

Abstract— In this work, we present a within-hand

manipulation approach that leverages a simple energy model

based on caging grasps made by underactuated hands. Instead

of explicitly modeling the contacts and dynamics in

manipulation, we can calculate a map to describe the energy

states of different hand-object configurations under an actuation

input. Since the system intrinsically steers towards low energy

states, the object’s movement is uniquely described by the

gradient of the energy map if the corresponding actuation is

applied. Such maps are pre-calculated for a range of actuation

inputs to represent the system’s energy profile. We discretize the

workspace into a grid and construct an energy gradient-based

graph by locally exploring the gradients of the stored energy

profile. Given a goal configuration of a simple cylindrical object,

a sequence of actuation inputs can be calculated to manipulate it

towards the goal by exploiting the connectivity in the graph. The

proposed approach is experimentally implemented on a Yale

T42 hand. Our evaluation results show that parts of the graph

are well connected, explaining our ability to successfully plan

and execute trajectories within the gripper’s workspace.

I. INTRODUCTION

Manipulating a grasped object within the hand is an
important functionality for many practical tasks, especially for
instances where the grasp type must be changed without
releasing the object, such as changing from a fingertip grasp to
a palmar grasp. Nearly all within-hand manipulation (WIHM)
tasks involve changing the contact location on the hand or
object, which will typically involve some amount of sliding.
Rather than directly modeling the complex frictional
properties and behaviors at contact in these scenarios, we
instead seek to create a scenario in which the object is
passively prevented from being ejected from the grasp (i.e. it
is “caged” grasp [1] [2]), and the manipulation is actively
guides the object in the desired directions by shaping the
potential energy of the underactuated fingers. In this way, we
can ensure that the object moves towards the desired target
without needing precise information about the contact forces
and frictional properties.

Traditional approaches to this type of problem rely strong
assumptions about the nature of contact—namely being able
to precisely model the contacts between the robot and object
in order to enable effective control [3][4][5][16]. By relaxing
the rigid constraints in a grasp, objects can be manipulated by
rolling contacts on its surface based on kinematic trajectory

optimization [1]. In an object-centric formulation, a virtual-
frame can be derived to enable impedance control to implicitly
regulate contact forces during manipulation [6]. Using tactile
feedback from the fingertips, grasp stability can be estimated
online to inform the system so that force adaptation and finger
gaiting can be utilized to prevent the system from dropping the
object [7], [8]. Although these approaches can sometimes
successfully reconfigure the object within hand, they are
vulnerable to external disturbances and require great
mechanical and computational complexity to maintain the
grasp and often fail due to uncertainty or errors in the required
sensing and control.

Rather than using high Degree of Freedom (DOF) hands for
manipulation, extrinsic dexterity has enabled simple grippers
to reconfigure an object with larger motions by exploring
external contacts [9]. To understand how an object can be
manipulated by external pushing, motion cones have been
proposed to represent feasible actions applicable to an object
[10]. Moreover, by analyzing the geometries of objects to
model the feasible translations and rotations of contacts on an
object surface, dexterous manipulation graphs have been
proposed to plan a sequence of pushing actions in a dual-arm
formulation [11]. Nevertheless, this class of approaches

Energy Gradient-Based Graphs for Planning

Within-Hand Caging Manipulation

Walter G. Bircher, Student Member, IEEE, Andrew S. Morgan, Student Member, IEEE,

Kaiyu Hang, Member, IEEE, and Aaron M. Dollar, Senior Member, IEEE

Research supported by the U.S. National Science Foundation under grant

IIS-1734190 and IIS-092856.
W. G. Bircher, A. S. Morgan, K. Hang, and A. M. Dollar are with the Dept.

of Mech. Eng. and Mater. Science, Yale University, CT, USA, ({walter.bircher

andrew.morgan; kaiyu.hang; aaron.dollar}@yale.edu).

Fig. 1. A Yale OpenHand T42 gripper and associated energy map

(contour plot). The grid of gradient vectors of the energy map (red

arrows) show the possible motions that can be applied to an object

at each location with a hand, for a specific actuation input [0.4, 0.4].

