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Abstract—This paper presents an algorithm to simultaneously
reconstruct the geometry of an unknown object and its envi-
ronment via physical interactions. Applications involving highly
cluttered or occluded workspaces prevent the effective use of
vision. To address some of the challenges that arise, we propose
an approach that instead utilizes force and torque measurements
at the robot end-effector to solve for possible contact locations
and probabilistically determine the occupancy likelihood on a 3D
map. Our procedure constructs two occupancy maps: one fixed
that represents the environment and another map that moves
with the robot end-effector and reconstructs the grasped object
shape, where each map informs the probability updates on the
other. The algorithm is applied and tested on two scenarios:
retrieving a tangled object from a scene and reconstructing
the geometry of an object. We compare the results against
a configuration space planner and a reinforcement learning
algorithm, with our method requiring fewer collisions with the
environment to extract the object.

Index Terms—Manipulation Planning, Robot Grasping, Map-
ping, Perception for Grasping and Manipulation

I. INTRODUCTION

ROBOTS operating in unknown or uncertain environments
may be required to manipulate objects whose geometry

is not known a priori. In order to navigate these environments,
a robot must make sense of the geometry of the grasped object
and of the environment surrounding it. In this paper we present
a method that uses force information at the end-effector to
reconstruct the grasped object and map the robot environment
through a probabilistic approach. Two 3D maps are created
and each informs the update on the other: one map is fixed
to the world and represents the obstacles in the environment,
and the other moves with the robot end-effector, reconstructing
the geometry of the grasped object. When contact between the
object and the environment occurs, the algorithm solves for the
possible locations of the collision and updates the probability
that the relevant voxels (the three-dimensional analogue of a
pixel) are occupied. Moreover, when the robot moves in free
space, the occupancy of the voxels is also modified, since we
know that no collision is taking place.

We show that it is possible for a robotic system to navigate
uncertain environments, even when reduced sensing informa-
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Fig. 1. 3D maps of the environment and grasped object can be built using the
line-of-action of interaction forces, obtained from force-torque measurements.

tion is available, and demonstrate the utility of the proposed
approach. Possible applications of this work lie in the areas
of search and rescue, if a robot needs to declutter a scenario
where there is debris, or removing objects from a pile (such
as in a waste sorting or recycling facility). We present the
rationale for the two probability laws that are implemented,
and apply the method in two contexts: object retrieval and
reconstruction. We compare it to both traditional planning and
reinforcement learning methods, and validate the approach on
a 6 DOF manipulator with force-torque sensing capabilities at
the end-effector.

A. Related Work

1) Contact Sensing: The idea of identifying the contact
location from force measurements can be traced back to Bicchi
et al [1], who named this approach intrinsic contact sensing.
In [1], the contact location on a surface is resolved through
solving the force-moment balance and the surface equation,
assuming a soft finger model and a convex surface. This idea
was further developed by Liu et al [2], who extended it to
deformable surfaces and, more importantly, Kurita et al [3]
who developed a method to compute the contact location on
an arbitrary shaped surface using a series of measurements.
In [3], a concave shell was placed over a mobile robot
and the line-of-action of the collision force was intersected
with the shell geometry. In cases where there are multiple
intersections, the contact location is determined after a number
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of measurements, choosing the location where the position
variability is lowest. Research on detecting a collision on the
body of a serial robot has also been the subject of extensive
research [4], [5]. These approaches typically use the torque
measurements at the robot joints, and determine the location
using approaches such as the Particle Filter. The limitation
in these approaches, however, is that the shape of the end-
effector needs to be known a priori, since the force and torque
measurements can only, and under some assumptions, provide
information about the line-of-action of a force. Determining
the actual contact location on that line requires additional
information, such as the shape of the surface in contact.

2) Mapping and Navigation: Navigating through an un-
known environment is a problem typically studied within
the field of mobile robotics. The SLAM problem consists
precisely of reconstructing an unknown map and locating the
robot within it, with most approaches using either cameras
[6], [7] or LIDAR [8] sensors. In [9], the authors introduce
the “Blindfolded Traveler’s Problem” where a serial robot
navigates an unknown environment based only on contact
sensing, obtained from joint torques. It tests three approaches
for constructing the planning graph: one uses a Bayesian
Filter (Manifold Particle Filter), one uses the sets of occupied
and free voxels (Collision Hypothesis Sets), and finally a
Mixture of Experts of the two. These approaches require the
knowledge of the robot geometry in order to reconstruct the
environment. Other approaches that aim to navigate a robot
on a cluttered, unknown environment usually rely on tactile
sensors distributed on the robot body [10], [11], [12], such
that the contact location(s) are readily available, or machine
learning with human demonstrations to navigate a social
environment [13], or reinforcement learning with tactile data
for object insertion [14].

