
 

 

 

  

Abstract—Underactuated fingers have been extensively 
studied and optimized in order to achieve better grasp 
performance in terms of object acquisition and stability. 
However, little work has been done related to the coupling 
mechanisms between the fingers and their effects on grasp 
performance. This paper presents a novel method of 
underactuated finger coupling that utilizes friction and allows 
for increased stability and adaptability of robotic grippers. We  
show that variable friction within the coupling element can help 
the system maintain kinematic form closure while not affecting 
non-closure forces during grasp acquisition. A proof of concept 
prototype demonstrates the increased stability of objects within 
the grasp as compared to traditional coupling mechanisms. 

I. INTRODUCTION 
NDERACTUATED hands have fewer actuators than 
degrees of freedom. These systems are often referred to 

as adaptive due to the fact that the final configuration of the 
hand is a function of both the actuator position and external 
interaction forces with an object. These hands have 
numerous benefits over traditional fully actuated systems 
including simpler control, high adaptability to sensory and 
positioning error, durability, mechanical simplicity, and 
lower cost. Examples of underactuated robotic hands include 
[1-4].   

While the advantages described above are significant, the 
nature of underactuated fingers and hands creates potentially 
undesirable properties for robotic grasping and 
manipulation. One of the most significant of these is the 
compliance of the mechanism in response to external 
disturbances or unbalanced forces. The same passive 
adaptability that allows the hand to comply to the object 
shape or other environmental constraints can also cause it to 
move or reconfigure after grasp. This is due to the 
combination of the unconstrained degrees of freedom of the 
mechanism and any joint compliance. Previous work by the 
authors has shown how this stiffness affects finger posture in 
the presence of external forces applied to the mechanism [5].  

In this paper we describe how a simple friction-based 
mechanism can be applied to the transmission of cable-
driven underactuated fingers/hands in order to increase the 
stability of underactuated grasps and improve disturbance 
rejection. We will discuss these mechanisms in the context 
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of the grippers’ ability to passively adapt to object size, 
shape and positioning errors as well as their ability to 
provide a stable grasp that can resist external (or inertial) 
disturbance forces once the grasp has been acquired.  
 We begin this paper with a description of the grasp 
acquisition process for underactuated hands. Next, we 
introduce models of our proposed friction-based coupling 
mechanisms and show how these can increase grasp 
stability. Finally, we present a generalized analysis of 
compliance and stability as a function of the constraints 
related to coupling schemes and describe design 
configurations that optimize hand performance related to 
these parameters. 

II. METHODS 

A. Grasp Scenario 
Consider the simple task of picking up a coffee cup using 

a two finger robotic hand with adaptability between the 
fingers. First the gripper is positioned to place the coffee cup 
within the span of the fingers. Inevitably, positioning errors 
will result in an offset between the center of the gripper and 
the center of the coffee cup. As the fingers are closed, one 
finger will make contact before the other. The adaptive 
behavior of the hand will allow the second finger to continue 
traveling toward the cup with the first finger held in position 
by the contact against the opposite side of the cup. Since a 
stable grasp is not yet achieved, the contact forces of the first 
finger must be small enough not to move the object from its 
current position or tip it over [6]. After both fingers have 
made contact, forces increase at an equal rate until the 
desired grasp pressure is achieved. 

Once the cup is lifted off the ground, it is desirable to 
have the cup maintain its position relative to the gripper in 
the presence of unbalanced contact forces or external 
disturbances – shifting of the object could cause it to be lost 
from the grasp. Current underactuated hands with typical 
coupling mechanisms will tend to center the coffee cup in 
relation to the gripper due to unbalanced contacts and finger 
compliance. The friction based coupling mechanism 
described in this paper will negate the centering effect and 
help keep the object in position if acted on by an external 
force. 
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B. Prismatic Two-DOF Gripper 
A two-DOF prismatic gripper, shown in

used to illustrate the grasp performanc
underactuated gripper to objects that are no
grasp. The system consists of two finger
move only in linear translation. Each finger
spring and a drive cable that exert force o
and TL represent the tension in the righ
tendons respectively. The main actuator ten
system with force Ta. In this setup, the d
coupled to a single actuator using a floatin
The floating pulley acts as a simple differen
tension force in each output tendon as show

 TL   TR ൌ Tୟ    ,       TL ൌ  TR  
 
The floating pulley mechanism couples one
to two output drive cables and the grip
underactuated. The floating pulley also perm
adapt to object offsets, u, within the grasp. F
finger displacements XL and XR as the
increases, demonstrating this adaptability. 

