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Abstract Dexterous, within-hand manipulation, in which
an object held in the fingertips is manipulated by the fin-
gers, shares many similarities with parallel robots. However,
their mathematical formulations appear to be substantially
different. This paper introduces a formulation typical from
parallel manipulators to model the kinetostatics of a hand-
plus-object system, including the fingertip forces formulation
to describe a feasible grasp. The framework also includes
compliance in the joint and considers pulling cable transmis-
sion mechanisms to model underactuated hands. The resul-
tant static equilibrium equations are equivalent to the typical
grasping formulation, but the involved matrices are different,
allowing the interpretation of the resulting Jacobian matrix in
terms of wrenches exerted by the joints.We primarily focus
our efforts on describing in detail the theoretical framework,
and follow this with an example application using a three-
fingered underactuated hand. We show how the natural redun-
dancy present in fully-actuated hands can be eliminated using
underactuation, leading to simplified non-redundant systems
that are easier to control. For the studied hand, we show
how to use the framework to analyze the design parameters
involved in the underactuation and their relationship with
the resultant feasible workspace where the object can be
manipulated.
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1 Introduction

Analyzing dexterous manipulation with multi-fingered hands
is challenging, in part due to the difficulties in dealing with
the closed-loop kinematic chain established between the fin-
gers and object and the resulting potential for an overcon-
strained system. This paper revisits a mathematical frame-
work typically used with parallel platforms for the study of
robotic hands performing dexterous, within-hand manipula-
tions that have a kinematic structure equivalent to a parallel
manipulator (Fig. 1)

Earlier work has acknowledged the equivalence of the
hand-plus-object as a closed kinematic chain (Kerr and
Roth 1986; Montana 1995), but generally used mathemat-
ical frameworks from open serial chains (Murray et al.
1994; Prattichizzo and Trinkle 2008). Most of the dimen-
sional synthesis of robotic hands has been done studying
the properties of the independent fingers (e.g. Salisbury
and Craig 1982). Other degeneracies due to the cooper-
ation of the fingers with the object are commonly used
only to quantify the quality of a particular grasp (Bicchi
et al. 1995; Shimoga 1996) and not to analyze the whole
hand.

The framework proposed here models the system of hand-
plus-object as a whole. This is useful to analyze the size of the
manipulation workspace and to study other important proper-
ties, such as singularities within the workspace, that in prac-
tice can reduce the size of the usable workspace (Hubert and
Merlet 2009). Robotic hands can benefit from the literature of
parallel robots in several aspects. For instance, singularities
have been widely studied (Zlatanov 1998) and manipulabil-
ity indexes have been proven to be not very good indicators
of the quality of the manipulability through the workspace
(Merlet 2006a), concepts that can be directly translated to
robotic hands manipulating objects. Transfer of knowledge
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Fig. 1 When an open hand is closed to grasp an object, the kinematic
structure is equivalent to a parallel robot

between these fields is starting to be explored in Ebert-Uphoff
and Voglewede (2004).

In this paper, we propose a formulation to analyze multi-
fingered hands manipulating rigid objects within a preci-
sion fingertip grasp, using a point contact with friction, or
hard-finger model (Kerr and Roth 1986; Prattichizzo and
Trinkle 2008). We show that the proposed parallel robots
framework can be applied to study the static properties
of a hand holding an object, provided that we restrict the
analysis only to those configurations of the workspace for
which the fingertip forces are within their respective fric-
tion cones. The proposed framework uses theory of recip-
rocal screws, which has been applied to hands during the
early 90s, at the origin on hand kinematic analysis (Hunt
et al. 1991; Romdhane and Duffy 1990) but only in few
recent works, like the project on the Metamorphic Mul-
tifingered hand from Cui and Dai (2012) and Dai et al.
(2009).

A secondary aim of this paper is to consider modeling
underactuated hands for the study of their dexterous manip-
ulation workspace. Typical parallel robots use only as many
joint actuators as degrees of freedom (DoF) the platform has
to move. Even though each leg itself has usually as many
DoFs as platform DoFs, only one or two of the joints per leg
are actuated, called active joints, and the rest are left free to
move through passive joints. Having an exactly constrained
system simplifies the control of the resulting mechanism, as
the free moving joints automatically adapt to hold the kine-
matic constraints.

On the contrary, robotic hands need to have all of the
joints of the fingers actuated, to be able to be articulated and
avoid collapsing under their own weight before contact with
an object. After contact with an object is made on the distal
links of the fingers, the equivalent mechanism is a parallel
platform where all the joints are generally actuated except
for the platform attachments (i.e. finger contacts). This typi-
cally results in a redundantly actuated parallel configuration
(Müller 2008). Adding one or two degrees of redundancy
is sometimes used in parallel manipulators to reduce sin-
gularities and to increase the usable workspace (Dasgupta
and Mruthyunjaya 1998). However, highly redundant con-
figurations have substantial drawbacks typical of overly con-
strained systems, such as errors due to internal forces that
complicate the calibration and a complex control process.

