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Abstract In this paper we apply the kineto-static mathematical models com-
monly used for robotic hands and for parallel manipulators to an example of hand-
plus-object (parallel manipulator) with three fingers (legs), each with two phalanges
(links). The obtained analytical matrix expressions that define the velocity and static
equations in both frameworks are shown to be equivalent. This equivalence clari-
fies the role of the grasp matrix versus the parallel manipulator Jacobian. Potential
knowledge transfer between both fields is discussed in the last section.

Keywords Parallel mechanisms · Multifingered robotic hands · Screw theory.

1 Introduction

A hand manipulating an object held in the fingertips has the same kinematic structure
as a parallel manipulator where the platform is the object and the legs are the fingers.
Despite this fact has been acknowledged by many authors [6, 10], few works discuss
connections between the mathematical frameworks of both systems [4]. A hand-
plus-object system is a highly redundant hybrid parallel manipulator, where the only
passive joints are the contact attachments. However, the hand-plus-object system has
to hold an extra condition: the fingertip force has to be directed towards the object
and inside the friction cone [12]. This condition does not modify the kineto-static
mathematical model, because it is treated as a constraint when solving the static
equations.
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This paper reviews the mathematical frameworks involved for modeling the hand-
plus-object system of a hand with three fingers and two phalanges per finger, and
its kinematically equivalent parallel manipulator. As expected, we show how the
derived static equations match. We believe that our comparison helps to clarify the
role of the grasp matrix versus the role of the parallel manipulator Jacobian matrix.
As far as the authors know, there has not been any publication proving that both
frameworks are analytically equivalent. The results obtained in this paper are for a
particular example. A general complete proof of such equivalence is left as future
work.

Section 2 introduces the studied example and its notation. Section 2.1 details the
steps to obtain the matrices for hands and Sect. 2.2 for parallel robots. The obtained
matrices are compared in Sect. 2.3. Finally, Sect. 3 discusses advantages of the proven
equivalence, and proposes future work based on transfer of knowledge between both
fields.

2 The 3-UR Hand and Its Equivalent Parallel Manipulator

This paper analyzes the three-fingered hand depicted in Fig. 1. Its architecture is
similar to other robotic hands such as the Barrett hand [16] or the JPL hand [13]. The
hand consists of three equal fingers with two phalanges each and three rotational joints
each (2 in finger flexion, and one base rotation). For each finger i , zi1 = (0, 0, 1)T and
zi2 = zi3 = (sin (θi1) ,−cos (θi1) , 0)T are the axis of rotation of the first, second
and third joints, respectively, with rotation angles θi1, θi2 and θi3, respectively (see
Fig. 1).

To complete the hand-plus-object system, we need to define the contact model.
The two most common contact models are called hard and soft fingers. The first one
assumes a point contact with friction with a small contact patch. Kinematically, it
is equivalent to a spherical joint. The second model assumes a larger contact patch
and thus, the finger can also transmit a moment about the contact normal. This is
equivalent to a universal joint. Therefore, the system hand-plus-object using the hard-
finger (soft-finger) model is kinematically equivalent to a 3-URS (3-URU) parallel
manipulator (where U stands for universal joint, R revolute, and S spherical). In this
work, we use the hard-finger model. Then, the mobility of the manipulator, computed
using the Grübler-Kutzbach criterion, is 6, that means the object (platform) can be
moved in 6 degrees of freedom (DoF). Other more complex models, such as the
rolling contact, are left as future work [15].

