated and trained classifiers respectively. The solution cost was computed
using Eq. 3.

Fig. 4: A visual comparison of A* (left) and iSST (right) search trees with simulated obstacles.
The blue line represents 771, the green line is the solution 7, the black lines are the search tree,
and the red blocks are invalid regions.

Sucess Rate (Solution Found within 60s, 300s) Average Computation Time for 50 Random Trials Average Solution Cost for 50 Random Trials
® Simulated ® Trained ® Simulated ® Trained ™ Simulated B Trained
1 100 5000

4000
3000
2000
1000

0 0 0
A 1ssT A 1ssT A 1sST

Fig. 5: Results of A* vs. iSST with simulated and trained classifiers over 50 randomized reference
trajectories . (left) Success Rate, (middle) Average Computation Time, (right) Average Cost.

All experiments were run on a single computer with an Intel Xeon E5-
1660 CPU and 32 GB RAM, with results shown in Figure 5. In the simulated
classifier case, the A* performed the best across all metrics, although iSST
remained competitive. In the trained classifier case, A* only produced so-
lutions 18% of the time (within the 300s time limit), compared to iSST’s
78%, which requires fewer propagations that are computationally expensive
as they require multiple calls to the trained classifier.
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4 Experiments

Given the randomized set points described in Section 3, several random ref-
erence paths were generated and tested given a) a naive planner that follows
the reference path with a straight line, and b) the iSST planner that considers
the classifier’s output for avoiding risky regions. The Model T-42 hand (Fig.
6) is utilized together with a webcam observing it from the top.

Results with Randomized Trajectories: For testing the ability of the
algorithm to avoid risky regions, we generated 10 random reference paths,
and conducted experiments with the naive planner and the safe iSST plan-
ner using a cylindrical object with 2 cm diameter. For all 10 paths, the naive
trajectory resulted in dropping the object, whereas the iSST planner success-
fully reaches the goal by avoiding the risky regions. Three samples from our
runs are presented in Fig. 6. It can be seen that the planner diverts from the
naive trajectory to stay in the safe regions according to the classifier output,
but the distance to the straight path is minimized as much as possible. De-
spite these deviations, the executed path preserves a notion of similarity to
the original reference trajectory.

Results with Different Weights: In this set of experiments, the same
cylindrical object is used, but additional weight is attached to make it six
times heavier. Here, we analyze the effectiveness of the risk factor parameter
K for handling this scenario, which is significantly different than the data
used for training the classifier. We run the experiments with risk factors
varying from 0 to 1 with 0.1 increments. The trajectories with K = 0, K = 0.6
and K = 0.8 are presented in Fig. 7. It is seen that the system is able to
execute longer segments of the trajectory without failure as the K value
is increased. The object is dropped for risk factor values between K = 0
and K = 0.7, and the whole trajectory is successfully executed for values
between 0.8 and 1.0. This indicates that the risk parameter is instrumental

<} [ [

Fig. 6: (Top) The classifier outputs for the exploration direction that caused dropping the object
(green: normal, red: drop), and (Bottom) the generated random paths (pink lines), executed
trajectory with the naive planning (blue line), and executed trajectory with I-SST (green line).
The object drops for the naive execution (the drop locations are marked with yellow crosses),
while iSST completes the trajectory successfully.
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Fig. 7: Manipulation of a heavier object with Fig. 8: Camera view while writing the letters
varying risk parameter (K). Reference trajec- “I”, “S”, “E”, “R”. Red lines are the generated
tory (pink), executed trajectory with K = 0 reference trajectories, green lines are the execu-
(blue), executed trajectory with K = 0.6, and tion of the trajectories.

executed trajectory with K = 0.8. The object

drops for the K = 0 and K = 0.6 at the loca-

tions indicated by yellow crosses.

to cope with challenging scenarios by generating more conservative, cautious
trajectories.

Results with Different Object Geometries: In order to further analyze
the robustness of the algorithm, we conducted experiments with two cylin-
ders and two rectangles with 2cm and 4cm radius and widths respectively.
Four random paths are generated as explained in Section 3, and each path is
tested with all the objects using the naive approach and the safe iSST planner
(16 runs each). The risk parameter K was set to zero. The naive approach
was successful only for 1 out of 16 cases, whereas the planner was successful
for 15/16. This indicates the effectiveness of the safe planning framework.
Nevertheless, for three of the successful iSST executions, even though the
object is not dropped, significant out-of-plane rotations were observed for
the rectangular objects. This was largely caused by within-hand sliding. In
these cases, since K = 0, the system operates very close to the vicinity of
the risky region, and cannot compensate for the unplanned sliding motions.
Since the classifier utilized in this paper does not take sliding into account,
the system gets too close to the risky region border. The failed iSST case
was with the large rectangle, and was also caused by such sliding motions.
This can potentially be fixed by increasing the K value, and obtaining more
conservative trajectories. Utilizing a classifier that can detect sliding is an-
other option, which is discussed in Section 5. In the successful execution of
the naive planner, the sliding motion caused a positive effect by keeping the
object close to the palm, resulting in path completion.

Handwriting Experiments: The safe planning framework was used to
generate trajectories of the 71”7, ”S”, "E” and ”"R” letters: the feasibility
of each letter was checked with our classifier, and the letters are shrunk until
safe trajectories were possible. We used a white board and a board marker
grasped by the Model T42 hand. A snapshot of the experiment is given
in Fig. 1, and the letter trajectories followed by the marker is presented
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in Fig. 8. Even though the writing operation was successful, we observed
that the letters written by the system deviated from the ideal trajectories.
This was partially caused by the contact between the pen and the white
board, which can be addressed with a more robust image-based controller,
i.e. [5]. Nevertheless, the shapes were still well-preserved, and clearly rec-
ognizable (Fig. 9). To the best of our knowledge, this is the first execution

of handwriting purely imple-
mented with within-hand mo- ,S E 2
tions (except for moving be-

tween letters, which was done
with the robot arm motion).

Fig. 9: ”ISER” written by the T42 Hand.

5 Conclusions

The proposed method is a crucial part of a vision-based underactuated
within-hand manipulation framework. The system does not rely on accurate
hand-object models, or force sensors, but it is still able to generate safe and
reliable trajectories. The risk factor parameter is an effective tool to make the
system cope with challenging cases by generating more conservative trajec-
tories. Nevertheless, we have also seen that unplanned sliding motions may
occur during manipulation, which effects system robustness negatively. One
solution would be to utilize a classifier that can recognize gripper singular-
ities and sliding along with drop modes as in other related work [6]. Not
being able to access actuator loads, velocities and finger positions, however,
during offline planning, makes it much more challenging to recognize all the
target modes and have a good partitioning of the workspace as in Fig. 6. This
issue can be addressed by employing different regression methods and data
evaluation.

Another improvement can be achieved by using a probabilistic classifier
in a planning under uncertainty framework, which reasons over distributions
of safe states. This can potentially provide improved tracking results by al-
lowing the robot to momentarily enter “dangerous” regions for short periods
of time. This would entail changing the objective function to operate over
expected costs.
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