Assuming rigid contact with the object, a
of the object, u, would require a chang
position. Therefore, if we define LR and LL
the drive tendon to the right and left finger

    

    

    
Fig 1.  a)  Phases of grasp acquisition in a two-DO
right and left contact forces during and after grasp
the maximum non-closure grasp force. 
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The floating pulley mechanism also 
travel of the drive tendons is equ
actuator tendon as shown in (5). 
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The two-DOF prismatic system w
example of an underactuated gr
sections to describe the object a
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C. Object Acquisition and Grasp 
Grasp acquisition is the process b

and builds contact forces with an o
hands, the sequence of events th
acquisition determines the final han
shows the three phases of grasp acq
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the fingers are moving inward toward the object but have yet 
to make contact. Phase 2 describes the period of single point 
contact with the object in which only one contact point is 
established (FR only) and is similar to pushing (as described 
in [7]). Phase 3 is the conclusion of the grasp acquisition 
when the final contact with the object is made and the grasp 
is complete (FR and FL are non-zero). One key aspect of 
underactuated grasping is the force developed by the first 
contact point during phase 2 of grasp acquisition. During 
this period, a non-closure grasp with the object is made and 
an unbalanced force is placed on the object. When grasping 
an object off a table, the friction force from the table surface 
may or may not be enough to overcome the unbalanced 
force provided by the single contact. Equation (6) shows the 
force balance of a grasped object. During phase 2 of grasp 
acquisition, i = 1 and the disturbance force vector Dሬሬറ, must 
offset any contact forces created by the gripper. For any non-
zero offset of a symmetric object from the center of the 
gripper, Dሬሬറ will remain non-zero in phase 3 as well, unless 
the object slips or is lifted. In (6), the force FCഠሬሬሬሬሬറ represents all 
contact forces on the object. 
  FCഠሬሬሬሬሬറୀଵ  Dሬሬറ ൌ 0                  (6) 
 

The limits on Dሬሬറ are a function of numerous parameters 
including mass, friction coefficient and even object size.  
[6]. Since the state of the object and contact conditions with 
the table are unknown, it is desirable to reduce this force as 
much as possible and will be quantified using the metric P 
defined in (7). For better adaptability, the value of P should 
be as small as possible.  
 ܲ ൌ  ሬሬറหሻ                        (7)ܦሺหݔܽܯ 
 

 For the simple two-DOF prismatic gripper shown in Fig.1, 
this parameter is a linear function of the spring constant, K, 
and the lateral positioning of the object (see point P in fig. 
1c). 
ሬሬറห൯ܦ൫หݔܽܯ  ൌ ሺܺܭ  െ ܺோሻ            (8) 

D. Stability Behavior 
 In this paper, we will analyze the stability of an object in 
phase 2 of a grasp in terms of form closure. The traditional 
definition of form closure assumes rigid contact points [8] 
and therefore cannot be used for underactuated hands. We 
will adopt a similar definition of form closure used in [9,10] 
that defines it in terms of both kinematic (first order) and 
energetic (second order) stability.  
 Kinematic form closure rejects all motion of the object 
within the grasp. For example, in the prismatic case, eqns. 
(3,4) represent properties of the system relating to motion of 
the object u. Through (3,4,5) it can be shown that the change 
in length of the actuator tendon, dLa with respect to object 
motion is zero: 
 ௗೌௗ௨ ൌ 0 .                               (9) 

 

It follows that even if the actuator tendon link was fixed, 
imposing the constraint that dLa = 0, (9) would still hold. 

Fixing the actuator tendon length would therefore not restrict 
motion of the object u. If the conditions of object motion u 
violate any of the system constraints, the system would be 
said to be in kinematic form closure and would be able to 
resist motion of the object. For example, if both drive tendon 
lengths were fixed after the object was acquired, additional 
constraints  
ܮ݀  ൌ ோܮ݀       ݀݊ܽ     0 ൌ 0                  (10,11) 
 
are imposed. Since the properties of motion (3) and (4) 
violate constraints (10) and (11), the system would be able to 
prevent lateral motion u of the object and would be said to 
be in kinematic form closure. 
 Another measure of stability is energetic form closure 
(also referred to as Lyapunov stability). This metric 
considers changes in energy of the system with respect to a 
change in object position. A Lyapunov energy function V 
can be formulated that represents the total energy in the 
system. With regard to the two-DOF prismatic case, the 
energy of the system would result from changes in finger 
(and therefore spring) displacements. The relationship 
between the energy change of the system and motion of the 
object u is  
ݑ ݎܨ  ൌ 0,   ௗௗ௨  0     else,     ௗௗ௨ ൏ 0.          (12) 
 
 When the object is centered, the spring energy must 
increase as a function of u. If there is an offset in the system 
the energy in the springs can decrease for some motions of 
the object. An object is said to be in energetic form closure if  ௗௗ௨  0 ,   for all object motions, u. 
 With regard to analyzing the stability of friction based 
coupling systems presented in section IV, we will consider 
only the kinematic form closure measure of stability. [11] 
provides a full analysis of energy based stability arguments 
for underactuated hands. 