3) Object Reconstruction and Pose Estimation: The ability
to perceive contact locations on the environment can also be
used to reconstruct the geometry of an object. In [15], tactile
sensing was used to reconstruct the object geometry as a point
cloud. More detailed reconstruction can be achieved using
high-resolution tactile images that provide a detailed rendering
of the object geometry [16]. In [17], tactile sensing and vision
were combined in a fully data-driven fashion to reconstruct
the geometry, whereas in [18], a glove with electromagnetic
trackers was used. Collisions between a grasped object and
the environment has been used to estimate the pose of the
object [19], but required both the geometry of the object and
of the environment to be known a priori.

B. Problem Presentation

This paper introduces an algorithm that simultaneously
maps the environment and reconstructs a grasped object using
the contact forces that arise during the interaction. It builds
two three-dimensional probabilistic occupancy maps, each of
which informs the construction of the other. Two types of
events are used to update the maps: 1) when the robot mea-
sures an external force (there is a collision between the grasped
object and the environment), the possible contact locations
are determined and the occupancy probability of the relevant

(a) Discretization along the force line-of-action L

(b) Obstacles are detected after a number of contacts

Fig. 2. Simulated environments of a ’S’-shaped object and two vertical peg
obstacles. (a) Collisions between the object and an obstacle generate a force,
and its line-of-action can be computed. (b) As multiple collisions occur along
different line-of-actions, we can probabilistically determine the likelihood of
occupancy as these lines intersect.

voxels on each map is computed; 2) when the robot moves in
free space and no collision is detected, this information is also
used to update the maps by reducing the occupancy probability
of overlapping voxels. The probability laws for each of these
cases are based on an analysis of the possible contact locations
and the prior occupancy probabilities associated with them
on each map. We name this approach SMORE (Simultaneous
Mapping and Object REconstruction).

We present the two probability laws in the next section, and
find a number of applications in Section III to illustrate the
proposed method, comparing the results with other possible
approaches. Section IV discusses the results and presents
future research directions.

II. METHODS

A. Method Overview

The idea behind the proposed method is to construct and
populate two 3D maps. Map Mw is fixed to a world frame
and describes the obstacles in the environment, while Mo

is moving with the robot end-effector and reconstructs the
geometry of the grasped object. Each map is defined by a
pose T ∈ SE(3) and set of voxels that discretize the 3D
space: M = {p1, p2, ..., pn}, with each voxel having a fixed
size and containing its spatial coordinates and a probability of
occupancy: p = {x, y, z, P (Op)}. Since we will be performing
the same operations on both maps, these are interchangeable
and we can simply refer to one map as M and the other
as M′. At any given time, the point p′ ∈ M′, coincident
with point p ∈ M, can be obtained by multiplying it by the
homogeneous transformation T between M and M′, resolved
from the robot’s forward kinematics.

p′ = T−1 · p (1)
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When contact occurs and a force is measured at the robot
end-effector, the occupancy probability of the possible contact
locations increases, and when the robot is moving in free
space, this probability decreases. The probability laws for each
of these cases take into account the current knowledge of both
maps to continuously update the belief in the occupancy of the
relevant voxels. On contact, a higher occupancy probability of
a possible contact location p results in a higher confidence
that the contact happened at this point, in turn increasing the
occupancy probability of the corresponding voxel p′. Similarly,
in free space, the more confidence we have that p is occupied,
the bigger the decrease in the probability of occupancy of p′.

B. Probability Laws

1) Probability law for contact: When the grasped object
collides with its environment, the resulting force and torque
at the end-effector can be used to calculate the line-of-action
of that force according to the formula:

~r =
~F × ~M

~F · ~F
, and h =

~F · ~M
~F · ~F

, (2)

where ~F and ~M are the measured force and moment, ~r is
a vector to a point on that line, and h is the magnitude of
the moment around the net force. It should be noted that
when using a soft finger contact model, the admissible moment
transmitted through the contact is normal to the surface [1],
whereas in (2) the moment is parallel to the resultant force.
Discretizing the 3D space, we can find the subset of voxels
L ⊂ M that are intersected by this line. Figure 2 shows the
line-of-action on a 3D map as the grey object collides with
the red obstacle. An equivalent set of voxels L′ is computed
for a coincident line expressed in the frame of M′.