Hands need to actuate all the joints to keep the fingers rigid when they work
without contact, and thus, the resulting manipulator will have the 9 finger joints

Θ = (θ11, θ12, θ13, θ21, θ22, θ23, θ31, θ32, θ33) (1)

actuated. The rest of the joints are left free to move (passive). They are defined
considering the spherical joints as the intersection of three revolute joints. We define
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Fig. 1 A three-fingered hand with its corresponding notation. The center points of the palm joints
are equally distributed around a circumference of radius rp , and the contact points on the object
around a circumference of radius ro. By geometric construction, the coordinates of the fingertip
can be described using the magnitudes ni = li sin (θi2) + di sin (θi2 + θi3) and mi = li cos (θi2) +
di cos (θi2 + θ i3) , where li and di are the lengths of the proximal and distal links of the i th finger,
respectively

their axis of rotation as zi4 = (1, 0, 0), zi5 = (0, 1, 0) and zi6 = (0, 0, 1), with
angles θi4, θi5 and θi6, respectively. Then, we can state that the manipulator has three
degrees of actuation redundancy (9 actuated joints versus 6 DoF of mobility). As the
output twist that defines the velocity and angular velocity of the object (platform)
is also 6 dimensional, we can say that the manipulator does not have kinematic
redundancy [19].

The position and orientation of the object (platform) with respect to the palm
(base) reference frame are given by a position vector p ∈ R

3 located at the center of
mass of the platform (object) and a rotation matrix R ∈ SO(3). If ãi and c̃i are the
local coordinates of the palm (base) and object (platform) attachments in their local
reference frames, their coordinates with respect to the palm (base) fixed reference
frame are ai = ãi and ci = p+R̃ci . Assuming contact, the coordinates of the contact
points must be the same as the coordinates of the fingertips, which can be obtained
by geometric construction as

ci = ai + ni (0, 0, 1)T + mi (cos (θi1), sin (θ1), 0)T ,

(where ni and mi are defined in Fig. 1-(right)). The loop equations are obtained
equating the two obtained coordinates of the contact points ci . Solving them for Θ

or for {p, R} gives the the inverse and forward kinematic solutions, respectively.
The next two sections describe how to obtain the velocity equations using

the grasping framework [12] and the parallel manipulators frameworks [9, 17].
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The equations are listed in Table 1, for the described hand (first column of the table)
and the equivalent parallel manipulator (second column of the table).

The velocity of the object (platform) is described using screw theory in both
frameworks. We define a screw as $ = (u, q × u) for a given vector u and a position
vector q. Two screws are reciprocal when its reciprocal product is zero, i.e.,

(u1, q1 × u1) ◦ (u2, q2 × u2) = (q1 × u1, u1) · (u2, q2 × u2) = 0,

where · stands for the usual dot product and ◦ the reciprocal product [3, 18]. The
twist T = (v,Ω) defines the linear and angular velocity of the object (platform).

2.1 The Grasp Matrix and the Hand Jacobian

The total grasp and hand Jacobian matrices are defined stacking together the matrices
of each finger as shown in Table 1-row f. To define each finger matrix, first we need
to define a set of reference frames, {Ci } = {ci , Ri }, located at each of the contact
points and with rotation matrix Ri = (ni ti oi ), with ni normal to the plane tangent
to the object at the contact point, and directed toward the object. The remaining two
vectors are chosen orthonormal to the first one (Table 1-row a). For our case, we
define these vectors as

ni =(nix , niy, niz) = p − ci

ro
,

ti =
(

niy
√

n2
i x +n2

iy

,− ni x
√

n2
i x +n2

iy

, 0

)

, (2)

oi =ni × ti

The grasp matrix for the finger i is a change of coordinates of the twist of the object
T, from the fixed reference frame to {Ci }. Let T f i be the twist at the fingertip i with
respect to the reference {Ci }. Then, T f i = GT

i T where GT
i = Hi Ri Pi (see explicit

expression in Table 1-row d). The matrix Pi translates the twist from p to ci . The
matrix Ri rotates the twist to match {Ci } and Hi is the contact model matrix, that
sets to zero the three coordinates corresponding to the angular velocity (see [12] for
detailed definition of this matrix).