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6027-0/19/$31.00 ©2019 IEEE 2462

requires complicated geometrical analysis of both the object
and the environment, and generates large motions of the arm.

Instead of using a force feedback-based grasp for
manipulation, caging grasps can be used as a very robust
means to guard against external disturbances [12]. Using
topological representations, neck or fork structures in an object
can be detected to enable caging by simple grippers [13].
Moreover, loop-grasping can also be synthesized by modeling
a Writhe Matrix between the loops in an object and robot links
[14]. Caging has also been used for “blind” (open loop) within
hand manipulation using a fully defined model of the hand [17]

In our previous work, based on caging grasps and the
passive reconfigurability of underactuated hands, we have
developed an energy map to implicitly represent the mapping
between the hand-object configuration and the actuation inputs
[2]. This enables us to understand the energy status of the
hand-object system, as well as how the object can move
towards a lower energy configuration under certain actuation
inputs. Based on those energy maps, in this work we develop
a graph representation to model the connectivity among the
object positions in the hand's workspace. In brief, based on a
set of energy graphs calculated from different actuation inputs,
the graph is constructed by exploring the map's gradient
directions, along which the object moves under different
actuations. The graph is then used to plan a sequence of
actuation inputs to reconfigure the object towards a given goal
configuration, while attempting to maintain the object in a
caging grasp.

In the following sections of this paper, we will begin by
describing the modeling of energy maps in Sec. II. In Sec. III,
we detail the construction of energy gradient-based graphs, as
well as how to plan and execute actuation sequences for
within-hand manipulation. This section also introduces the
system implementation, control, and analysis. We then are
able to experimentally implement and evaluate our approach
in Sec. IV. In the end, we conclude and discuss future works
in Sec. V.

II. ENERGY MODEL

In this paper we utilize a planar energy based caging model
first presented in [2] to translate symmetric cylindrical objects.
In short, this work combines a linkage based caging model
with a method that computes the total energy of the hand-
object system in each kinematically feasible state. Whereas a
traditional caging model assumes immovable rigid obstacles,
we instead acknowledge that obstacles can be moved for a
cost. This assumption is valid for two reasons. First, it is valid
because we apply this model to an underactuated hand with
compliant elements each with a number of kinematically
admissible configurations, and each storing different amounts
of energy. Second, we consider actuators to be backdrivable,
treating them as linear springs around their commanded
setpoints. In other words, if you do work to rotate the shaft of
an actuator operating in position control mode, you can change
its position. With these assumptions in mind, we use an
extended caging formulation, beyond the more traditional
purely kinematic analysis, by also considering the energy
associated with movable obstacles.

By definition an object is caged if it cannot be moved to a

point at infinity without first intersecting other objects in its

workspace. In general, this corresponds to a point contained

within a closed, isolated volume in configuration space. In

this work we narrow our scope to the case of a planar object

being caged by the links of a planar gripper. We adopt

notation from the caging formulation described in [15] and

consider caging configurations that minimize the object’s

configuration space. We do this by making the strong

assumption that there are no dissipative forces in our system,

and that a stable grasp on an object, representing a single

actuation input combination, is associated with an energy

minimum configuration. In other words, we assume that for a

given object position, there is some combination of actuator

inputs that minimizes the system’s energy, somewhere in the

feasible range of joint configurations that adhere to the

physical contact constraints between the links and the object.

This allows us to consider a manipulable caging grasp,

meaning that the hand can be reconfigured into other non-

caging configurations with non-zero work done on the object.