We start by making the distinction and stating the rela-
tionship between the probability of a voxel at point p being
occupied P (Op) and the probability that the contact happened
at that point P (Cp). In order for the collision to happen at p,
both voxel p and its coincident point p′ must be occupied. If
we assume that there is at most a single contact location at
any given time, then:

P (Cp) ∝ P (Op) · P (Op′
) (3)

We find the new probability of occupancy of each voxel p
using the law of total probability. We obtain it by summing the
probability of the contact happening at that location and the
probability that the voxel is occupied, but the contact happened
elsewhere:

P (Op)t+1 =P (Op | Cp) · P (Cp)

+ P (Op | ¬Cp) · P (¬Cp)
(4)

Given the current occupancy probability of the voxels in L

and L′, we first compute the total probability of all admissible
cases. Since we know that a contact occurred somewhere along
line L, there is a location where both p and p′ are occupied.

Thus the admissible cases can be obtained from the union of
the probability of contact anywhere on that line:⋃

n∈L

P (Cn) = P (C1) + P (C2) + ... + P (Ck)

− P (C1 ∩ C2)− P (C1 ∩ C3)− ...

+ P (C1 ∩ C2 ∩ ...Ck)

(5)

The calculation in (5) is combinatorial and thus computa-
tionally very expensive as the number of voxels in L increases.
It is simpler to find the probability that no collision happens
anywhere in L and subtract it from 1, according to De
Morgan’s laws:⋃

n∈L

P (Cn) = 1−
∏
n∈L

(1− P (On) · P (On′
)) (6)

The probability of the contact happening at point p is then
the probability of both p and p′ being occupied, divided by
the total probability obtained in (6):

P (Cp) =
P (Op) · P (Op′

)⋃
n∈L P (Cn)

(7)

The second part of (4) is the probability of p being occupied
and the contact happening somewhere else in L, except p. We
use the result in (6) to calculate this probability:

⋃
n∈L\{p}

P (Cn) = 1−
∏

n∈L(1− P (On) · P (On′
))

1− P (Op) · P (Op′)
(8)

Combining the result in (8) with the probability that p is
occupied and p′ is free, and dividing by the possible cases in
(6) yields

P (Op ∩ ¬Cp) =

⋃
n∈L\{p} P (Cn)⋃

n∈L P (Cn)
· P (Op)P (¬Op′

) (9)

The probability of occupancy in (4) can then be obtained
by combining (7) and (9), and the fact that P (Op | Cp) = 1:

P (Op)t+1 =

PP ′ +

(
1−

Π

1− PP ′

)
· PP ′

1−Π
(10)

where
P = P (Op) , P ′ = P (¬Op′

)

Π =
∏

n∈L(1− P (On) · P (On′
))

Figure 3 shows how the occupancy of the voxels in a map
would evolve as multiple lines-of-action of a sequence of
contacts intersect at a point. In this simplified two-dimensional
case, every line intersects at one voxel in the environment
map, which is likely occupied by an obstacle. As for the
reconstruction of the object geometry in the bottom row of
Figure 3, several locations are likely to be occupied, particu-
larly the ones which have overlapped with the obstacle in the
environment during contact. Of course, realistic scenarios are
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Fig. 3. Voxel occupancy (2D example). The top row shows the map of the environment and the bottom row depicts the object geometry. As the object moves
and multiple lines-of-action of forces intersect at a location, the occupancy probability increases according to the probability law in (10).
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Fig. 4. Probability law in free space. The top row shows the environment
map and the bottom row shows the object geometry. Left: before; right: after
applying (11).

not as clear-cut, as it is unlikely that the robot collided at the
same location either on the environment or the object several
times in a row.