This issue can be mitigated using differential transmis-
sions implemented to produce underactuated fingers. Under-
actuated hands typically use one actuator to control two or
more joints, so that all the joints are active but are coupled
together through some sort of differential mechanism (Bir-
glen and Laliberte 2008). The coupling can be implemented
through cables and pulleys or linkages (Balasubramanian
et al. 2012; Birglen and Laliberte 2008; Dollar and Howe
2010; Hirose and Umeteni 1978), and generally require one
or more compliant elements to provide a loose constraint on
the unconstrained DoFs and/or provide a means of antago-
nistic actuation to the tendon. In particular, when the trans-
mission is implemented with pulling cables, underactuation
can be easily integrated in the proposed framework.

This work focuses on the static analysis of hands holding
objects in a precision grasp, analyzing the conditions under
which a grasp is feasible and therefore belongs to the manip-
ulable workspace of the hand/object system. The framework
can be used to model fully actuated hands and also under-
actuated hands. As an example, we apply it to an underac-
tuated hand with three fingers and two links per finger. For
this architecture, we study how the underactuation design
parameters such as the transmission ratio and the stiffness
constants of the finger joints can modify the size of the fea-
sible workspace. This paper is an extension of a conference
paper by the authors (Borràs and Dollar 2013b), expanded to
include a detailed exposition of the methodology to obtain
the model equations and to complete the design parameter
analysis of a 3-URS hand using the framework.

In Sect. 2 we start introducing the mathematical frame-
work that is commonly used in the parallel robots litera-
ture (Merlet 2006b; Tsai 1999), adapting it to the analysis
of an underactuated robotic hand and defining how the fric-
tion cone conditions are applied under the new framework. In
Sect. 3 we show an example of how to apply the framework
and we study the different workspace sizes depending on the
design parameters. Finally, Sect. 4 gives some conclusions,
and points out future studies using the proposed framework.
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2 Mathematical model of the hand-plus-object

The literature of robotic hands commonly models the hand
as a set of serial chains (the fingers) that have to collabo-
rate to manipulate an object. The grasp matrix G is normally
built from the change of coordinates matrix from a refer-
ence frame fixed at the center of mass of the object to a
local reference frame located at each contact point. The hand
Jacobian Jh is obtained by stacking in diagonal the Jaco-
bian matrices of the serial chains of each finger. The contact
model consists of a matrix H that will select the appropriate
coordinates and the static equilibrium equations are solved
by imposing the coincidence between the contact points and
the fingertips (Bicchi et al. 1995; Prattichizzo and Trinkle
2008).

Here, we present an alternative approach to define the
matrices that relate the joint velocities/torques with the resul-
tant object twist/wrench using a framework that is widely
used in the context of parallel manipulators. Indeed, a hand
manipulating an object is equivalent to a parallel manipula-
tor, with the additional constraint that the contact force at
each fingertip must be within the friction cone. The resultant
mathematical systems are equivalent to the system solved
in classic grasping notation such as (Shimoga 1996), but
the actual matrices are different (Borràs and Dollar 2013a).
Furthermore, the geometrical interpretations used in paral-
lel manipulators can give new insights in several aspects of
the dexterous hands, such as workspace optimization, hand
design, and others.

Depending on the contact model, the corresponding equiv-
alent parallel manipulator will change. The hard finger or
point contact with friction transmits only the direction of the
force from the finger to the object. Thus, it is kinematically
equivalent to a spherical joint. The soft finger, where the fin-
gers can transmit not only the force but also the moment of
the force around the normal component at the fingertip, is
equivalent to a parallel manipulator that uses universal joints
in its platform attachments. In this work, we will consider
the first model, but a similar analysis can be done with the
second. The rolling contact model is more complex and its
integration with the framework is left for future work.

Consider the hand-plus-object system formed by the hand,
the contact points and the object. The object can be moved in
a maximum of 6 DoF, three for position and three for orienta-
tions, defined in a 6-dim vector x. However, depending on the
number of fingers, links, and joints, the object can be manip-
ulated in only n DoF, where n is the mobility of the system.
The mobility can be computed using the Grübler–Kutzbach
criterion (Downing et al. 2002; Mason and Salisbury 1985).
If n < 6, the system is called lower mobility (Kanaan et al.
2009), that is, the workspace where the object can be manip-
ulated with the fingers is a n dimensional subspace of the
6-dim task space. If the mobility is higher than 6, the object

workspace is still 6 dimensional, but it has kinematic redun-
dancy (Mohamed and Gosselin 2005).

