

Abstract— In this work, we investigate methods to detect
four phenomena (modes) that occur during prehensile
fingertip-based within-hand manipulation without the use of
tactile sensors. By using actuator states and visual data, we aim
to recognize different modes of operation such as interpreting if
the hand is about to drop the object, if the object will begin to
slide on the fingers, or if the system is at or near a singularity.
For this purpose, we utilize supervised learning techniques,
which allow us to detect the modes without the use of a
mechanical model of the system. We analyze the individual
roles of specific features available through both the actuator
and visual data, and identify the ones that have the most
significance for detecting the operation modes. Our results
show classification performance of 96% (using either Extra
Trees, Gradient Boosting, or SVM) when using combined
actuator and visual features. Interestingly, we were able to
achieve a 94% classification rate using only actuator
information, and 93% using only visual information. Overall,
the classifiers identified actuator positions, actuator loads, and
commanded velocities as the most important features for
detecting a mode. These results have implications for enabling
the control of within-hand manipulation movements utilizing a
minimal amount of sensory information without a model of the
hand/object system.

I. INTRODUCTION

The ability to manipulate an object within the hand
introduces a great degree of dexterity to a robot as it enables
repositioning or reorienting of the object without re-grasping
or large whole-arm or whole-body motions [1], [2].
Kinematics and dynamics models of in-hand manipulation
have been derived in the literature for various contact models
and hand topologies [3]–[5]. Utilizing these models for
executing an in-hand manipulation task, however, is typically
very challenging, as they generally require an accurate
knowledge of the object and hand models. In addition, the
contact locations on the object and the fingers need to be
known along with the friction coefficients and force
magnitudes at these locations. Unfortunately, this information
cannot be reasonably known for many robotics scenarios, as
precise information about object properties are not often
known in advance and sensory information, if available, is
generally noisy. Moreover, for compliant/soft hands, deriving
accurate models for the mechanical response of the
hand/object system may not be feasible at all as very few
options exist for estimating complex spatial deformations of
soft structures.

In our earlier work [6], we have demonstrated that
accurate and efficient within-hand manipulation can be
conducted by only using very rough gripper models and
without the knowledge of object models, contact locations or
applied forces if two key components are combined together:
system compliance and vision feedback. The role of system
compliance is to ensure contact with the object during

manipulation. This can either be achieved mechanically by
adaptive/underactuated/soft robotic hands [7]–[9] or by the
use of an impedance control framework [10]. With vision

Learning Modes of Within-hand Manipulation
Berk Calli, Member, IEEE, Krishnan Srinivasan, Andrew Morgan, and Aaron M. Dollar, Senior

Member, IEEE

(a)

(b)

(c)

(d)

Figure 1. We investigate the ways of detecting in-hand manipulation
modes using visual features, actuator data and user/controller

commands (yellow arrow signifies commanded velocity). The classifier
predicts whether the system will: (a) get stuck, (b) drop the object, (c)
slide the object within hand or (d) do normal operation. Classification

results generalize for objects with different shapes and sizes.

Stuck

Drop

Slide

Normal

x

y

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

978-1-5386-3080-8/18/$31.00 ©2018 IEEE 3145

feedback, we are able to close the loop in the task space,
which allows us to maintain convergence even with very
rough gripper models since visual servoing algorithms are
robust to robot calibration errors. In addition, the
performance of the system can be boosted by utilizing
advanced control techniques: we have used the model
predictive control framework for achieving close-to-optimal
object trajectories in the image space, which results in faster
convergence and less travel distances while moving between
set points [11].

Such a combination of system compliance and vision
feedback allows us to avoid sophisticated motion planning
strategies that relies on accurate system models. On the other
hand, the lack of accurate models prevents us from
calculating workspace constraints and singularities of the
system. Therefore, it becomes challenging to determine
when the in-hand manipulation system would move out of
the normal operable workspace and drop the object or get
stuck in a singularity. In addition, we lack tools to detect and
control manipulation phenomena such as sliding, which
might be desirable or undesirable depending on the
manipulation goal. Detecting such modes is not only crucial
for achieving safe manipulation, but also instrumental for
learning control policies since they will help reducing the
task failures. The study in [12] shows that “people can learn
to predict the consequences of their actions before they can
learn to control their actions.” This allows them to avoid task
failures, while learning more complex manipulation policies.

