
  

 

Abstract— In this work, we present a within-hand 

manipulation approach that leverages a simple energy model 

based on caging grasps made by underactuated hands. Instead 

of explicitly modeling the contacts and dynamics in 

manipulation, we can calculate a map to describe the energy 

states of different hand-object configurations under an actuation 

input. Since the system intrinsically steers towards low energy 

states, the object’s movement is uniquely described by the 

gradient of the energy map if the corresponding actuation is 

applied. Such maps are pre-calculated for a range of actuation 

inputs to represent the system’s energy profile. We discretize the 

workspace into a grid and construct an energy gradient-based 

graph by locally exploring the gradients of the stored energy 

profile. Given a goal configuration of a simple cylindrical object, 

a sequence of actuation inputs can be calculated to manipulate it 

towards the goal by exploiting the connectivity in the graph. The 

proposed approach is experimentally implemented on a Yale 

T42 hand. Our evaluation results show that parts of the graph 

are well connected, explaining our ability to successfully plan 

and execute trajectories within the gripper’s workspace.  

I. INTRODUCTION 

Manipulating a grasped object within the hand is an 
important functionality for many practical tasks, especially for 
instances where the grasp type must be changed without 
releasing the object, such as changing from a fingertip grasp to 
a palmar grasp. Nearly all within-hand manipulation (WIHM) 
tasks involve changing the contact location on the hand or 
object, which will typically involve some amount of sliding. 
Rather than directly modeling the complex frictional 
properties and behaviors at contact in these scenarios, we 
instead seek to create a scenario in which the object is 
passively prevented from being ejected from the grasp (i.e. it 
is “caged” grasp [1] [2]), and the manipulation is actively 
guides the object in the desired directions by shaping the 
potential energy of the underactuated fingers. In this way, we 
can ensure that the object moves towards the desired target 
without needing precise information about the contact forces 
and frictional properties. 

Traditional approaches to this type of problem rely strong 
assumptions about the nature of contact—namely being able 
to precisely model the contacts between the robot and object 
in order to enable effective control [3][4][5][16]. By relaxing 
the rigid constraints in a grasp, objects can be manipulated by 
rolling contacts on its surface based on kinematic trajectory 

 
 

optimization [1]. In an object-centric formulation, a virtual-
frame can be derived to enable impedance control to implicitly 
regulate contact forces during manipulation [6]. Using tactile 
feedback from the fingertips, grasp stability can be estimated 
online to inform the system so that force adaptation and finger 
gaiting can be utilized to prevent the system from dropping the 
object [7], [8]. Although these approaches can sometimes 
successfully reconfigure the object within hand, they are 
vulnerable to external disturbances and require great 
mechanical and computational complexity to maintain the 
grasp and often fail due to uncertainty or errors in the required 
sensing and control.  

Rather than using high Degree of Freedom (DOF) hands for 
manipulation, extrinsic dexterity has enabled simple grippers 
to reconfigure an object with larger motions by exploring 
external contacts [9]. To understand how an object can be 
manipulated by external pushing, motion cones have been 
proposed to represent feasible actions applicable to an object 
[10]. Moreover, by analyzing the geometries of objects to 
model the feasible translations and rotations of contacts on an 
object surface, dexterous manipulation graphs have been 
proposed to plan a sequence of pushing actions in a dual-arm 
formulation [11]. Nevertheless, this class of approaches 
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Fig. 1. A Yale OpenHand T42 gripper and associated energy map 

(contour plot). The grid of gradient vectors of the energy map (red 

arrows) show the possible motions that can be applied to an object 

at each location with a hand, for a specific actuation input [0.4, 0.4]. 
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requires complicated geometrical analysis of both the object 
and the environment, and generates large motions of the arm. 