For simplicity, we consider all the joints 1 DoF. In other
words, a universal (spherical) joint is considered as two
(three) rotational joints with intersecting axes. In a generic
hand with l fingers with mi joints each, the total number of
joints of the hand is m = ∑l

i=1 mi . The total number of
joints of the hand-and-object system is m + 3l, that is, the
hand joints plus the platform attachment joints, which are
considered free to move (passive). Let

� = (θ1, .., θm)T (1)

be the vector of all the hand joint angles. Only n of them are
independent and determine the position of the object. Gen-
erally, all joints are actuated and thus, the number of motors
is na = m > n. In the context of parallel manipulators,
this is known as a redundantly actuated system. If the hand
uses underactuation, the number of motors can be lower. If
na = n, that is, we have as many motors as mobility, we say
that the hand-plus-object system is fully-actuated. Note that
we need at least n motors to be able to control all the mobil-
ity DoFs of the object. If less motors are used, there will be
n−na uncontrolled DoFs. This is used in some underactuated
hands as a desired passive compliant DoF.

Any value of � determines a configuration of the hand,
but when manipulating the object, the only feasible con-
figurations are those that satisfy the kinematic constraints,
namely, a set of equations that can be written as H(�) = 0.
These are normally distance constraints between the finger-
tips, that must remain constant, assuming that the object is
rigid enough and that the hand does not re-grasp the object.
To consider soft objects, the constraints should be considered
as inequalities.

We define the kinematic configuration space of the hand
holding the object as

C = {� ∈ R
m |H(�) = 0} (2)

The position and orientation of the object are defined by
an element of SE(3), in our case, a position vector p and
a rotation matrix R. For any feasible configuration, we can
compute the position and orientation of the object by solving
the loop equations, which can be defined by requiring the
fingertip coordinates and the object contact coordinates to be
coincident. We can write the solution of the loop equation as
the map F K : C → SE(3), usually known as forward kine-
matic problem. The kinematic workspace of the manipulated
object is then defined as

W S = {F K (�)|� ∈ C} ⊂ SE(3) (3)

The resolution of the inverse kinematics consist in, given the
position and orientation of the object, find the location of the
contact points and then solve the inverse kinematic of each of
the fingers. Note that if the finger has more than three joints,
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there can be a set of solutions of dimension (mi − 3). In this
case, a single solution is usually chosen optimizing a certain
objective function (Shimoga 1996).

There are several approaches to define the matrix that
maps the joint velocities (or joint torques) to the plat-
form/object twist (or wrench). Here we will use the theory of
reciprocal screws to define this matrix, following Chapter 5.6
in Tsai (1999), or Merlet (2006b) and Mohamed and Duffy
(1985).

The twist induced by a rotational joint located at the posi-
tion vector p, with an axis of rotation in direction s is

$r = (p × s,s)T ,

while a twist induced by a prismatic joint along an axis s is
$p = (s, 0)T .

Following Tsai (1999) and Mohamed and Duffy (1985),
the twist transmitted to the platform/object, T = (v,�), can
be written as the sum of all the twists induced by the prismatic
or rotational joints of each leg (including the passive ones).
If we consider the hard finger contact model, each finger has
three extra passive joints corresponding to the contact point
(modeled as a spherical joint):

T =
mi +3∑

j=1

θ̇ij$i j, i = 1, . . . , l (4)

We want to eliminate from the above system the velocities
of the passive joints. To this end, we multiply both sides of
this equation by the set of screws that are reciprocal to all
the passive joints. Two screws $1 = (p1 × s1, s1)

T and $2 =
(p2 × s2, s2)

T are reciprocal when their reciprocal product
is zero, that is

$1 ∗ $2 = $T
1 �$2 = (p1 × s1) · s2 + (p2 × s2) · s1 = 0,

where � =
(

0 I3

I3 0

)

.

Historically, this step has been done with a lot of mechan-
ical intuition, but lately more systematic methods have been
proposed (Zhao et al. 2009). All joints in the fingers are actu-
ated, and the contacts are free to move. Thus, we have to
define a system of screws reciprocal to the three passive
joints corresponding to the contact point. As a system of
three screws through a point is self-reciprocal (Dai and Jones
2001; Gibson and Hunt 1990) we can chose any system of
three screws through the contact point to define the recipro-
cal system. The resultant matrix will be independent of this
choice.

Let us call $ri = ($rik) for k = 1, . . . , 3 the reciprocal
system to the passive joints of leg i . If we apply the reciprocal
product at both sides of Eq. (4), all the screws associated with
passive joints at the right side vanish, leading to

$T
ri�T = ($T

rik�$i j )

⎛

⎜
⎝

θ̇i 1
...

θ̇imi

⎞

⎟
⎠ , i = 1, . . . , l (5)

where the matrices J pi = $T
ri� contain in each row the

screws reciprocal to the passive joints of leg i , and thus,
they are 3 × 6 matrices and J�i = ($T

rik�$i j ) contains the
reciprocal products of the reciprocal screws with the finger
joint screws, and thus, they are 3 × mi . We can rewrite this
system in a single matrix form leading to

J pT = J��̇, (6)

where J p is a 3l ×6 matrix and J� a 3l ×m with expressions

J p =
⎛

⎜
⎝

J p1
...