To formulate the energy minimization, we follow previous

work from [2], computing energy values specifically for

caged configurations of our system:

𝑝𝑘: reference position for joint or element 𝑘, either 𝑝𝐴 for

linear actuators or 𝜃𝐴 for rotary actuators, 𝑝 for joints

𝑓𝐴: force from actuator 𝐴 (for linear actuators)

𝜏𝐴: torque from actuator 𝐴 (for rotary actuators)

The actuation energy associated with a given reference

value 𝑎𝑘 can be expressed as the following for rotary

actuators:

𝐸𝐴𝑘(𝜃𝑘) = −𝜏𝐴𝑘(𝜃𝑘 − 𝜃𝐴𝑘) = −𝑓𝐴𝑘𝑟𝐴𝑘(𝜃𝑘 − 𝜃𝐴𝑘) (1)

Or, in the case of linear actuators:

𝐸𝐴𝑘(𝑝𝑘) = −𝑓𝐴𝑘(𝑝𝑘 − 𝑝𝐴𝑘) (2)

Then, the total energy associated with a configuration of

the hand is written as the summation of the energy for all

actuators in the system:

𝐸𝐴(𝑎ℎ𝑎𝑛𝑑) = ∑𝑚𝑎𝑥(𝐸𝐴𝑘(𝑎𝑘), 0)

𝑁

𝑘

 (3)

where 𝑎𝑘 is the position controlled actuation input. The max

function is used to select only positive energy values (see [2]).

The system energy, which depends only on the configuration

of the hand, is computed using 3 at each caged object xy-

position in front of the hand. As the object is virtually placed

throughout the workspace, the hand’s configuration adjusts to

maintain contact. Thus, the hand’s configuration would

change if the object were forcefully placed in its path, doing

energy against the actuators. This workspace of energy values

forms a contour plot, similar to that shown in Fig. 1. We refer

to this bounded contour plot containing system energy values

as an Energy Map 𝑀𝑖 = 𝑓(𝐸𝐴(𝑥, 𝑦)), ∈ ℝ2. A single energy

map can be computed for every combination of actuation

inputs, as described in [2], and as illustrated in Fig. 2. We

2463

extend our previous work by numerically computing the

gradient vector field γi of a simulated energy map

γi = −∇𝑥,y𝑀𝑖 (4)

For a given hand-object configuration and a given actuator

input set, γi can be visualized as a vector field overlaid on the

workspace of the hand, with all vectors flowing towards the

lowest system energy. An example is shown in Fig. 1.

III. ENERGY GRADIENT-BASED GRAPH

In this section, based on the set of obtained energy maps
ℳ = {𝑀1, … ,𝑀𝑁}, we will first introduce the construction of
the energy gradient-based graph, and then use the constructed
graph to plan actuation input sequences to move the object
between positions in the workspace. In our case we utilized a
set of 𝑛 = 100 energy maps corresponding to 100 actuation
input combinations.

A. Graph Construction

As the goal of the energy gradient-based graph, given an
object's position within the hand's workspace, we wish to
represent whether the object can be translated from its current
position to any of the neighboring positions, and whether new
translations can be derived recursively to expand over the
entire reachable workspace. For this reason, in order to keep
the problem tractable, we discretize the hand's workspace into
a grid as illustrated in Fig. 3.

Concretely, the grid contains a set of nodes {𝑛𝑖|𝑖 =
1, … , 𝐾 }, 𝑛𝑖 ∈ ℝ2, representing a finite set of positions in the
workspace. Each node is associated with 8 neighbor nodes,
denoted as 𝜌(𝑛𝑖), in the 8 cardinal directions. Using the energy
maps, an energy gradient, 𝛾(𝑀𝑙 , 𝑛𝑖) ∈ ℝ2 as defined in (4),
can be calculated on a node 𝑛𝑖 using any of the 𝑀𝑙 ∈ ℳ. As
such, we can obtain a set of energy gradients, denoted as Γ𝑖 =

{𝛾(𝑀𝑙 , 𝑛𝑖)|𝑀𝑙 ∈ ℳ}, for each node 𝑛𝑖 on the grid. As shown
in Fig. 2, the energy gradient vectors point to different
directions, indicating potential translation directions resulting
from the corresponding energy maps. Since each 𝑀𝑙 is
associated with a certain pair of actuation inputs, Γ𝑖 actually
represents how an object can be locally translated by applying
different motor actuations. To this end, we are now interested
in connecting the nodes 𝑛𝑖 on the grid based on the energy
gradient vectors Γ𝑖, in order to investigate how the object can
be manipulated by translating among the grid points. Note that
the gradient vector 𝛾(𝑀𝑙 , 𝑛𝑖) is calculated in a continuous
space and not aligned with the grid, they need to be projected
in order to match the discretization. As depicted in Fig. 3,
along the 8 cardinal directions defined at each node, given a
gradient vector 𝛾(𝑀𝑙 , 𝑛𝑖) at 𝑛𝑖, the object can be translated to
its neighbor node 𝑛𝑗 if 𝛾(𝑀𝑙 , 𝑛𝑖) points to a similar direction

as 𝑛𝑖𝑛𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗.