Instead of using a force feedback-based grasp for 
manipulation, caging grasps can be used as a very robust 
means to guard against external disturbances [12]. Using 
topological representations, neck or fork structures in an object 
can be detected to enable caging by simple grippers [13]. 
Moreover, loop-grasping can also be synthesized by modeling 
a Writhe Matrix between the loops in an object and robot links 
[14]. Caging has also been used for “blind” (open loop) within 
hand manipulation using a fully defined model of the hand [17] 

In our previous work, based on caging grasps and the 
passive reconfigurability of underactuated hands, we have 
developed an energy map to implicitly represent the mapping 
between the hand-object configuration and the actuation inputs 
[2]. This enables us to understand the energy status of the 
hand-object system, as well as how the object can move 
towards a lower energy configuration under certain actuation 
inputs. Based on those energy maps, in this work we develop 
a graph representation to model the connectivity among the 
object positions in the hand's workspace. In brief, based on a 
set of energy graphs calculated from different actuation inputs, 
the graph is constructed by exploring the map's gradient 
directions, along which the object moves under different 
actuations. The graph is then used to plan a sequence of 
actuation inputs to reconfigure the object towards a given goal 
configuration, while attempting to maintain the object in a 
caging grasp.  

In the following sections of this paper, we will begin by 
describing the modeling of energy maps in Sec. II. In Sec. III, 
we detail the construction of energy gradient-based graphs, as 
well as how to plan and execute actuation sequences for 
within-hand manipulation. This section also introduces the 
system implementation, control, and analysis. We then are 
able to experimentally implement and evaluate our approach 
in Sec. IV. In the end, we conclude and discuss future works 
in Sec. V. 

II. ENERGY MODEL 

In this paper we utilize a planar energy based caging model 
first presented in [2] to translate symmetric cylindrical objects. 
In short, this work combines a linkage based caging model 
with a method that computes the total energy of the hand-
object system in each kinematically feasible state. Whereas a 
traditional caging model assumes immovable rigid obstacles, 
we instead acknowledge that obstacles can be moved for a 
cost. This assumption is valid for two reasons. First, it is valid 
because we apply this model to an underactuated hand with 
compliant elements each with a number of kinematically 
admissible configurations, and each storing different amounts 
of energy. Second, we consider actuators to be backdrivable, 
treating them as linear springs around their commanded 
setpoints. In other words, if you do work to rotate the shaft of 
an actuator operating in position control mode, you can change 
its position. With these assumptions in mind, we use an 
extended caging formulation, beyond the more traditional 
purely kinematic analysis, by also considering the energy 
associated with movable obstacles.  

By definition an object is caged if it cannot be moved to a 

point at infinity without first intersecting other objects in its 

workspace. In general, this corresponds to a point contained 

within a closed, isolated volume in configuration space. In 

this work we narrow our scope to the case of a planar object 

being caged by the links of a planar gripper. We adopt 

notation from the caging formulation described in [15] and 

consider caging configurations that minimize the object’s 

configuration space. We do this by making the strong 

assumption that there are no dissipative forces in our system, 

and that a stable grasp on an object, representing a single 

actuation input combination, is associated with an energy 

minimum configuration. In other words, we assume that for a 

given object position, there is some combination of actuator 

inputs that minimizes the system’s energy, somewhere in the 

feasible range of joint configurations that adhere to the 

physical contact constraints between the links and the object. 

This allows us to consider a manipulable caging grasp, 

meaning that the hand can be reconfigured into other non-

caging configurations with non-zero work done on the object. 

To formulate the energy minimization, we follow previous 

work from [2], computing energy values specifically for 

caged configurations of our system: 

 

𝑝𝑘: reference position for joint or element 𝑘, either 𝑝𝐴 for 

linear actuators or 𝜃𝐴 for rotary actuators, 𝑝 for joints 

 

𝑓𝐴: force from actuator 𝐴 (for linear actuators) 

 

𝜏𝐴: torque from actuator 𝐴 (for rotary actuators) 

 

The actuation energy associated with a given reference 

value 𝑎𝑘 can be expressed as the following for rotary 

actuators: 

 

𝐸𝐴𝑘(𝜃𝑘) = −𝜏𝐴𝑘(𝜃𝑘 − 𝜃𝐴𝑘) = −𝑓𝐴𝑘𝑟𝐴𝑘(𝜃𝑘 − 𝜃𝐴𝑘) (1) 

 

Or, in the case of linear actuators: 

 

𝐸𝐴𝑘(𝑝𝑘) = −𝑓𝐴𝑘(𝑝𝑘 − 𝑝𝐴𝑘) (2) 

 

Then, the total energy associated with a configuration of 

the hand is written as the summation of the energy for all 

actuators in the system: 

𝐸𝐴(𝑎ℎ𝑎𝑛𝑑) = ∑𝑚𝑎𝑥(𝐸𝐴𝑘(𝑎𝑘), 0)

𝑁

𝑘

 (3) 

where 𝑎𝑘 is the position controlled actuation input. The max 

function is used to select only positive energy values (see [2]). 