2) Probability Law for free space: At every instance where
there is no measured force, we can use this information to
reduce the probability of occupancy of overlapping pairs of
voxels p and p′ in maps M and M′, respectively. Since there
is no contact, we know that the admissible cases are simply
P (¬Cp) for every pair of voxels. Also, the voxel at point p
is only occupied if point p′ is free. Thus the new probability
assigned to the occupancy of p is:

P (Op)t+1 =
P (Op ∩ ¬Op′

)

P (¬Cp)

=
P (Op) · (1− P (Op′

))

1− P (Op) · P (Op′)

(11)

Finally, the converse operation is applied to p′ to obtain
P (Op′

)t+1. Figure 4 shows the result of applying the probabil-
ity law for free space. The voxels circled in red show a location
that is likely occupied in the environment P (Op) = .79,
whereas the corresponding voxel in the object geometry has
P (Op′

) = .21. After applying the probability law in (11),
P (Op)t+1 = .75 and P (Op′

)t+1 = .05. Simply put, if
we are confident that there is an obstacle at a location in
the environment and, at the robot’s current pose, there is
no collision detected, we become more confident that the
coincident point on the object map is free.

III. RESULTS AND DISCUSSION

A. Experimental Setup

We demonstrate two of several applications for the proposed
method, namely, navigating through a cluttered environment
to retrieve an object, and reconstructing the geometry of an
object. The goal of object retrieval is to move an unknown
object from a starting pose to a goal pose, based only on
the robot state and measured external force. This application
combines the proposed mapping approach with a geometric
planner to find suitable paths that reach the end goal without
passing through states where voxels with high occupancy
probability overlap.

We experimentally validate our approach using both sim-
ulation and a real setting, in order to evaluate limitations
associated with inherent uncertainties and noise. The real
world trials were done using a commercially available Uni-
versal Robots UR5e, which is a 6 DOF manipulator with
force-torque sensing capabilities at the end-effector. A Robotiq
parallel jaw gripper was used to firmly grasp objects and the
environment was set in an optical board to allow firm and
accurate placement of the obstacles.

B. Implementation

The proposed algorithm was implemented in C++, using the
ROS framework [20], and OpenCL [21] to increase perfor-
mance via paralellization. The maps used the Octomap [22]
data structure, which provides an efficient way to store 3D
grid maps containing an occupancy probability, as well as
utilities such as ray tracing, which is useful to determine the
voxels intersected by the force line-of-action. We used the
OMPL (Open Motion Planning Library) and FCL (Flexible
Collision Library) [23] for planning collision-free paths, and
PyBullet for simulation [24]. The source code is available at
https://github.com/joaobimbo/fsmore.

C. Object Retrieval

The main application intended for this method is to retrieve
objects with unknown shape from a cluttered scene. In these
situations, visibility is usually reduced, and the shape of the
object and the placement of obstacles in the environment are
not available from vision. We tested this scenario in simulation
to facilitate a systematic comparison between approaches. A

https://github.com/joaobimbo/fsmore
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(a) (b) (c) (d) (e) (f)

Fig. 5. Object untangling: proposed method to map the environment and reconstruct the grasped object. Top row: Object reconstruction in green/red, mapped
obstacles in black/white, planned path in cyan/purple. Only the voxels with a probability of occupancy higher than 50% are displayed. Bottom row: Simulation
environment.

(a) (b) (c)

Fig. 6. Object untangling - C-space planner. Top row: Red-green-blue axes
show invalid poses (poses where a collision between object and environment
happened). Bottom row: Simulation environment.

virtual robot was instantiated, consisting of 6 joints (3 pris-
matic and 3 rotational), so that the end-effector Jacobian was
a 6×6 identity matrix, allowing movement in every direction.
This ensured that issues related with the robot workspace

did not affect the comparison. While all the calculations,
mapping, and collision detection are done in three dimensions,
we constrained the movement of the robot in this case to a two-
dimensional plane. This allows easier visualization of the maps
and the planned path, as well as reducing the time to solve the
problem. The goal of this task was to move the object from an
initial to an end pose. Every time there was a collision above a
certain threshold force (5 N), the robot/object was reset to the
initial position. Our approach was compared with two other
methods to plan and move the object away from the obstacles
and reach a desired goal pose. The first method is based on a
C-space planner [25], which kept track of the configuration of
the virtual robot whenever there was a collision and treated that
configuration as invalid, i.e. in collision. The planner would
then connect the initial pose to the goal pose while avoiding
any invalid states. The second approach we compared to was
based on Deep Reinforcement Learning, particularly the Soft
Actor-Critic (SAC) architecture [26]. To evaluate this method,
we develop a representative Open AI Gym environment and
utilize hyperparameters presented in the original work [27].