In this work, we investigate ways of estimating four
manipulation modes (or states) of the hand/object system
during prehensile fingertip-based within-hand manipulation
(summarized in Fig. 1): “drop” (where the object is on the
verge of being dropped), “stuck” (where a singularity has
been reached and motion cannot freely happen in all
directions), “sliding” (where the object is on the verge of
sliding), and “normal” (where the object can be freely moved
in all directions). We seek answers to the following
questions:

1) How accurately can these manipulation modes be
estimated using actuator information and visual data?
Here it is important to note that we utilize an
underactuated hand in which the actuator positions and
loads do not supply the full hand state.

2) Which features/information have higher importance
for estimating the manipulation modes?

3) Can the results be generalized for objects with
different sizes and geometries?

4) How can we utilize the mode detection scheme in an
online in-hand manipulation control loop?

For answering these questions, we adopted supervised
learning techniques and used a Model T-42 underactuated
hand [7] as our test bed (Fig. 2). We collect data for each of
the manipulation modes and train our system with a range of
classifiers. With a feature significance analysis, we examine
key features for detecting the manipulation modes, including
scenarios where only actuator or only visual information is
available. Finally, the classifier is used to conduct safe in-

hand manipulation, which avoids the regions with high risk
of singularity or object drop.

This paper is organized as follows. The next section
presents a review of the related work. In Section III, our
method to estimate manipulation modes is explained in
detail. In Section IV, classification results are presented
together with a discussion on feature importance. Section V
concludes the paper.

II. RELATED WORK

Robotic manipulation is challenging to model due to the
complexity of the interaction between the robot, the objects
and the environment. Physical parameters of these
interactions (e.g. object shape and friction coefficients) are
also generally not available in unstructured environments. In
order to avoid the use of explicit models, learning algorithms
are utilized to generate manipulation policies for various
tasks. In robotic grasping, these algorithms are used to
obtain a mapping between tactile readings and the grasp
stability [13]–[15]. In [16], reinforcement learning is used
for learning how to manipulate articulated objects. Similarly,
a probabilistic framework is proposed in [17] for learning
kinematic models of the articulated objects.

During manipulation, gripper compliance brings a great
degree of robustness for establishing and maintaining the
contact with the object and the environment. Even though,
compliance introduces further complexity to the contact
modeling, it provides a safe operable workspace for the
learning algorithms to explore. For instance, in [18],
reinforcement learning methods are utilized for learning
compliant manipulation strategies for opening a door and
picking up a pen. In this way, the advantage of compliance is
exploited without the need for explicit task and interaction
models.

The learning by demonstration framework provides
another strategy for obtaining policies for manipulation. In
[19], models of various manipulation tasks are learnt by
human demonstrations and fusing various visual and tactile
data. In this work, similar to ours, they also use the acquired
data to differentiate patterns of different stages of
manipulation: they distinguish between the sensor patterns
that corresponds to simple object displacements (without
manipulation) and within-hand object positioning.

Specifically for within-hand manipulation, object
positioning skills are learnt for a compliant hand by utilizing
tactile sensing via reinforcement learning [20]. In [21], deep
learning is used to learn in-hand affordances directly from
raw images. Learning by demonstration is also utilized for
learning fine in-hand manipulation skills in [22], [23].

In this work, we do not learn control policies as the
above-mentioned work, but employ actuator and visual data
for detecting manipulation modes; we believe that such a
high-level supervision coupled with robust control
techniques in image space (e.g. [11]) can result in accurate,
generalizable and stable manipulation strategies.
Nevertheless, the strategy proposed in this paper is very
suitable to be combined with the above-mentioned
approaches, which do not use an explicit system or task
model.

3146

In the literature, several approaches are reported for
detecting stick-slip conditions during manipulation [24]–
[27]. In all these works, tactile data is used for training the
classifiers. Nonetheless, integrating tactile sensors
complicates the mechanical and electrical design, and could
result in a bulky system. This is especially undesired for a
hand like Model T-42, in which the goal is to achieve high
functionality with simple and inexpensive design. In our
work, we do not use tactile sensing for mode estimation, but
investigate the role of actuator and visual data for detecting
the manipulation modes. Moreover, we train a single
classifier for detecting the conditions for dropping the
object, getting into singularities and sliding the object within
hand.