The system energy, which depends only on the configuration 

of the hand, is computed using 3 at each caged object xy-

position in front of the hand. As the object is virtually placed 

throughout the workspace, the hand’s configuration adjusts to 

maintain contact. Thus, the hand’s configuration would 

change if the object were forcefully placed in its path, doing 

energy against the actuators. This workspace of energy values 

forms a contour plot, similar to that shown in Fig. 1. We refer 

to this bounded contour plot containing system energy values 

as an Energy Map 𝑀𝑖 = 𝑓(𝐸𝐴(𝑥, 𝑦)), ∈  ℝ2. A single energy 

map can be computed for every combination of actuation 

inputs, as described in [2], and as illustrated in Fig. 2. We 
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extend our previous work by numerically computing the 

gradient vector field γi of a simulated energy map 

γi = −∇𝑥,y𝑀𝑖 (4) 

 

For a given hand-object configuration and a given actuator 

input set, γi can be visualized as a vector field overlaid on the 

workspace of the hand, with all vectors flowing towards the 

lowest system energy. An example is shown in Fig. 1. 

III. ENERGY GRADIENT-BASED GRAPH 

In this section, based on the set of obtained energy maps 
ℳ = {𝑀1, … ,𝑀𝑁}, we will first introduce the construction of 
the energy gradient-based graph, and then use the constructed 
graph to plan actuation input sequences to move the object 
between positions in the workspace. In our case we utilized a 
set of 𝑛 = 100 energy maps corresponding to 100 actuation 
input combinations. 

A.  Graph Construction 

As the goal of the energy gradient-based graph, given an 
object's position within the hand's workspace, we wish to 
represent whether the object can be translated from its current 
position to any of the neighboring positions, and whether new 
translations can be derived recursively to expand over the 
entire reachable workspace. For this reason, in order to keep 
the problem tractable, we discretize the hand's workspace into 
a grid as illustrated in Fig. 3. 

Concretely, the grid contains a set of nodes {𝑛𝑖|𝑖 =
1, … , 𝐾 }, 𝑛𝑖   ∈  ℝ2, representing a finite set of positions in the 
workspace. Each node is associated with 8 neighbor nodes, 
denoted as 𝜌(𝑛𝑖), in the 8 cardinal directions. Using the energy 
maps, an energy gradient, 𝛾(𝑀𝑙 , 𝑛𝑖) ∈  ℝ2 as defined in (4), 
can be calculated on a node 𝑛𝑖 using any of the 𝑀𝑙 ∈  ℳ. As 
such, we can obtain a set of energy gradients, denoted as Γ𝑖 =

{𝛾(𝑀𝑙 , 𝑛𝑖)|𝑀𝑙 ∈ ℳ}, for each node 𝑛𝑖 on the grid. As shown 
in Fig. 2, the energy gradient vectors point to different 
directions, indicating potential translation directions resulting 
from the corresponding energy maps. Since each 𝑀𝑙 is 
associated with a certain pair of actuation inputs, Γ𝑖 actually 
represents how an object can be locally translated by applying 
different motor actuations. To this end, we are now interested 
in connecting the nodes 𝑛𝑖 on the grid based on the energy 
gradient vectors Γ𝑖, in order to investigate how the object can 
be manipulated by translating among the grid points. Note that 
the gradient vector 𝛾(𝑀𝑙 , 𝑛𝑖) is calculated in a continuous 
space and not aligned with the grid, they need to be projected 
in order to match the discretization. As depicted in Fig. 3, 
along the 8 cardinal directions defined at each node, given a 
gradient vector 𝛾(𝑀𝑙 , 𝑛𝑖) at 𝑛𝑖, the object can be translated to 
its neighbor node 𝑛𝑗 if 𝛾(𝑀𝑙 , 𝑛𝑖) points to a similar direction 

as 𝑛𝑖𝑛𝑗⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

Formally, the energy gradient-based graph, denoted by 
𝐺 = (𝐸, 𝑉), with nodes 𝑉 and edges 𝐸 is constructed by: 