Formally, the energy gradient-based graph, denoted by
𝐺 = (𝐸, 𝑉), with nodes 𝑉 and edges 𝐸 is constructed by:

𝐸 = {(𝑛𝑖 , 𝑛𝑗) | ∃𝛾(𝑀𝑙 , 𝑛𝑖) ∈ Γ𝑖 , 𝛿 (𝑛𝑖𝑛𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝛾(𝑀𝑙 , 𝑛𝑖)) ≤ 𝜖}

𝑉 = {𝑛𝑖 | ∃ 𝑛𝑗 ∈ 𝜌(𝑛𝑖), (𝑛𝑖, 𝑛𝑗) ∈ 𝐸 ∨ (𝑛𝑗 , 𝑛𝑖) ∈ 𝐸}

(5)

where 𝛿(⋅) calculates the angle difference as:

 𝛿 (𝑛𝑖𝑛𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝛾(𝑀𝑙 , 𝑛𝑖)) = 𝑎𝑟𝑐𝑐𝑜𝑠
𝑛𝑖𝑛𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⋅ 𝛾(𝑀𝑙 , 𝑛𝑖)

|𝑛𝑖𝑛𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗||𝛾(𝑀𝑙 , 𝑛𝑖)|
 (6)

We can see that 𝐺 is a directional graph, and the threshold
𝜖 determines how accurately an edge describes possible
motion between 2 nodes. It is possible that some nodes on the
grid are not in the graph if there is no edge connecting to
them—for example if a node on the boundary of the workspace
has a gradient vector that points outside of the caged region,
rather than to other nodes. In addition, as will be evaluated in
experiments, in the graph there can be multiple connected
components, which means that each node can be reached from
a certain subgraph, and that it is possible that there is no path
connecting a pair of nodes in the graph.

B. Motor Actuation Planning and Execution

Having constructed the energy gradient-based graph 𝐺, we
are now able to plan a sequence of actuation inputs in order to
manipulate the object to translate along the edges in 𝐸.

Fig. 2. Given the geometry of a hand and corresponding object, we

compute offline a library of energy maps—one for each unique

combination of actuation inputs, over the range of possible actuation

inputs for the motors of the hand.

Fig. 3. Illustration of graph generation. In the figure, red points and

blue lines are nodes and edges in graph 𝐺. Red arrows are the

gradient vectors 𝛾(𝑀𝑙 , 𝑛𝑖) ∈ ℝ2 calculated from energy maps.

2464

Concretely, letting 𝑛𝑠, 𝑛𝑔 ∈ 𝑉 be the initial and goal positions

of the object, we aim to find a path Π =
{𝑛𝑠, 𝜋1, … , 𝜋𝑇 , 𝑛𝑔}, 𝜋1 ∈ 𝑉, such that the goal position can be

reached by executing the actuation input associated with each
edge (𝜋𝑡 , 𝜋𝑡+1).

In reality, however, the start and goal positions 𝑛𝑠, 𝑛𝑔 are

in continuous space and unlikely to be exactly on the grid.
Therefore, before finding the path Π we snap the continuous
positions to the grid points using the K-Nearest Neighbor
(KNN) algorithm. In order to increase the planning success
rate, rather than finding one nearest neighbor for each, 𝑛𝑠 and
𝑛𝑔 are snapped to 𝑚 nearest neighbors by the function

𝐾𝑁𝑁(𝑛𝑖 , 𝑚) to generate a set of 𝑚 start candidates
{𝑛𝑠

1, … , 𝑛𝑠
𝑚}, and 𝑚 goal candidates {𝑛𝑔

1 , … , 𝑛𝑔
𝑚} in the graph.