III. DATA COLLECTION FOR MODE ESTIMATION

We aim to estimate four modes of in-hand manipulation,
which are explained below:

Drop: This mode signifies that the object will be dropped if
the system moves towards the commanded direction.

Stuck: The system will get into a singularity and won’t be
able to move further, if the commanded direction is
followed.

Slide: The object will slide within hand if the commanded
direction is followed.

Normal: The system is neither in ‘stuck’, ‘drop’ or ‘slide’
mode.

Detecting these modes gives us the advantage of
avoiding failures or undesired object motions during in-hand
manipulation; they are useful to manipulate the target object
along a desired trajectory without dropping, slipping, or
getting into singularities. In some cases, the user may want
to trigger these modes for various purposes; sliding the
object within-hand may be advantageous to shift the contact
points on the object. The “stuck” mode can be useful for
squeezing the object with compliant grippers since
reconfiguration is jammed in singularities. Detecting the
“drop” mode may be used to signal the robot that the object
will be released soon.

We utilize supervised learning methods for training a
classifier using actuator data and visual features, without
using object or gripper models. This model-free strategy also
allows to integrate the detection method in vision-based
manipulation frameworks that do not rely on accurate
system models (e.g. [6], [11]).

We trained our classifiers using Model T-42
underactuated hand (Fig. 2; [7]). This hand has two identical
opposing fingers each of which has two joints and one
Dynamixel MX type actuator. We collected training data by
manipulating six different objects: three cylinders and three
rectangular prisms with various sizes, as can be seen in Fig.
3. Our setup is presented in Fig. 4. We firmly mounted our
Model T-42 hand and placed a camera to observe the system
directly from the top.

In order to generate the training data we recorded
actuator and visual data streams synchronously with the
following procedure. The object is supported with a stand
for the initial grasp. After the grasp, the stand is removed so

that there is no support plane during in-hand manipulation.
The object is moved in the planar workspace by velocity
references supplied manually via a keyboard. We have 9
inputs: north, north-east, east, south-east, south, south-west,
west, north-west and a stop command. These Cartesian
velocity commands are projected into the actuator space via
a Jacobian matrix obtained by utilizing simple manipulation
primitives as explained in [6]. Dynamixels’ built in
controllers are used to realize the actuator commands. Using
the manual Cartesian space commands, we steer the system
for triggering the four above-mentioned modes and recorded
data streams in which the object drops, gets stuck, slides and
operates without these modes (“normal” mode).

Figure 3. Objects used in the experiments. Cylinders with 2, 3 and 4
cm diameters, and rectangular prisms with dimensions 2x4, 3x5 and

4x6 cm. The objects’ weights vary between 12 g and 75 g.

(a)

(b)

Figure 2. (a) The Model T-42 gripper. (b) a detailed schema showing
actuators and spring mechanisms.

3147

The features used for the training are collected using the
recorded data streams as follows: we played back each
stream to detect the instances when the four modes occur.
For each instance, we recorded positions, velocities, loads
and load changes of the actuators as actuator data. From the
vision sensor we recorded the positions, velocities and
orientations of each link and the target object using fiducial
markers. The fiducial measurements were taken with respect
to a fixed marker positioned at the base of the gripper, so
that the measurements are robust to camera repositioning.
The user commands are also added to the feature vector
which are Cartesian and actuator velocity references. The list
of all the features can be seen in Table I. Here, link 1 and 3
are the distal links of the left and right fingers respectively,
and link 2 and 4 are the proximal links.

For the ‘normal’, ‘drop’ and ‘stuck’ modes, we collected
50 data points for each object with the procedure explained
above. For the ‘slide’ mode, data is collected only for the
rectangular objects, as sliding is not observed while
manipulating the cylindrical objects. In total, we collected
1050 data points (50 [data_points] x 3 [cylindrical_objects]
x 3 [modes] + 50 [data_points] x 3 [rectangular objects] x 4
[modes]).