J pl

⎞

⎟
⎠ and J� =

⎛

⎜
⎝

J�1 0 0

0
. . . 0

0 0 J�l

⎞

⎟
⎠ . (7)

For a hand with three fingers and three joints per finger,
we have shown in Borràs and Dollar (2013a) that these two
matrices can be multiplied as J = J−1

� J p and the resultant
Jacobian matrix is equivalent to the hand Jacobian plus grasp
matrix system in Prattichizzo and Trinkle (2008). In general,
the matrix J� is not square, but we can use the left pseudo-
inverse of the tall matrix J p to write J+

p J��̇ = T.
We can write the static equilibrium equations substituting

these expressions in the principle of virtual work (Tsai 1999)
leading to

− W = JT
p J+T

� τ (8)

where τ = (τi ), for i = 1, . . . , m, is the vector of torques
done by each joint i, W is the total external wrench applied on
the object, and J+T

� is the left pseudo inverse of the transposed
matrix J�. The matrix

JT = JT
p J+T

� (9)

is 6 × m and it can be interpreted in terms of the geometry
of the mechanism; this fact has been applied in the parallel
robot literature for easier detection of singularities and as a
tool for optimal design (Merlet 2006b).

This system models the hand statics, provided that we
discard those configurations for which the resulting fingertip
forces are outside the friction cone, as it will be detailed in
Sect. 2.2.

Equation (8) defines the static equilibrium of the hand-
plus-object. When a configuration is in static equilibrium for
any direction of W , then the hand-plus-object is called force
closure grasp (Prattichizzo and Trinkle 2008).

Finally, we also want to consider compliance in parallel
with the joint actuators. Each torque τi will be composed of
two components, one from the actuation torque and one from
the spring torque, obtained using the Hooke’s law. This is

τi = aτi−Ki (θi − δi ), (10)
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where Ki > 0 is the spring stiffness constant and δi is the
rest configuration angles for the fingers. We are assuming
that all joints are rotational joints, so that θi are angles and
the springs are torsional springs, but the same can be done
with prismatic actuators and linear springs (Borràs and Dollar
2012).

For a given configuration and a given external applied
force, the system in (8) is a linear system where the unknowns
are the m actuation torques

− W = JT aτ + JT cτ , (11)

where we have split the torque vector into the actuation
torques aτ = (aτ i ) and the compliant torques cτ =
(−Ki (θi − δi )).

As there are fewer equations than unknowns, there is a
(m − 6)-dimensional set of solutions for each configuration.
A single solution can be chosen optimizing, for instance,
the maximum actuation torque to be as small as possible,
constrained by imposing the resulting fingertip forces to be
inside the friction cones.

The Jacobian matrix in (9) characterizes the singularities
of the system, as those configurations for which the matrix
loses rank. Classic hands papers consider singularities only
of the finger serial chains (Salisbury and Craig 1982). In
the parallel robots literature, these kind of singularities are
classified as type I (or serial) singularities in the Gosselin
and Angeles (1990) classification or Redundant Input in Zla-
tanov (1998). They occur when the matrix J� loses rank.
These singularities result in a loss of DoF, in other words,
only some forces can be transmitted to the object. Typically,
it is more challenging to detect the second type of singu-
larities, called type II, parallel or Redundant Output singu-
larities, which occur when the matrix J p loses rank. Under
this type of singularity the manipulator gains uncontrollable
DoF. For parallel manipulators, one of the consequences of
this kind of singularities is that in the neighborhood of a
singularity, small applied forces may result in very big actu-
ation torques which may lead to the breakdown of the robot.
In the case of hands, it results in the loss of the object or
in the breaking of the object under the pressure of the fin-
gers. In both cases, singularities define limits of the usable
workspace (Gosselin and Angeles 1990; Hubert and Merlet
2004).

2.1 Underactuated hands

Underactuated hands have become very popular due to its
adaptation to unstructured environments. When using under-
actuated fingers, some of the motors control two or more of
the joints. Depending on the transmission mechanism, extra
Jacobian matrices have to be added to the above equations
(Birglen and Laliberte 2008). But when using pulling cables,
we can model the transmission mechanism as a coupling

between the torques exerted by the joints actuated by the same
motor. Such coupling depends only on the ratio between the
radii of the rotational joints, that will be called the transmis-
sion ratio r (Balasubramanian et al. 2012).

Let us assume that we introduce as many couplings as
necessary to have only n actuators, meaning that the resulting
system is no longer redundant. This means that some of the
torques will be related to others through a transmission ratio
rk , that is, aτ k = rk

aτ i for k = 1, . . . , m − n of the actuated
torques.

Then, we can rewrite Eq. (11) as

− W = JT
a

a τ̃ + JT cτ (12)

where a τ̃ is an n-dimensional vector that contains only the
independent actuation torques. The matrix JT

a is a square
matrix that can be obtained from JT using linear combina-
tions of the columns with the scaling factors rk . See Sect. 3
for an example.

Note that the underactuation is modeled with a spring and a
cable in parallel, but the spring acts in parallel with the motor
only when the cable is pulling, and as a passive compliant
joint otherwise. To take that into account without introducing
too much complexity to the system, we simply solve the
system considering the springs in parallel with the motors,
and we discard any configuration where the actuation torque
is not of the opposite sign of the spring torque. In other words,
depending on the routing of the cable, we discard positive or
negative actuation torques.