The candidates are ordered by their distances to the original
point. During planning, we try to find a path by iterating
through each pair of start and goal candidates and returning a

path as soon as the first path is found for a pair 𝑛𝑠
𝑖 , 𝑛𝑔

𝑗
.

For executing the path, in order to compensate for the
inaccuracies caused by snapping and discretization, the motor

actuation for the first edge (𝑛𝑠
𝑖 , 𝜋𝑖) in Π is not directly found

by its associated actuation input. Instead, we calculate the
actuation input based on the original 𝑛𝑠 and the first
waypoint 𝜋1. The index of the actuation input at the start point
𝑛𝑠 is found by:

 𝐿∗ = argmin
𝑙

 𝛿(𝑛𝑠𝜋1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝛾(𝑀𝑙 , 𝑛𝑠)) (6)

Furthermore, to compensate for noise and execution errors,
although we have an entire path planned, we in practice
execute only the first actuation input 𝐿∗. Thereafter, our
system will re-observe a new 𝑛𝑠 and replan a path, from which
again only the first actuation is executed. In this manner, our

system will iteratively move the object towards the goal
position, while being able to adjust its behavior on the way by
online re-planning. The planning and execution based on the
energy gradient-based graph is summarized in Algorithm 1.

For path finding in the graph, we use breadth-first search to
find the shortest path. We can see that the manipulation is
limited to take at maximum 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 steps. Once the
difference between real-time observed object position and
goal position is smaller than 𝜂, we consider it as a success. A
failure can occur if a path cannot be found to connect start and
goal, or the maximum number of executions has been
exceeded.

C. System Implementation

This framework was physically implemented and tested by
utilizing an overhead camera observing the manipulation.
First, state detection processes determined the physical
location of the gripper through the use of ArUco markers
attached to the base frame of the hand. The origin of the
workspace was then calculated, which is specified to be
directly between the base frame joints of the hand. It is
important to note that the object can move in the positive and
negative x direction, but can only in the positive y. At this
point, the object’s physical location was then extracted with
respect to the defined origin of the gripper. From this
information, we were able to define the current location of the
object which is utilized for planning a desired trajectory.

Three 3D printed cylindrical objects were manipulated and
the system was evaluated. Radii corresponding to these
objects were 18mm, 22mm, and 27mm, respectively. The
gripper was attached to a physical support structure so that the
manipulation workspace was parallel to the object’s support
plane. System state data was then evaluated online, observing
object location, goal location, and corresponding nodes of
interest in the graph. The system executed randomly selected
goal locations, corresponding to random nodes in the graph.
Since not all points are reachable, a validity check first
determined if a path existed. If a path did not exist, a new
random location in the workspace was selected. Otherwise,
we executed the desired path determined by the graph.

Fig. 4. The three largest strongly connected components (cc)

of the graph created for the 18mm object, shaded according

to the number of edges connected to each node.

2465

IV. GRAPH EVALUATION AND EXPERIMENTS

In this section, we evaluate properties of our constructed
graph to understand connectivity between different areas of
the workspace. We follow this discussion with experiments
conducted on a physical robotic hand, and evaluate successful
trajectories found in our implementation.

A. Graph Evaluation

To better understand the manipulation capability of
specific hand-object systems, we used standard graph theory
measures to evaluate the graphs constructed from the set of
energy maps as described in Section II. First, we considered
the connectivity of the graph, to learn where the object might
be more freely manipulated within the hand. Specifically, we
found the strongly connected components of our graph using
a breadth-first search. The three largest resulting strongly
connected components are shown in Fig. 4 for the smallest
object (18mm). Each grid point in this figure represents a
node in the graph, and the shading of that point indicates the
number of edges connected to that node. It is interesting to
note that there is an extremely large connected component
further out in the workspace, where most of the manipulation
occurs. The next largest connected components are orders of
magnitude smaller in size, and concentrated at the very
bottom of the reachable workspace. Intuitively, there is no
connection between these two regions. In practice, this is
demonstrated very clearly by the fact that the hand cannot
push the object outwards from the palm, making it a likely
region for the object to become stuck. Since this is the case,
path planning often fails when the object is in that region.