IV. CLASSIFICATION RESULTS

A. General Classification Performance
First, we aim for the best classification result that we can

obtain using all the available data in Table I. We utilized
TPOT [28] and Scikit-learn [29] to investigate the
performance of six supervised learning methods: extra trees
[30], gradient boosting [31], neural nets [32], random forests
[33], ridge classifier and support vector machine (SVM)
[34]. For each algorithm, a single classifier was trained using
75% of the collected data, using stratified sampling by label.
For testing the classification performance, we ran the
classifiers on a test set of the remaining 25% of the data. The

classification scores are given in Table II. It can be seen that
extra trees, gradient boosting and SVM performed very close
to each other with around 96% classification rate. The
random forests classifier gave slightly worse results
comparing to the prior algorithms. It can be said that these
classifiers can successfully generalize the modes for objects
with various shapes and sizes in the experiment set. Ridge
and neural nets considerably underperformed for our data;
the former due to its limitations as a linear model, and the
latter due to the limited size of the training data, leading to
overfitting and poor generalization.

The confusion matrix for the best-performed classifier,
extra trees, is given in Figure 5. This matrix shows that the
classifier mostly has difficulty differentiating between
sliding and normal cases. The ‘normal’ mode is
misclassified as ‘slide’ for 3% of the cases, and ‘slide’ mode
is misclassified as normal for 5% of the cases. The ‘normal’
mode gets the most false positives as it neighbors all of the
other states (this will be demonstrated in the Fig. 7 and 8
shortly). One reason for higher misclassification for sliding
is that the motions that cause sliding for rectangular objects
with flat surfaces do not cause sliding with cylindrical
objects. At this point, using tactile sensing and/or knowledge
about the contact surface curvature could be useful for
improving the classification performance further. Since we
do not want to complicate the design of our gripper, we will
aim to visually identify the local curvature and utilize it for

Figure 4. Experimental setup.

TABLE II. CLASSIFICATION RESULTS USING ALL THE FEATURES
WITH SIX DIFFERENT LEARNING METHODS

Classifier Score
Extra trees 96.1%
Gradient boosting 95.9%
SVM 95.8%
Random forests 94.9%
Ridge 85.2%
Neural nets 52.4%

TABLE I. FEATURES RECORDED TO BE USED FOR TRAINING THE
CLASSIFIERS. YELLOW CELLS: ACTUATOR FEATURES; BLUE CELLS:

VISUAL FEATURES; GREEN CELLS: USER COMMANDS

 Features Features
1 Act. 1 position 20 Link 4 orien.
2 Act. 2 position 21 Link 1 vel. x
3 Act. 1 velocity 22 Link 1 vel. y
4 Act. 2 velocity 23 Link 2 vel. x
5 Act. 1 load 24 Link 2 vel. y
6 Act. 2 load 25 Link 3 vel. x
7 Act. 1 load ch. 26 Link 3 vel. y
8 Act. 1 load ch. 27 Link 4 vel. x
9 Link 1 pos x 28 Link 4 vel. y
10 Link 1 pos y 29 Object pos. x
11 Link 2 pos x 30 Object pos. y
12 Link 2 pos y 31 Object orien.
13 Link 3 pos x 32 Object orien. ch.
14 Link 3 pos y 33 Object vel. x
15 Link 4 pos x 34 Object vel. y
16 Link 4 pos y 35 Cartesian vel. ref. x
17 Link 1 orien. 36 Cartesian vel. ref. y
18 Link 2 orien. 37 Act. 1 vel. ref.
19 Link 3 orien. 38 Act. 2 vel. ref.

3148

mode recognition in our future work.

B. Performance of the Sub-components
Next, we investigated and compared the classification

performance for three main scenarios. In the first scenario
both actuator data and visual information were assumed to
be available. In the second scenario, we assumed that the
visual features cannot be easily detected (due to occlusions
or image processing challenges) so that only actuator data
were needed to be used together with actuator space velocity
references for detecting the modes (features 1-8 and 37-38).
In the third scenario, the classifier did not have access to
actuator information, but externally observed the system
from the camera, so that only the visual features were
available (features 9-36).

For evaluating these cases, the extra trees classifier was
used. The classification results for the three scenarios are
given in Table III and confusion matrices are presented in
Fig. 6. We see that the classification performance slightly
drops using only actuator data or visual sensing. For both of
the cases, it becomes harder to differentiate between the
“slide” mode and the “normal” mode. For the “drop” and
“stuck” modes, classification rates are still quite high for all
of the scenarios.