For a given configuration, the above system is a square lin-
ear system. In this case, there is a one to one correspondence
between the external applied force and the corresponding
actuation torques.

It is also important to notice that a new singularity appears,
because when det

(
JT

a

) = 0 the above system is singular.
By construction, close to a singularity where JT

a loses rank,
small applied forces can lead to very big actuation torques,
and thus, this matrix defines the limit of the static workspace
(Hubert and Merlet 2009).

This means that an underactuated hand will have, in
general, a smaller workspace, as more configurations will
be close to singularities. However, with improved design
processes, the workspace can be large enough for the required
tasks. Thus, underactuation is a promising feature for the
design of hands with more efficient manipulation processes,
in contrast to fully actuated hands, as the forward static prob-
lem is much simpler, resulting in simpler dynamics and con-
trol processes.

In Sect. 3.3 we will study how the spring free lengths, stiff-
ness constants and the transmission ratio play an important
role in the maximization of the size of the usable workspace.
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2.2 Fingertip forces and friction cone conditions.

We have already mentioned that the parallel robots math-
ematical framework can be applied to hands as long as the
fingertip forces are constrained to be inside the friction cones.
In this section we describe how we can write such conditions
in a natural way using our framework.

Recall the hand with l fingers with mi joints each (so,
m = ∑l

i=1 mi ). From Eq. (9), consider the columns of
the Jacobian matrix as JT = (

si j
)

for i = 1, . . . , l and

j = 1, . . . , mi . Each column has the form si j = (
f i j , mi j

)T ,
where f i j corresponds to the force the joint j transmits to
the fingertip of the finger i, with magnitude τi j , and mi j its
corresponding moment.

Then, we can write the wrenches at the fingertips as

W i = (
si1, . . . , simi

)

⎛

⎜
⎝

τi1
...

τimi

⎞

⎟
⎠ , for i = 1, . . . , l. (13)

In other words, the fingertip wrench can be written as
W i = (Fi , Mi ), where the fingertip force will be given by
Fi = τi1f i1 + · · · + τimi f imi

(see Fig. 3 for an example).
The other three components correspond to the moment done
by Fi , Mi = ci × Fi . The sum of all the fingertip forces and
moments is the resulting output force and moment on the
object1.

In Prattichizzo and Trinkle (2008) the friction cone is
defined with respect to the coordinate frame attached to the
contact point, whose axes are defined as Ri = {ni , ti , oi },
where ni is the unit vector directed from the contact point to
the center of the object, and the other two are defined orthog-
onal unit vectors. While in the Prattichizzo and Trinkle work
these vectors are used to define the Jacobian matrices, in
the presented framework we just need the definition of ni

to project the fingertip force. Assuming a spherical object,
we can define the vector as ni = p − ci , p being the posi-
tion vector of the object and ci the contact point. Then, we
split the fingertip force Fi into the projection on ni , given by
n Fi = nT

i Fi , and the projection on the normal plane to the
vector, ⊥Fi = || (Id − nT

i ni
)

Fi ||. The fingertip is inside the
friction cone as long as

⊥Fi ≤ μn Fi , (14)

where μ represents the amplitude of the friction cone which
will be assumed to be 0.7 for the simulations in Sect. 3.

At a given configuration, the expression of the fingertip
forces depends only on the torques of the joints at each fin-
ger, which depend on the actuation torques and on the spring
parameters. If the force is outside the friction cone, the con-
figuration is considered out of the feasible workspace.

1 All the coordinates are with respect to the palm reference frame.

2.3 On the hard-finger contact model

In the previous section we have studied the mathematical
model of the hand-plus-object system using the hard-finger
contact model, equivalent to a spherical joint.

Even though such model may be not entirely realistic of
the behavior of a hand, it does introduce several advantages
to study the mobility and shape of the workspace. In the con-
text of parallel robots it is known that the Jacobian matrix
of parallel robots that use spherical joints as platform attach-
ment will always involve the Plücker coordinates of a line
associated to the link connecting the leg to the end effector
(see Chapter 5.2.3 in Merlet 2006b book). That means that
the columns of the final matrix JT can always be interpreted
in terms of wrenches.

In addition, because the twist system associated to a spher-
ical joint is self-reciprocal, any three screws through the con-
tact point can be chosen to define the system of reciprocal
screws. In Borràs and Dollar (2013a) it was pointed out how
the choice of that system shapes the structure of the matri-
ces J p and J� without altering the shape of JT , and thus,
convenient choices can be done for different purposes. For
instance, in Cui and Dai (2012) they chose the reciprocal
system to facilitate the singular value decomposition of the
finger Jacobian. In the context of parallel robots, the recip-
rocal system is chosen to make the matrix J� as diagonal as
possible to facilitate its inversion and the geometrical inter-
pretation of JT .