An example of our approach (SMORE) is shown in Figure
5: An s-shaped object is placed such that it is tangled in an
environment containing two pegs (lower row, in blue and red).
The goal is to move the object -1m in the x-direction. A
geometric planner (RRT) finds a collision-free path between
the current pose and the goal. We consider a voxel to be
occupied if its occupancy probability P (Op) ≥ 0.5. Initially,
since no obstacles are known, a straight path is planned in Fig.
5b. After a few failed attempts at moving in an approximately
straight line, one of the pegs and a part of the object can
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Fig. 7. Comparison of number of collision needed to untangle an object from
a cluttered scene between methods (log scale) N=10

be seen in Fig. 5c. In Fig 5d most of the “cage” part of the
object has been reconstructed, as well as both obstacles. In
Fig. 5e, the planner attempts a plan around these obstacles,
but is unsuccessful since there are still parts of the object that
have not yet been reconstructed. Finally, in Fig. 5f, a plan is
found that is able to retrieve the object completely, away from
the two obstacles.

For comparison, the evolution of the C-space planner map
construction is shown in Fig. 6. For each collision, the position
and orientation of the object is saved. Fig. 6a shows the
location of the first few collisions. Fig. 6b shows a plan around
the known invalid configurations, whereas Fig. 6c shows the
successful completion of the task, where the object has been
removed from the obstacles and reached the goal pose. We also
implemented a Deep Reinforcement Learning (RL) method
based on SAC, which is generally regarded as state-of-the-
art in model-free RL and has seen several extensions in
the literature, e.g. [28], [29]. Similar to other evaluations,
once an interaction occurs with sufficiently large application
forces (>5N), the environment was reset. We define a simple
reward function according to the Euclidean distance between
the object pose and the goal pose, with a small penalty
when contact interaction occurs. The system runs until the
goal configuration is achieved, and we log the number of
interactions required. The resolution of the octomap was set
to 3 cm, and the planner step size was set to the same value.
For the C-space planner, a pose was deemed invalid if the
sum of the linear and angular distance to an invalid pose was
under 0.03 (where linear distance was measured in meters and
angular distance in radians). For SAC, the observation space
was comprised of the difference between object pose and goal
pose. Actions were continuous with a maximum magnitude of
0.03m / 0.3 radians.

Figure 7 shows the performance comparison when extract-
ing the object in the scenario presented in Figures 5 and 6.
We compare the average number of collision that happened
before the object was extracted once. These were 96 for our
proposed method, 548 for the C-space planner, and 3136
for the Reinforcement Learning-based approach. It should be
noted that, in practice, this task would not require this large
amount of collisions if, on contact, the robot was allowed to
move away from the obstacle and re-plan from that pose. We

(a) (b)

Fig. 8. Experiment in simulation using RRT-Connect. The object is retrieved
through a narrow space. Left: Object passing through slit Right: Resulting
object reconstruction.

choose to reset the object to its initial pose to have a more
unbiased comparison between approaches. It is also important
to keep in mind that a trial was deemed successful if the object
reaches the end pose once. It does not follow, necessarily, that
subsequent trials will also arrive at the goal without collisions,
mainly due to the stochasticity of both the RL approach and
RRTs, but also to the fact that a valid plan may be found even
if the environment and the object are not fully mapped yet.

Further validation was carried out using the same object as
in Fig. 5 on a different environment. In this experiment, shown
in Fig. 8, the robot was allowed to move and rotate in all
three dimensions. Furthermore, a different, more sophisticated
planner was tested (RRT-Connect [30]) together with our map-
ping approach. It can be seen that the object was successfully
retrieved after a number of collisions required to reconstruct
the object and the environment.

A similar but simpler scenario was tested on the real setup
shown in Fig. 9. Given the lower accuracy of the force-torque
sensor relative to the simulation, the resolution of the map was
decreased to 0.05m and a single peg was used. The initial lines
of action are shown in Figures 9a and 9b, where the location of
the peg is already apparent. In Fig. 9c the object reconstruction
is now sufficient for the planner to find the solution around
the peg shown in Fig. 9d.