C. Generalization Performance for Different Sizes
Next, we analyzed the ability of the classifier to

generalize the mode classification for specific object sizes
not included during the training phase. In doing so, we
trained the system with only small and medium objects (both
cylindrical and rectangular) and tested the classifier on the
large objects. The 95% confidence interval of the accuracy
can be seen in Table IV after 100 runs. Comparing to the
results in Table III, we observe only a marginal drop in the

classification performance; the classifier can extrapolate the
results to objects outside the training dataset in this case.

D. Feature Importance
Following that, we ran a feature importance analysis with

the extra trees classifier for vision only and actuator data
only scenarios by averaging the importance values for 100
test runs. The top ten important features for these cases are
presented in Table V. Here, we see that user commands get
relatively high importance in both of the cases. This is
expected, as the direction that the object is heading towards
greatly affects which mode the object will fall into. This can
also be seen from Fig. 7, which is obtained by projecting
classification results into Cartesian space using object

(a)

(b)

Figure 6. Confusion matrices for (a) using only actuator features and

user commands, (b) using only visual data and user commands.

TABLE IV. CLASSIFICATION RESULTS WITH EXTRA TREES
TRAINED WITH SMALL AND MEDIUM SIZE OBJECTS AND TESTED ON

THE LARGE SIZE OBJECTS

Training set Score %
All features 94.4 ± 0.016
Only actuator features + act. commands 92.9 ± 0.014
Only visual features + Cart. commands 92.5 ± 0.022

Figure 5. Confusion matrix for Extra Trees classifier using all
available features.

TABLE III. CLASSIFICATION RESULTS WITH EXTRA TREES
CLASSIFIER FOR THREE DIFFERENT SCENARIOS

Training set Score %
All Data 96.1 ± 0.014
Only actuator features + act. commands 93.9 ± 0.022
Only visual features + Cart. commands 93.0 ± 0.030

3149

positions. The arrows indicate the Cartesian velocity
reference given to the system. Here, for similar object
positions, the classification results differ for the given
velocity commands. For the case that only actuator sensors
are used, actuator loads and positions have the highest
importance, whereas actuator velocities has the least. For the
vision only case, the importance is distributed similarly to
positions and velocities of all the links. Object y-position
also has a high importance as for many of the manipulation
modes, the position of the object in the workspace is a strong
indicator.

E. Using the Classifiers in the Control Loop
We analyzed the performance of the extra trees classifier

by integrating it to an online control scheme (using all the

features). For this implementation, we used ROS and
utilized the “ml_classifiers” package for interfacing with the
classifier. For the implementation of the classifier, we used
OpenCV’s “Random Trees” functions, and for detecting the
fiducial markers we used OpenCV’s ArUco Markers library.
We refer the reader to our video attachment for the
demonstration that the classifier identifies the modes online
and stops the controller to avoid dropping the object.

In addition, considering that the actuator positions are
highly important for detecting the manipulation modes, we
believe that the results of the classification algorithms can be
utilized for in-hand manipulation planning in the actuator
space. By using the SVM classifier and using only actuator
positions as features, we obtain 89% classification score, and
partitioned the actuator space for different modes as
presented in Fig. 8. As our future work, we are planning to
utilize partitioned maps for acquiring reward functions that
can be used for manipulation planning in actuator space.

F. Summary of the Results
• If actuator and visual features are used together,

manipulation modes can be detected with 96.1%
success rate with a single classifier for objects of
various shapes and sizes.

• Using only actuator features or only visual features
slightly drops the classification performance comparing
to using both.

• With a feature importance analysis, we have concluded
that actuator positions, actuator loads, and user
commands are the key features for detecting the
manipulation modes; up to 89% classification
performance can be achieved by utilizing only actuator
positions.

• We also obtain higher than 92% classification rate for
objects outside the training set.

• Finally, the classifier is used to conduct online in-hand
manipulation.

Figure 8. Regions for the four modes in actuator space obtained by

SVM classifier.

TABLE V. FEATURE IMPORTANCE VALUES FOR VISION-ONLY AND
ACTUATOR DATA-ONLY SCENARIOS.