3 Application example: a 3-URS hand

In this section we apply the formulation introduced in the
previous section to a 3-URS hand (Fig. 1). This architecture
is similar to several hands such as the Barrett hand (Townsend
2000) or the JPL hand (Salisbury and Craig 1982).

We assume the object is a disk with radius Ro and the
contact points are uniformly distributed around it. The fixed
reference frame is located at the center of the palm and the
mobile frame centered at the center of mass of the object.
Without loss of generality, we can write the coordinates of
the palm attachments and the contact points with respect to
the local reference frames as ãi and c̃i , respectively, with zero
z coordinate (Fig. 2).

The position and orientation of the object with respect to
the palm reference frame are given by a position vector p ∈
R

3 and a rotation matrix R ∈ SO(3). Then, the coordinates
of the attachments with respect to the palm reference frame
are ai = ãi and

ci = p + Rc̃i . (15)

As we assume contact, the coordinates of the contact
points are the same as the coordinates of the fingertips, which
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Fig. 2 Kinematic model of the studied hand. The center points of the
base joints are equally distributed around a circumference of radius RB ,
and the contact points around a circumference of radius Ro

Fig. 3 Force transmitted to the fingertip under the torque exerted for
each joint for the three actuated joints in each finger. The expression of
the fingertip force is given by τi1f i1 + τi2f i2 + τi3f i3. For the under-
actuated hand, the two forces f i2 and f i3 are merged depending on the
transmission ratio r

can be parameterized following the steps in Chapter 2.2 of
(Murray et al. 1994) as

ci = ai + hi (0, 0, 1)T + wi (cos (θi1) , sin (θi1) , 0)T ,

(16)

where

hi = li sin (θi2) + di sin (θi2 + θi3) ,

wi = li cos (θi2) + di cos (θi2 + θi3) , (17)

and li and di are the lengths of the proximal and distal
links of the i th finger, respectively. We can obtain a simi-
lar parameterization of the distal joint centers (bi in Fig. 2).
Alternatively, a similar parameterization can be obtained
using Denavit–Hartenberg parameters (Denavit and Harten-
berg 1955).

The inverse and forward kinematics can be obtained by
solving the system resulting from equating Eqs. (15) and (16).
For these fingers, we can solve the forward kinematics func-
tion F K (�) and the inverse kinematics I K (p,R) in a closed
form solution. The kinematic constraints are given by the
system

{||ci − c j ||2 = 3R2
o, i �= j

}
.

Any set of three screws through the contact point can be
used as the reciprocal system. However, in the context of
parallel robots, it is convenient to choose each screw to be
reciprocal to the passive joints plus two of the actuated. This
may not always be possible, but in this case the system is
fully determined leading to

$ri1 = (zi , ci × zi ),

$ri2 = (ci − bi , ci × (ci − bi ))

$ri3 = (ci − ai , ci × (ci − ai )), (18)

where zi = (sin (θi1) ,− cos (θi1) , 0) is the axis of rotation
of the second and third joints of the finger i .

Using the above screws, J� is a 9 × 9 diagonal matrix,
and as a result we can write the Jacobian in Eq. (9) as the
6 × 9 matrix JT = (· · · si1si2si3 · · ·), for i = 1, 2, 3, where
si j is the wrench corresponding to the action of the joint j of
the finger i with expressions

si1 = −1

wi
$ri1

si2 = 1

lidi sin (θi3)
$ri2

si3 = −1

lidi sin (θi3)
$ri3 (19)

where wi is defined in Eq. (17). See Fig. 3 for a graphi-
cal representation of those screws. This is the main differ-
ence from the usual framework used for hands. These three
screws at each finger will define the fingertip wrench as
τi1si1 + τi2si2 + τi3si3. Choosing any other system of recip-
rocal screws leads to a non-diagonal matrix J�, therefore,
the resulting columns of JT are linear combinations of the
chosen reciprocal screws.

We consider a pulling cable that controls the 2nd and the
3rd joints, so that their corresponding torques are τi2 = R2t
and τi3 = R3t where t is the tension of the cable and R j are
the radii of the pulleys located at the corresponding joints
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Fig. 4 Top Two views of a third
of the kinematic workspace.
Each dot represents the position
vector of the center of mass of
the object, with darker color the
more orientations it can reach
from the position. Bottom
Representation of the
orientations at the position with
maximum reachable
orientations. Each dot on the
sphere represents the direction
of the vector normal to the plane
formed by the three contact
points, and the arrow the
rotation around the axis z.
Bottom right figure shows the
workspaces with respect to the
hand-plus-object

(equal for all fingers). For simplicity, we can write τi3 =
(R3/R2)τi2 = rτi2, where r will be called the transmission
ratio (Balasubramanian et al. 2012). Then, JT

a in Eq. (12) is
a 6 × 6 matrix that can be obtained from JT as

JT
a = (· · · , si1, si2 + rsi3, · · ·) , (20)

and the vector of actuation torques is aτ = (τ11, τ12, τ21, τ22,

τ31, τ32)
T . Note that the magnitude of the tension force

exerted by the cable is given by t = τi2
R2

.
All the simulations were run in Mathematica 9 (Wolfram

Research Inc., Champaign, IL), for a hand with palm radius
RB = 0.5, an object of radius Ro = 0.2 and the dimensions
of the finger links li = 0.625 and di = 0.375, for i = 1, 2, 3.