The hand Jacobian matrix JH is defined by the joint twists, whose expressions
for each finger i are

$i1 =((ai − ci ) × zi1, zi1)
T

$i2 =((ai − ci ) × zi2, zi2)
T (3)

$i3 =((bi − ci ) × zi3, zi3)
T .
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Table 1 Summary of static and velocity equations. τ and Θ̇ are the vector of joint torques and
velocities, respectively. W and T are the external wrench and twist acting on the object (platform).
λ f is a 1 × 9 vector containing the three fingertip forces, and F represents the friction cone

Grasping Parallel manipulators

a

ni

ti

oiRi = (ni ti oi)

bi

ai

ci

zi2

b GT T = JH Θ̇ JpT = JΘΘ̇

c
JT

H λ f = τ

−Gλ f = W
λ f ∈ F

W = −JT
p J−T

Θ τ

d
GT

i = Hi

(

Ri 0
0 Ri

) (

I3 0
(ci − p)× I3

)

where v× is the cross-product matrix
Jpi =

⎛

⎝

zT
i2 (ci × zi2)

T

(ci − bi )
T (ci × (ci − bi ))

T

(ci − ai )
T (ci × (ci − ai ))

T

⎞

⎠

e
JHi = Hi Ri ($i1$i2$i3)

with $i j defined in (3)
JΘi =

⎛

⎝

−mi 0 0
0 li di Sin (θi3) 0
0 0 −li di Sin (θi3)

⎞

⎠

with mi defined in Fig. 1

f GT =
⎛

⎝

GT
1

GT
2

GT
3

⎞

⎠, JH =
⎛

⎝

JH1 0 0
0 JH2 0
0 0 JH3

⎞

⎠ Jp =
⎛

⎝

Jp1

Jp2

Jp3

⎞

⎠, JΘ =
⎛

⎝

JΘ1 0 0
0 JΘ2 0
0 0 JΘ3

⎞

⎠

Note that the angular components are computed about the center of the reference
{Ci }. Then, the i th fingertip twist is expressed as T f i = JHi Θ̇ , where JHi is detailed
in Table 1-row e. As before, the matrix Ri is used to write the twist with respect to
{Ci } and Hi to select only the transmitted components.

Finally, rows b and c show the velocity and the static equilibrium equations using
the complete matrices.

2.2 The Jacobian Matrix of the Parallel Manipulator

Here we follow the steps proposed in [9] or Chapter 5.6 in [17] to obtain the Jacobian
matrix for the parallel manipulator shown in Table 1, row a, second column.
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Let T be the twist of the platform, as in the previous section. The theorem in [9]
states that it can be written as the sum of the joint twists of each leg, that is,

T =
6

∑

j=1

θ̇i j $i j , for i = 1, 2, 3. (4)

Here, the joint twists angular components are computed about the center of the base
fixed reference frame, namely, $i j = (r × zi j , zi j ), for j = 1, . . . , 6, where r takes
the value of the corresponding joint center. The first three joint twists are equivalent
to the twists defined in (3). The remaining three correspond to the passive joints.

The passive joint twists $i j , for j = 4, 5, 6, can be eliminated from the system
(4) computing their reciprocal screws, named as r $ik , for k = 1, 2, 3. It is important
to note that any set of three linearly independent screws through the contact point
are reciprocal to the spherical joint system {$i4, $i5, $i6} [3, 18]. After multiplying
the reciprocal system at both sides of each equation in (4), we can rewrite the system
as JpT = JΘΘ̇ , where the rows of the matrix Jp are the reciprocal screws and the
matrix JΘ only depends on the active joint angles, JΘ = (r $ik ◦$i j ), for j = 1, . . . , 3
and k = 1, . . . , 3. That is, it is formed by all the products of the reciprocal screws
with the actuated joint screws.

The most convenient choice of the reciprocal screws is to define each one to be
reciprocal to all the passive joint twists plus two of the active. This leads to a diagonal
matrix JΘi (Table 1-row e). The explicit expressions of the reciprocal screws for each
leg i are the rows of the matrix Jpi in Table 1-row d.

We can obtain the i th fingertip wrench, written with respect to the fixed reference
frame, by multiplying each set of three columns in Jp

T J−T
Θ by the corresponding

three joint torques τ . When the matrix JΘ is not square, we can use the pseudo-
inverse.