Vision only Actuator data only
Feature Imp. Feature Imp.
Car. vel. ref. y 0.15 Act. 2 load 0.18
Car. vel. ref x 0.09 Act. 1 load 0.17
Link 1 pos. y 0.08 Act. 2 pos. 0.15
Obj. pos. y 0.08 Act. 1 pos. 0.14
Link 3 pos. y 0.06 Car. vel. ref. y 0.11
Link 4 pos. x 0.04 Car. vel. ref. x 0.06
Link 2 vel. x 0.03 Act 1 vel. ref. 0.06
Obj. pos. x 0.03 Act. 2 vel. ref. 0.05
Link 1 vel. y 0.03 Act. 1 vel. 0.04
Link 3 pos. x 0.03 Act. 2 vel. 0.04

Figure 7. Classification results projected to the Cartesian space using
object positions. The arrows indicate the velocity commands. Bold

black arrows are the misclassified data points.

3150

V. CONCLUSION
In this work, we analyzed the performance of supervised

learning algorithms for estimating modes of in-hand
manipulation. Our strategy does not require a task model for
identifying the “drop”, “stuck”, “slide” and “normal” modes.
Naturally, the specific classifiers obtained in this paper are
only valid for our target system. Nevertheless, we believe
that the analysis presented in this paper gives very valuable
insights for in-hand manipulation with grippers of similar
topology (e.g. the OpenHand grippers [7]), and provides a
methodology for investigating manipulation modes for other
types of grippers.

As a future work, we will concentrate our efforts for
utilizing the classifiers in the manipulation planning schemes
and vision-based control strategies as well as investigating
features and classifiers that will apply more generally to
other hands, objects, and tasks.

REFERENCES
[1] R. R. Ma and A. M. Dollar, “On dexterity and dexterous

manipulation,” in IEEE 15th International Conference on Advanced
Robotics (ICAR): New Boundaries for Robotics, 2011, pp. 1–7.

[2] I. M. Bullock, R. R. Ma, and A. M. Dollar, “A hand-centric
classification of human and robot dexterous manipulation.,” IEEE
Trans. Haptics, vol. 6, no. 2, pp. 129–44, Jan. 2013.

[3] A. Bicchi, C. Melchiorri, and D. Balluchi, “On the mobility and
manipulability of general multiple limb robots,” IEEE Trans. Robot.
Autom., vol. 11, no. 2, pp. 215–228, 1995.

[4] R. Michalec and A. Micaelli, “Stiffness modeling for multi-fingered
grasping with rolling contacts,” in 10th IEEE-RAS International
Conference on Humanoid Robots (Humanoids), 2010, pp. 601–608.

[5] A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An overview of
dexterous manipulation,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2000, vol. 1, pp.
255–262.

[6] B. Calli and A. M. Dollar, “Vision-based Precision Manipulation
with Underactuated Hands: Simple and Effective Solutions for
Dexterity,” in Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2016, pp. 1012–1018.

[7] R. R. Ma and A. M. Dollar, “Yale OpenHand Project: Optimizing
Open-Source Hand Designs for Ease of Fabrication and Adoption,”
IEEE Robot. Autom. Mag., vol. 24, no. 1, pp. 32–40, 2017.

[8] R. Deimel and O. Brock, “A novel type of compliant and
underactuated robotic hand for dexterous grasping,” Int. J. Rob. Res.,
vol. 35, no. 1–3, pp. 161–185, 2016.

[9] M. G. Catalano, G. Grioli, E. Farnioli, a. Serio, C. Piazza, and a.
Bicchi, “Adaptive synergies for the design and control of the
Pisa/IIT SoftHand,” Int. J. Robot. Res. , vol. 33, no. 5, pp. 768–782,
2014.

[10] D. Prattichizzo, M. Malvezzi, M. Aggravi, and T. Wimböck, “Object
motion-decoupled internal force control for a compliant
multifingered hand,” Proc. of IEEE Int. Conf. Robot. Autom., pp.
1508–1513, 2012.

[11] B. C. Calli and A. M. Dollar, “Vision-Based Model Predictive
Control for Within-Hand Precision Manipulation with Underactuated
Grippers,” in Proc. of the IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 2839–2845.

[12] R. R. Flanagan, P. Vetter, R. S. Johansson, and D. M. Wolpert,
“Prediction precedes control in motor learning,” Curr. Biol., vol. 13,
no. 2, pp. 146–150, 2003.

[13] H. Dang and P. K. Allen, “Learning grasp stability,” Proc. - IEEE
Int. Conf. Robot. Autom., pp. 2392–2397, 2012.