We also created shortest path trees between every node in
the graph and all other nodes. Then, we summed the total edge
distance of all shortest paths possible from a given start node.

 (a) (b) (c) (d)

 Act1: 0.4 - Act2: 0.4 Act1: 0.1 - Act2: 0.3 Act1: 0.2 - Act2: 0.5 Act1: 0.1 - Act2: 0.9

Fig. 5. Example trajectory moving the object from the left to right side of the workspace. (Top) The teal trajectory indicates the shortest path

found to the goal position (green), along waypoints (pink). Throughout our progression from (a) – (d), the system determines that we have

deviated off the desired path in (b), so an updated path is formulated in (c), and executed in (d) until our goal position is reached. (Bottom)

Energy gradient maps are evaluated at each time step, selecting the gradient that is instantaneously closest to our desired object direction.

All paths are outlined in red, whereas the green arrow indicates our desired direction and the blue arrow indicates our selected activation

input.

Fig. 6. The normalized summed total edge distance of all shortest

paths possible from a given start node for the smallest object

(18mm).

Fig. 7. Energy gradients help define desired non-linear trajectories

when point-to-point trajectories from current location to goal

location are unavailable.

2466

The results of this are shown as a color coding in Fig. 6, again
for the smallest object (18mm). Essentially, the lighter
colored areas in this figure are regions in the workspace that
have high total edge distance sums. This means they are most
connected to regions very far away, indicating a higher
likelihood of finding a valid path between those nodes and
randomly generated goal nodes far away. These regions occur
along the lower boundary of the shaded region, along the path
followed by the object when it is contacting both the proximal
and distal links of the 2-link finger, as it sweeps across the
workspace.

B. Experiments

In our physical experiments, as presented in Fig. 5, we are
able to evaluate trajectories developed by the graph and in
real-time, execute computed paths. Given a valid desired
trajectory, we first find the path required to reach our desired
goal. Once a path is validated, we query our graph for all
energy gradients for our current node, and select an actuation
input that is closest to our desired next goal direction. Some
goal locations cannot be reached due to friction, limited
control authority, or kinematic limitations of the hand, and in
these cases, a different goal position was generated. During
object manipulation, it is required that we update our planned
trajectories online, which is due to uncertainties in object
movement and the difficultly of precisely following the
original desired path. This adaptive planning approach was
shown to be successful in our physical implementation,
illustrated in Fig. 5 and further in the media attachment.

The main benefit of our energy gradient approach is that it
allows us to define shortest path trajectories that are non-
trivial to compute otherwise. That is, as presented in Fig. 7,
our computed trajectory for these two cases is not a simple
point-to-point path within the workspace, but a more complex
state-to-state transitions. Analyzing these paths in accordance
to the geometric constraints of the gripper, we can note that
sharp changes in the projected path are typically due to the
fluidly changing contact scenarios throughout the
manipulation.

V. CONCLUSION

In this work, we presented an approach to address the
problem of within-hand manipulation for caging grasps.
Rather than explicitly modeling the dynamics between the
object and finger contacts, we adopted the concept of energy
maps to represent the underlying relationship between hand-
object configurations and actuation inputs when a caging
grasp is formed. By pre-computing a large set of energy maps
corresponding to different actuation inputs, an energy
gradient-based graph was constructed to represent the
connectivity among all hand-object configurations, exploiting
the local transitions enabled by the energy gradient. Using the
constructed graph, we showed how to plan a sequence of
actuation inputs to manipulate the object to achieve a goal
state, as well as how to execute the plan adaptively to handle
the uncertainties during manipulation.

In experiments, we quantitatively analyzed the properties
of our proposed energy gradient-based graph for a single
hand-object system, and showed that it can cover a large
portion of the gripper’s workspace, allowing the gripper to
manipulate an object between many different positions within

hand. Moreover, we showed that our approach is able to
generate shortest actuation sequence trajectories for
manipulation, as well as to adaptively update the execution
trajectory online to improve the execution robustness. In
future work, we plan to develop an object-independent energy
gradient-based map, in order to generalize the system to work
with novel asymmetric objects and to change their orientation
in a controlled way.