𝐸 = {(𝑛𝑖 , 𝑛𝑗) | ∃𝛾(𝑀𝑙 , 𝑛𝑖) ∈ Γ𝑖 , 𝛿 ( 𝑛𝑖𝑛𝑗⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝛾(𝑀𝑙 , 𝑛𝑖)) ≤ 𝜖} 

𝑉 = {𝑛𝑖 | ∃ 𝑛𝑗 ∈ 𝜌(𝑛𝑖), (𝑛𝑖, 𝑛𝑗) ∈ 𝐸 ∨ (𝑛𝑗 , 𝑛𝑖) ∈ 𝐸}  

(5) 

where 𝛿(⋅) calculates the angle difference as: 

          𝛿 (𝑛𝑖𝑛𝑗⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝛾(𝑀𝑙 , 𝑛𝑖)) = 𝑎𝑟𝑐𝑐𝑜𝑠
𝑛𝑖𝑛𝑗⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⋅ 𝛾(𝑀𝑙 , 𝑛𝑖)

|𝑛𝑖𝑛𝑗⃗⃗ ⃗⃗ ⃗⃗  ⃗||𝛾(𝑀𝑙 , 𝑛𝑖)|
   (6) 

We can see that 𝐺 is a directional graph, and the threshold 
𝜖 determines how accurately an edge describes possible 
motion between 2 nodes. It is possible that some nodes on the 
grid are not in the graph if there is no edge connecting to 
them—for example if a node on the boundary of the workspace 
has a gradient vector that points outside of the caged region, 
rather than to other nodes. In addition, as will be evaluated in 
experiments, in the graph there can be multiple connected 
components, which means that each node can be reached from 
a certain subgraph, and that it is possible that there is no path 
connecting a pair of nodes in the graph. 

B. Motor Actuation Planning and Execution 

Having constructed the energy gradient-based graph 𝐺, we 
are now able to plan a sequence of actuation inputs in order to 
manipulate the object to translate along the edges in 𝐸. 

 
 

 

Fig. 2. Given the geometry of a hand and corresponding object, we 

compute offline a library of energy maps—one for each unique 

combination of actuation inputs, over the range of possible actuation 

inputs for the motors of the hand. 

 

 
 

Fig. 3. Illustration of graph generation. In the figure, red points and 

blue lines are nodes and edges in graph 𝐺. Red arrows are the 

gradient vectors 𝛾(𝑀𝑙 , 𝑛𝑖) ∈ ℝ2 calculated from energy maps. 
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Concretely, letting 𝑛𝑠, 𝑛𝑔 ∈ 𝑉 be the initial and goal positions 

of the object, we aim to find a path Π =
{𝑛𝑠, 𝜋1, … , 𝜋𝑇 , 𝑛𝑔}, 𝜋1 ∈ 𝑉, such that the goal position can be 

reached by executing the actuation input associated with each 
edge (𝜋𝑡 , 𝜋𝑡+1). 

In reality, however, the start and goal positions 𝑛𝑠, 𝑛𝑔 are 

in continuous space and unlikely to be exactly on the grid. 
Therefore, before finding the path Π we snap the continuous 
positions to the grid points using the K-Nearest Neighbor 
(KNN) algorithm. In order to increase the planning success 
rate, rather than finding one nearest neighbor for each, 𝑛𝑠 and 
𝑛𝑔 are snapped to 𝑚 nearest neighbors by the function 

𝐾𝑁𝑁(𝑛𝑖 , 𝑚) to generate a set of 𝑚 start candidates 
{𝑛𝑠

1, … , 𝑛𝑠
𝑚}, and 𝑚 goal candidates {𝑛𝑔

1 , … , 𝑛𝑔
𝑚} in the graph. 

The candidates are ordered by their distances to the original 
point. During planning, we try to find a path by iterating 
through each pair of start and goal candidates and returning a 

path as soon as the first path is found for a pair 𝑛𝑠
𝑖 , 𝑛𝑔

𝑗
. 