D. Object Reconstruction

The proposed method can also be applied for the purpose
of reconstructing the geometry of a grasped object or of an
object in the environment. We explore this application using a
simple rod and manually poking an object at different points to
perceive its shape. The robot was put in gravity compensation
mode and a user moved it around both for safety and to ensure
that different parts of the objects were touched. Figure 10a
shows the setup, which consisted of a small chair and a grasped
rod, and Fig. 10b shows the reconstruction result as the voxels
with a probability of occupancy P (O) ≥ 0.5, with red voxels
having a higher occupancy probability. The distance between
each occupied voxel and its closest point in the chair was
computed using the chair model shown in Fig. 10b. The voxel
resolution in this case was 0.04m, and the majority of the
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(a) (b)

(c) (d)

Fig. 9. Experiment on a real scenario with one peg. Environment map in
black/white and object reconstruction in green/red (white and red are higher
occupancy probability)

(a) Experimental setup

(b) Object Geometry (c) Reconstruction accuracy

Fig. 10. Reconstruction of the geometry of a chair (voxel resolution = 0.04m).
The purple chair was overlaid for verification

reconstructed voxels is within that distance, as shown Fig.
10c.

E. Discussion

The proposed algorithm was able to successfully reconstruct
a grasped object and the surrounding environment at the
same time. This enabled more effective navigation on this
environment, requiring less collisions to retrieve an object with
a complex shape from a situation where it was tangled with
the environment. Compared to a traditional planning approach
or more sophisticated machine learning methods, the proposed
algorithm performed five and thirty times better, respectively.

Reconstruction of an object of unknown geometry was also
demonstrated to be a possible application of this method. This
was done simply by poking it with an unknown object at
different points.

The main shortcoming of this approach arises when the
object becomes “jammed” between multiple obstacles. Since
we are measuring the total force acting on the object, if there
are multiple contact locations the force line-of-action is not
guaranteed to be correct. A mitigating approach to solve this
problem was to move the robot in small steps to ensure that
only one contact is occurring. In realistic scenarios of high
clutter, it cannot be guaranteed that there is a single contact
location, and further investigation efforts should be focused
into at least identifying such cases.

An important aspect that was not investigated in depth
in this work was the noticeable sensitivity of the method’s
performance to a number of parameters, namely the chosen
map resolution, the force threshold to consider a contact, and
the force measurement sampling frequency. Another solution
that was not investigated in this work was the inclusion of
prior information on the map, obtained, for example, from a
3D vision system. If the geometry of one of the maps is known
beforehand, either partially or completely, that information can
be used to speed up the reconstruction of the other, without any
modification to the method by just adding the known points to
the respective octomap with ∼ 99.9% occupancy probability.

IV. CONCLUSIONS

In this work we presented a method to map an environment
and reconstruct the shape of a grasped object using only
a robot’s end-effector pose and the force measurements of
the collisions between the object and the environment. On
collision, the method finds the possible contact location by
computing the line-of-action of the interaction force. It then
computes the probability of occupancy along that line on two
3D maps – one that is static and maps the environment, and
one that moves together with the robot end-effector. On the
other hand, when the robot moves without colliding, the maps
are also updated, since we know that there is no overlap
of occupied voxels between the two maps. We provide two
example applications for the method: navigating an object
through a cluttered scene to remove it, and reconstruction
of an object shape. We show that our approach outperforms
traditional planning and a strategy based on reinforcement
learning and validate our approach in a real setup.

In the future, a number of possible extensions can be thought
of to improve the performance of the algorithm. In our current
approach, the order at which the measurements arrive influence
the computed probabilities. The solution to this could be to
recursively update every line that intersects every pixel that
is updated. In practice, this step would require a significant
amount of computation time, since the number of lines on a
typical 3D map with medium or high resolution easily reaches
the thousands. Also, care should be taken to avoid falling
into infinite update loops. For the object retrieval application,
another possible improvement could be to use an optimal
planner that takes into account the occupancy probability and
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optimizes for paths along states where only voxels with low
occupancy probability intersect. Current implementation only
distinguishes valid and invalid states – a state is invalid if
two voxels with P (Op) ≥ 0.5 intersect. Another improvement
could follow an approach similar to the one proposed in [31] to
be able to deal with multiple, sequentially occurring contacts.
Finally, the contact forces that occur while retrieving an object
might displace it in the robot hand, requiring that object pose
uncertainty is addressed. This would probably require object
pose to be estimated in parallel with the proposed algorithm,
following existing strategies [32], [33], or a modification of the
proposed method that accounts for this uncertainty. Finally, we
intend on integrating a vision system that can provide at least
partial information of the object and environment’s geometry
that can be complemented by the proposed approach.
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