For simplicity, we omit units, but all magnitudes are in
international units (m, N, Nm).

3.1 Kinematic workspace vs. feasible workspace

We obtain a representation of the kinematic workspace by
sweeping the 6 dimensional space SE(3) represented by the
three translational parameters (px , py, pz) and the three rota-
tional parameters. Two of the rotational parameters are rep-
resented by points on a sphere that represent the orientation

of the vector normal to the plane formed by the three contact
points. The last rotational parameter is the rotation around
that normal vector, represented by the red arrow on top of
the normal vector (Fig. 4 (bottom)). For each position and
orientation, we solve the forward kinematics at each step,
discarding any pose with non-real solution.

Representing a six dimensional space is difficult. In the
workspace shown in Fig. 4, we paint each dot with a color
code, darker when the object can reach more orientations.
This workspace contains a total of 12,132 configurations,
corresponding to a third of the position workspace (the other
two thirds are symmetric with respect to the three legs) and
half of the rotations around the z axis.

With the proposed underactuated hand, the system in
Eq. (12) is square and thus, for each configuration, we state a
one to one relationship between external force and actuation
torque. While in a fully actuated hand this system is often
redundant and the solution can be optimized to move the fin-
gertip force inside the friction cone, in this case there is no
possible optimization. However, preliminary results in Bor-
ràs and Dollar (2013b) show that the compliant joints acting
in parallel with the cable play a significant role in the total size
of the feasible workspace. Here we complete the study that
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characterizes the relationship between the spring parameters,
the transmission ratio and the size of the feasible workspace.

The underactuated joints are modeled as a motor acting
in parallel with a spring (Eq. (11)), provided that the torque
exerted by the springs and the torques exerted by the cables
are of opposite signs. The torque exerted by the springs
are cτi 2 = K2 (θi2 − δ2) and cτi3 = K3 (θi3 − δ3), which
depend on four parameters {K2, K3, δ2, δ3}. Note that the
components corresponding to the first joints are cτ i1 = 0.

For each configuration, we solve the system in Eq. (12)
for aτ , and then compute the corresponding fingertip forces.
A configuration will be considered part of the feasible
workspace if the fingertip forces are inside the friction cone
and if the cables are only exerting positive torques. In other
words, the springs act to open the hand and the cables act
to close it. To set the springs to open the hands, we set the
resting configurations to {δ2 = 0, δ3 = 0}. That mechanism
is known in prosthetics as an active-close or voluntary-close
device (Smit and Plettenburg 2010). Considering only nega-
tive torques would lead to an active-open device.

Note that each configuration of the feasible workspace is
in static equilibrium for a given force. In other words, they do
not represent force closure grasps. The feasible workspace
will always be a subspace of the kinematic workspace. We
will represent the sizes of the feasible workspaces as percent-
ages of coverage of the kinematic workspace.

3.2 Overview of previous results

In a preliminary version of this work (Borràs and Dol-
lar 2013b), we optimized independently two slices of the
workspace, one corresponding to a fix position and the other
corresponding to a fix orientation. The exploration of the
parameter space show that bigger transmission ratios where

obtained when maximizing the workspace with a fix orienta-
tion that move the object in different positions. On the con-
trary, smaller transmission ratios maximized the workspace
where the hand fixes the object in a position and varies the
orientation.

In the next section, we consider the full workspace that
combines both positions and orientations. In addition, we
explore in detain the relationship between the parameters to
maximize the full workspace.

3.3 Design of the underactuation parameters

We explore intervals of stiffness constants Ki from 0.5 to 10,
and transmission ratio from 0.5 to 4. For each combination of
parameters, we compute the size of the feasible workspace.
The maximum computed feasible workspace covered 50 % of
the kinematic workspace. Results are shown in the contour
plots in Fig. 5, where the color code shows in dark (blue)
the bigger workspaces. For this exploration, we consider
no external applied force, which means that the parameters
will be chosen to better compensate the force generated by
the springs. Later we will show results for different applied
forces.

Figure 5 shows that for each different value of transmis-
sion ratio, only the slope of the linear relationship between the
stiffness constants changes. In Fig. 6 we plot the same set of
data, showing the correspondence between the ratio K3/K2,
the transmission ratio and the obtained size of the feasible
workspace. We can see that the ratio K3/K2 can be substan-
tially reduced from 20 to 5 without substantially decreasing
the size of the workspace. We explore this in detail next.