REFERENCES

[1] B. Sundaralingam and T. Hermans, “Relaxed-rigidity constraints:

Ingrasp manipulation using purely kinematic trajectory optimization,”

in Robotics: Science and Systems, 2017.

[2] R. R. Ma, W. G. Bircher, and A. M. Dollar, “Toward robust, wholehand

caging manipulation with underactuated hands,” in IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.

1336–1342.

[3] Mason, Matthew T., and J. Kenneth Salisbury Jr. "Robot hands and the
mechanics of manipulation." (1985).

[4] M. Li, K. Hang, D. Kragic, and A. Billard, “Dexterous grasping under
shape uncertainty,” Robotics and Autonomous Systems, vol. 75, pp.

352 – 364, 2016.

[5] J. Trinkle and R. Paul, “Planning for dexterous manipulation with

sliding contacts,” The International Journal of Robotics Research, vol.

9, no. 3, pp. 24–48, 1990.

[6] K. Tahara, S. Arimoto, and M. Yoshida, “Dynamic object

manipulation using a virtual frame by a triple soft-fingered robotic
hand,” in IEEE International Conference on Robotics and Automation

(ICRA), 2010.

[7] Y. Bekiroglu, J. Laaksonen, J. A. Jorgensen, V. Kyrki, and D. Kragic,
“Assessing grasp stability based on learning and haptic data,” IEEE

Transactions on Robotics, vol. 27, no. 3, pp. 616–629, 2011.

[8] K. Hang, M. Li, J. A. Stork, Y. Bekiroglu, F. T. Pokorny, A. Billard,

and D. Kragic, “Hierarchical fingertip space: A unified framework for

grasp planning and in-hand grasp adaptation,” IEEE Transactions on
Robotics, vol. 32, no. 4, pp. 960–972, 2016.

[9] N. C. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srinivasa, M.

Erdmann, M. T. Mason, I. Lundberg, H. Staab, and T. Fuhlbrigge,

“Extrinsic dexterity: In-hand manipulation with external forces,” in

IEEE International Conference on Robotics and Automation (ICRA),
2014, pp. 1578–1585.

[10] N. C. Dafle, R. Holladay, and A. Rodriguez, “In-hand manipulation
via motion cones,” in Proceedings of Robotics: Science and Systems,

June 2018.

[11] S. Cruciani, C. Smith, D. Kragic, and K. Hang, “Dexterous
manipulation graphs,” in IEEE International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2018.

[12] J. Mahler, F. T. Pokorny, Z. McCarthy, A. F. van der Stappen, and K.

Goldberg, “Energy-bounded caging: Formal definition and 2-d energy

lower bound algorithm based on weighted alpha shapes,” IEEE
Robotics and Automation Letters, vol. 1, no. 1, pp. 508–515, 2016.

[13] A. Varava, D. Kragic, and F. T. Pokorny, “Caging grasps of rigid and
partially deformable 3-d objects with double fork and neck features,”

IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1479–1497, 2016.

[14] J. A. Stork, F. Pokorny, and D. Kragic, “A topology-based object

representation for clasping, latching and hooking,” in IEEE

International Conference on Humanoid Robots (HUMANOIDS), pp.
138-145, 2013.

[15] Makita, Satoshi, and Yusuke Maeda. "3D multifingered caging: Basic
formulation and planning." Intelligent Robots and Systems, 2008.

IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008.

[16] Bircher, Walter G., Dollar, Aarom M., and Rojas Nicolas. "A two-
fingered robot gripper with large object reorientation range." Robotics

and Automation (ICRA), 2017 IEEE International Conference on.

IEEE, 2017.

[17] Maeda, Y. and Asamura, T., 2016, July. Sensorless in-hand caging

manipulation. In International Conference on Intelligent Autonomous
Systems (pp. 255-267). Springer, Cham.

2467