[14] Y. Bekiroglu, D. Kragic, and V. Kyrki, “Learning grasp stability
based on tactile data and HMMs,” in 19th International Symposium
in Robot and Human Interactive Communication, 2010, pp. 132–
137.

[15] Y. Bekiroglu, J. Laaksonen, J. A. Jørgensen, V. Kyrki, and D.
Kragic, “Assessing grasp stability based on learning and haptic
data,” IEEE Trans. Robot., vol. 27, no. 3, pp. 616–629, 2011.

[16] D. Katz, Y. Pyuro, and O. Brock, “Learning to Manipulate
Articulated Objects in Unstructured Environments Using a Grounded
Relational Representation,” Robot. Sci. Syst. IV, p. 254, 2009.

[17] J. Sturm, C. Stachniss, and W. Burgard, “A probabilistic framework
for learning kinematic models of articulated objects,” J. Artif. Intell.
Res., vol. 41, pp. 477–526, 2011.

[18] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal, “Learning
force control policies for compliant manipulation,” in Proc of the
IEEE Int. Conf. Intell. Robot. Syst., pp. 4639–4644, 2011.

[19] D. R. Faria, R. Martins, J. Lobo, and J. Dias, “Extracting data from
human manipulation of objects towards improving autonomous
robotic grasping,” Rob. Auton. Syst., vol. 60, no. 3, pp. 396–410,
2012.

[20] H. Van Hoof, T. Hermans, G. Neumann, and J. Peters, “Learning
Robot In-Hand Manipulation with Tactile Features,” in Proceedings
of the International Conference on Humanoid Robots
(HUMANOIDS), 2015.

[21] K. D. Katyal, E. W. Staley, M. S. Johannes, I.-J. Wang, A. Reiter,
and P. Burlina, “In-Hand Robotic Manipulation via Deep
Reinforcement Learning,” 30th Conference on Neural Information
Processing Systems (NIPS), Work. Deep Learn. Action Interact.,
2016.

[22] R. Zollner, O. Rogalla, R. Dillmann, and M. Zollner, “Understanding
users intention: programming fine manipulation tasks by
demonstration,” Proc. of the IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
vol. 2, no. October, pp. 1114–1119, 2002.

[23] U. Prieur, V. Perdereau, and A. Bernardino, “Modeling and planning
high-level in-hand manipulation actions from human knowledge and
active learning from demonstration,” Proc. of the IEEE Int. Conf.
Intell. Robot. Syst., pp. 1330–1336, 2012.

[24] M. A. Armada, A. Sanfeliu, and M. Ferre, “Slip Detection in Robotic
Hands with Flexible Parts,” Adv. Intell. Syst. Comput., pp. 153–167,
2014.

[25] C. Melchiorri, “Slip detection and control using tactile and force
sensors,” IEEE/ASME Trans. Mechatronics, vol. 5, no. 3, pp. 235–
243, 2000.

[26] A. A. S. Al-Shanoon, S. A. Ahmad, and M. K. b. Hassan, “Slip
detection with accelerometer and tactile sensors in a robotic hand
model,” IOP Conf. Ser. Mater. Sci. Eng., vol. 99, p. 12001, 2015.

[27] V. A. Ho, T. Nagatani, A. Noda, and S. Hirai, “What can be inferred
from a tactile arrayed sensor in autonomous in-hand manipulation?,”
Proc. of the IEEE Int. Conf. Autom. Sci. Eng., pp. 461–468, 2012.

[28] R. S. Olson and J. H. Moore, “TPOT: A Tree-based Pipeline
Optimization Tool for Automating Machine Learning,” in
Proceedings of the Workshop on Automatic Machine Learning,
2016, vol. 64, pp. 66–74.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, G. Louppe, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.
Perrot, and É. Duchesnay, “Scikit-learn: Machine Learning in
Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[30] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized
trees,” Mach. Learn., vol. 63, no. 1, pp. 3–42, 2006.

[31] J. H. Friedman, “Stochastic gradient boosting,” Comput. Stat. Data
Anal., vol. 38, no. 4, pp. 367–378, 2002.

[32] R. Lippmann, “An introduction to computing with neural nets,”
IEEE ASSP Mag., vol. 4, no. 2, pp. 4–22, 1987.

[33] L. Breiman, “Random forests,” Mach. Learn., pp. 5–32, 2001.
[34] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical

learning, Ny Springer, 2001.

3151