The parameters that resulted in the biggest workspace are

K2 = 0.5, K3 = 9.9, r = 0.9,

Fig. 5 Exploration of the spring stiffness constants for different values of the transmission ratio. The maximum feasible workspace spans 50 % of
the kinematic workspace configurations. Darker color represents bigger feasible workspaces
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Fig. 6 Relationship between the ratio of spring stiffness constants, the
transmission ratio, and the size of the feasible workspace, where the
darker color represents bigger feasible workspaces following the same
bar color as in Fig. 5

corresponding to a ratio K3/K2 = 19.8. In Fig. 7 (top), plot
1 shows a representation of the feasible workspace using the
above parameters, where darker blue represents that more
orientations can be reach from that position. Plot number 2
shows the same workspace when the applied vertical external
force changes from 1 to 10 N.

In Fig. 7 (bottom) we show different histograms that cor-
respond to the distribution of the maximum exerted motor
torque per configuration. In other words, for each config-
uration, we compute the maximum joint torque exerted by
the motors to compensate the given external force. For the
histogram corresponding the plot number 1 (in red), the bar
located over 20 shows that 7 % of the configurations of the
feasible workspace reach a maximum motor torque of 20 Nm.
Results are similar for the workspace in plot number 2, where
the exerted force changes its magnitude from 1 to 10 N.

As we said before, from Fig. 6 we can observe that the
stiffness ratio can be reduced to 5 or even lower without
affecting at the size of the workspace. To explore this, plots
3 and 4 show the feasible workspaces for a stiffness constant
ratio reduced to K3/K2 = 5, plot 3 for an exerted force
of 1 N and plot 4 of 10 N. The corresponding histograms of
maximum exerted torques (in purple and green) show that

Fig. 7 Top Representation of the feasible workspace for the parameters
with biggest workspaces, with different external applied forces. Bottom
Four histograms of the maximum actuation torque exerted in each con-

figuration corresponding to each one of the feasible workspaces plotted
above (Color figure online)
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the actuation torques are substantially reduced. Therefore,
reducing the stiffness ratio leads to smaller actuation torques,
but at the same time, we lose robustness to external forces,
because the plot number 4 shows a much reduced workspace
when the external force increases to 10 N.

3.4 Discussion

The results of the parameter exploration have two clear con-
clusions. First, the size of the feasible workspace can be
widely increased with an appropriate design of the transmis-
sion ratio and the stiffness constant ratios, but it is mainly
influenced by the transmission ratio. The maximum size is
obtained for a transmission ratio slightly below 1. These
value may change if only a slice of the workspace is con-
sidered, as shown in Borràs and Dollar (2013b).

Secondly, Fig. 6 shows how the ratio between the stiff-
ness constants drastically reduces the size of the feasible
workspaces when is lower than 5. However, it is fairly con-
stant between 5 and 20. Figure 7 shows how this ratio greatly
changes the magnitude of the torques exerted by the motors.

Finally, in Fig. 7 we can observe how the set of histograms
corresponding to the same parameters and changing only the
magnitude of the applied force are fairly similar. This shows
that for vertical applied forces, the magnitude of the force
can be increased without greatly changing the magnitude of
the exerted motor torques. This is because the springs act
in parallel with the motors to reduce the actuation torque.
This was studied in the context of parallel manipulators in
Borràs and Dollar (2012), showing that the actuation torque
is reduced for about half of the possible directions of external
applied forces.

With the presented framework, this analysis can be done
for any hand using the hard-finger contact model. For exam-
ple, a similar architecture with three links per finger would
have the matrices J p and J� in Eq. (7) of dimensions 9 × 6
and 9 × 12 respectively, leading to a 6 × 12 JT in Eq. (9).
In this case, the matrix J� cannot be diagonal, but is almost
diagonal. Underactuation can still reduce the active Jacobian
matrix JT

a in Eq. (12) to a 6×6 square matrix. Of course, this
case is more complex because the manipulator has kinematic
redundancy and thus, in each configuration the solution of the
inverse kinematic has one dimension. The analysis in detail
of this architecture is left as future work.

4 Conclusions

While the presented mathematical framework is not new in
the context of parallel manipulators, it has not been fully
explored for multifingered grasping. Robotic hands can ben-
efit from this geometry oriented approach with applications
to optimal design and singularity detection, among others.

For instance, singularities have been widely studied in the
context of parallel manipulators, clearly stating the difference
between fingers singularities and what are called parallel sin-
gularities, that arise from the cooperation of the fingers (Zla-
tanov 1998). In the context of fully actuated hands this second
type of singularity occurs only in a small sub-manifold of the
task space. However, the Jacobian matrix of underactuated
hands can be square, and thus, the singularities of this matrix
can greatly influence the size of the resultant workspace. A
future study in detail of the workspace singularities can be
useful for a smart hand design.

The presented framework can also model underactuated
hands implemented with pulling cables. This type of hands
has become very popular, but work needs to be done to under-
stand its limitations and advantages. We have shown how
underactuated hands are the equivalent of non-redundant par-
allel robots, making them a promising direction for dexter-
ous manipulators, suitable both for grasping and for more
easily controllable manipulation. Despite their manipula-
tion workspace being smaller than the typical fully actuated
hands, the present work shows the first steps to develop tools
to design them with optimized workspaces for each task.
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