2.3 Comparison of Frameworks

We computed all the equations using Wolfram Mathematica 9. We can see that the
matrices in the rows d, e and f between the two columns of Table 1 are obviously
different. However, the analytical expression of the products J−1

Θ Jp and J−1
H GT are

the same, except for the angular components. In the grasping framework, the angular
velocities (moments) components of the twists (wrenches) are computed with respect
to the center of the object (platform), while in the parallel manipulators framework
they are computed with respect to the fixed reference frame center. Thus, we can say
that they are equivalent J−1

Θ Jp ≡ J−1
H GT .

In Sect. 2.2 we state that the reciprocal screws can be chosen arbitrarily, provided
that they are independent and through the contact point ci . Then, let us define them
using the vectors of the fingertip frame (see Eq. (2) and figure in Table 1, row a,
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column 1). In other words, we use ni , ti and oi to define the screws in the matrix Jpi .
Then, all the matrices in both frameworks coincide, that is, JH = JΘ and Jp ≡ GT ,
where the second equivalence is not analytically identical only because the moments
and angular velocities are computed with respect to different centers.

Note that the particular choice of the reciprocal screws will shape the final form
of the matrices in Table 1. Analogously, in the grasping framework, this choice is
made when defining the vectors of the rotation matrix of the reference frames {Ci }.

In the grasping context, the choice of the vectors {ni , ti , oi } is convenient to obtain
the expression of the fingertip forces λ f directly projected to the axes of the friction
cones. This facilitates the evaluation of the friction cone conditions. In the parallel
manipulator context, the choice is done so that the resulting matrix JΘ is as diagonal as
possible. This allows the interpretation of the rows of the complete Jacobian J−1

Θ Jp in
terms of line Plücker coordinates [7]. This is useful to find geometrical interpretation
of singularities. Recently, in [2] they have used this technique to hand fingers, and
the reciprocal system is chosen to facilitate the single value decomposition of the
resulting finger Jacobian matrix.

We can also observe that the steps shown in Sects. 2.1 and 2.2 can be generalized
to any type of hand (manipulator), but the resulting matrices will be tall, wide or
square depending on the relationship between the mobility, the number of actuated
and passive joints and the dimension of the output twist [19]. It remains to proof that
the results are always equivalent.

3 Discussion and Future Work

The grasping literature commonly uses the manipulability index to state the quality
of the grasp, and it is either based only on the hand Jacobian [13] or on the multipli-
cation of both matrices J−1

H GT [14]. While this can detect singularities, the literature
of parallel robots has extensively studied and classified them in much more detail
[5, 19, 20].

Among parallel robot designers, it is well known that a smart design has to take
into account the singularities inside the workspace [1, 8]. As far as the authors know,
this is not done when designing hands. In part, this may be because the actuation
redundancy reduces the dimensionality of the singularity locus. However, simplified
hands that use underactuated fingers can reduce the degree of actuation redundancy
down to 0 or even lower. In particular, we are studying how underactuation with
pulling cables can be modeled with similar Jacobian matrices where these kind of
singularities need to be taken into account. This type of hands are becoming very
popular not only for effective grasps, but also to perform dexterous manipulation
[11]. For these hands, singularities may be an issue that researchers will have to take
into account in the process of hand design.
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We believe that the study of convenient choices of the reciprocal system can
lead to useful tools to design hands with increased workspaces. For instance, it can
be useful to compute an analytical expression of the hyper-surface of singularities
using only task space variables. Analyzing such surface can help to plot independent
components inside a workspace, that cannot be crossed without loosing control.

This work has shown how the grasp matrix plays the same role as the Jacobian
of reciprocal screws for the analyzed example. Such equivalence allows for transfer
of knowledge from parallel manipulators to robotic hands. Extending this work to
more general cases is part of a future work that will help to fully understand the
parallelisms between these two types of manipulators.
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