For executing the path, in order to compensate for the 
inaccuracies caused by snapping and discretization, the motor 

actuation for the first edge (𝑛𝑠
𝑖 , 𝜋𝑖) in Π is not directly found 

by its associated actuation input. Instead, we calculate the 
actuation input based on the original 𝑛𝑠 and the first 
waypoint 𝜋1. The index of the actuation input at the start point 
𝑛𝑠 is found by: 

       𝐿∗ = argmin
𝑙

 𝛿(𝑛𝑠𝜋1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝛾(𝑀𝑙 , 𝑛𝑠))      (6) 

Furthermore, to compensate for noise and execution errors, 
although we have an entire path planned, we in practice 
execute only the first actuation input 𝐿∗. Thereafter, our 
system will re-observe a new 𝑛𝑠 and replan a path, from which 
again only the first actuation is executed. In this manner, our 

system will iteratively move the object towards the goal 
position, while being able to adjust its behavior on the way by 
online re-planning. The planning and execution based on the 
energy gradient-based graph is summarized in Algorithm 1. 

For path finding in the graph, we use breadth-first search to 
find the shortest path. We can see that the manipulation is 
limited to take at maximum 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 steps. Once the 
difference between real-time observed object position and 
goal position is smaller than 𝜂, we consider it as a success. A 
failure can occur if a path cannot be found to connect start and 
goal, or the maximum number of executions has been 
exceeded. 

C. System Implementation 

This framework was physically implemented and tested by 
utilizing an overhead camera observing the manipulation. 
First, state detection processes determined the physical 
location of the gripper through the use of ArUco markers 
attached to the base frame of the hand. The origin of the 
workspace was then calculated, which is specified to be 
directly between the base frame joints of the hand. It is 
important to note that the object can move in the positive and 
negative x direction, but can only in the positive y. At this 
point, the object’s physical location was then extracted with 
respect to the defined origin of the gripper. From this 
information, we were able to define the current location of the 
object which is utilized for planning a desired trajectory. 

Three 3D printed cylindrical objects were manipulated and 
the system was evaluated. Radii corresponding to these 
objects were 18mm, 22mm, and 27mm, respectively. The 
gripper was attached to a physical support structure so that the 
manipulation workspace was parallel to the object’s support 
plane. System state data was then evaluated online, observing 
object location, goal location, and corresponding nodes of 
interest in the graph. The system executed randomly selected 
goal locations, corresponding to random nodes in the graph. 
Since not all points are reachable, a validity check first 
determined if a path existed. If a path did not exist, a new 
random location in the workspace was selected. Otherwise, 
we executed the desired path determined by the graph.  

 

 
Fig. 4. The three largest strongly connected components (cc) 

of the graph created for the 18mm object, shaded according 

to the number of edges connected to each node. 
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IV. GRAPH EVALUATION AND EXPERIMENTS 

In this section, we evaluate properties of our constructed 
graph to understand connectivity between different areas of 
the workspace. We follow this discussion with experiments 
conducted on a physical robotic hand, and evaluate successful 
trajectories found in our implementation.  

A.  Graph Evaluation 

To better understand the manipulation capability of 
specific hand-object systems, we used standard graph theory 
measures to evaluate the graphs constructed from the set of 
energy maps as described in Section II. First, we considered 
the connectivity of the graph, to learn where the object might 
be more freely manipulated within the hand. Specifically, we 
found the strongly connected components of our graph using 
a breadth-first search. The three largest resulting strongly 
connected components are shown in Fig. 4 for the smallest 
object (18mm). Each grid point in this figure represents a 
node in the graph, and the shading of that point indicates the 
number of edges connected to that node. It is interesting to 
note that there is an extremely large connected component 
further out in the workspace, where most of the manipulation 
occurs. The next largest connected components are orders of 
magnitude smaller in size, and concentrated at the very 
bottom of the reachable workspace. Intuitively, there is no 
connection between these two regions. In practice, this is 
demonstrated very clearly by the fact that the hand cannot 
push the object outwards from the palm, making it a likely 
region for the object to become stuck. Since this is the case, 
path planning often fails when the object is in that region. 

We also created shortest path trees between every node in 
the graph and all other nodes. Then, we summed the total edge 
distance of all shortest paths possible from a given start node. 

                              (a)                                                (b)                                                (c)                                                (d) 

 

         

      
           Act1: 0.4 - Act2: 0.4                      Act1: 0.1 - Act2: 0.3                     Act1: 0.2 - Act2: 0.5                   Act1: 0.1 - Act2: 0.9 
 

Fig. 5. Example trajectory moving the object from the left to right side of the workspace. (Top) The teal trajectory indicates the shortest path 

found to the goal position (green), along waypoints (pink). Throughout our progression from (a) – (d), the system determines that we have 

deviated off the desired path in (b), so an updated path is formulated in (c), and executed in (d) until our goal position is reached. (Bottom) 

Energy gradient maps are evaluated at each time step, selecting the gradient that is instantaneously closest to our desired object direction. 

All paths are outlined in red, whereas the green arrow indicates our desired direction and the blue arrow indicates our selected activation 

input. 

 

 
 

 
Fig. 6. The normalized summed total edge distance of all shortest 

paths possible from a given start node for the smallest object 

(18mm). 

 

 

   
 

Fig. 7. Energy gradients help define desired non-linear trajectories 

when point-to-point trajectories from current location to goal 

location are unavailable.  
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The results of this are shown as a color coding in Fig. 6, again 
for the smallest object (18mm). Essentially, the lighter 
colored areas in this figure are regions in the workspace that 
have high total edge distance sums. This means they are most 
connected to regions very far away, indicating a higher 
likelihood of finding a valid path between those nodes and 
randomly generated goal nodes far away. These regions occur 
along the lower boundary of the shaded region, along the path 
followed by the object when it is contacting both the proximal 
and distal links of the 2-link finger, as it sweeps across the 
workspace. 

B.  Experiments 

In our physical experiments, as presented in Fig. 5, we are 
able to evaluate trajectories developed by the graph and in 
real-time, execute computed paths. Given a valid desired 
trajectory, we first find the path required to reach our desired 
goal. Once a path is validated, we query our graph for all 
energy gradients for our current node, and select an actuation 
input that is closest to our desired next goal direction. Some 
goal locations cannot be reached due to friction, limited 
control authority, or kinematic limitations of the hand, and in 
these cases, a different goal position was generated. During 
object manipulation, it is required that we update our planned 
trajectories online, which is due to uncertainties in object 
movement and the difficultly of precisely following the 
original desired path. This adaptive planning approach was 
shown to be successful in our physical implementation, 
illustrated in Fig. 5 and further in the media attachment. 

The main benefit of our energy gradient approach is that it 
allows us to define shortest path trajectories that are non-
trivial to compute otherwise. That is, as presented in Fig. 7, 
our computed trajectory for these two cases is not a simple 
point-to-point path within the workspace, but a more complex 
state-to-state transitions. Analyzing these paths in accordance 
to the geometric constraints of the gripper, we can note that 
sharp changes in the projected path are typically due to the 
fluidly changing contact scenarios throughout the 
manipulation.   

V. CONCLUSION 

In this work, we presented an approach to address the 
problem of within-hand manipulation for caging grasps. 
Rather than explicitly modeling the dynamics between the 
object and finger contacts, we adopted the concept of energy 
maps to represent the underlying relationship between hand-
object configurations and actuation inputs when a caging 
grasp is formed. By pre-computing a large set of energy maps 
corresponding to different actuation inputs, an energy 
gradient-based graph was constructed to represent the 
connectivity among all hand-object configurations, exploiting 
the local transitions enabled by the energy gradient. Using the 
constructed graph, we showed how to plan a sequence of 
actuation inputs to manipulate the object to achieve a goal 
state, as well as how to execute the plan adaptively to handle 
the uncertainties during manipulation. 

In experiments, we quantitatively analyzed the properties 
of our proposed energy gradient-based graph for a single 
hand-object system, and showed that it can cover a large 
portion of the gripper’s workspace, allowing the gripper to 
manipulate an object between many different positions within 

hand. Moreover, we showed that our approach is able to 
generate shortest actuation sequence trajectories for 
manipulation, as well as to adaptively update the execution 
trajectory online to improve the execution robustness. In 
future work, we plan to develop an object-independent energy 
gradient-based map, in order to generalize the system to work 
with novel asymmetric objects and to change their orientation 
in a controlled way. 
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