III. FRICTION-BASED COUPLING MECHANISM 
The proposed friction-based coupling mechanism 

(FBCM) is based on the design of a floating pulley 
mechanism. However, instead of a free spinning pulley, this 
pulley is capable of opposing a torque produced by an 
unbalance in the output tendon forces.  

The motion of the pulley is limited by a friction plate at 
the end of the pulley housing and a retention spring (see Fig. 
2). Since the shaft of the pulley is free to slide within a slot 
in the housing, the normal force between the edge of the 
pulley and the friction plate is equal to the actuator force Ta, 
minus the force required to overcome the retention spring.  

The torque on the pulley, ߬ from friction can therefore 
be described as 

 ห߬ห  ሺTୟ െ k୮∆sሻµR୮            (13) 
 

where kp is the retention spring constant, ∆s is the travel of 
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the pulley before contact is made with the f
the coefficient of friction between the pulle
plate, and Rp is the radius of the pulley. 

When this coupling mechanism is used
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ܮ݀  ൌ 0            and
ߠ݀  ൌ ோܮ݀      0 ൌ ܮ݀      0 ൌ
as long as the inequality expressed in (13) is
and LL are the length of the right and left d
is the rotation angle of the pulley. For the 
in fig. 1a, the addition of constraints (15, 1
the system achieve kinematic form closure i
can easily translate the effects of external dܤሬറ on the object to the torque on the FBCM
(13).  It is assumed that ܤሬറ, is a lateral for
Fig 3 shows the ability of the system to rem
form closure as a function of the actuato
varying parameters of kp∆s and µ.  With a 
kp∆s, the rejection of disturbance forces do
this value is overcome. 

In order for the FBCM to adapt to ob
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displacements of the right and left tendon
max force to keep the object in positio
coupling mechanism in phase 2 is 
ሬሬറห൯ܦ൫หݔܽܯ  ൌ ሺܺܭ  െ ܺோሻ   ሺTa െ ݏ∆݇
 
where the first term is identical to the flo
while the second term is the additional force
torque in the FBCM. In order to not increas

Fig 2.  The friction based coupling mechanism alte
disturbances as a function of the actuator force, Ta. 
the coefficient of friction between the edge of t
friction plate, ∆s represents the full travel of the re
the rotation of the pulley, and kp represents th
constant. Note: the tendon does not slip on the pulley

friction plate, µ is 
ey and the friction 
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rce on the object. 
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 (18)    ߤሻݏ

ating pulley case 
e to overcome the 
se the adaptability 

metric P, the torque required to r
phase 1 and phase 2 should be zero
the FBCM should ideally not engage

IV. PARAMETERS FOR FRICTIO
MECHANISM

In practice, most underactuated h
as opposed to prismatic joints like t
For this reason, the ideal design par
be found for a two-DOF revolute g
and Fig. 6). The design parame
adaptability metric P, ensure the sy
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The form of (18) allows us to wr
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ሬሬറห൯ܦ൫หݔܽܯ  ൌ ܭܴܽ  ሺܺ െ ܺோሻ   ܴܽ
 

The second term of (19) is zero w
force, kp∆s, is equal to the actuator 
force that is required by the actuator
grasp acquisition is equal to the for
of the fingers. If the size of the obje
assume that the retention spring
required to move the fingers thro
travel (in order to fully close). Thus,

 ݇∆ݏ ൌ   ோ כ max ሺܺ
 

If the size of the object is known, 
XR and can be used in (20) to engage
the exact start of phase 3.  

The friction coefficient μ can b
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Fig 4.  Phases of grasp acquisition in a tw
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Fig 5. Offset Configuration  
 
The difference in moment arms of the c

function of the object size and the position
the grasp span. Therefore, μ must be chose
expected object offset within the grasp.  
  Fig. 7 shows the region of kinematic for
revolute case with parameters described 
parameters were chosen based on (19), (20)
G, H and I, represent the initiation of the
grasp acquisition. The path from G to H
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three of grasp acquisition and the initiation 
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0.8 was shown. One can easily see tha
friction coefficient would expand the stable 

V. IMPLEMENTATION 
A prototype friction based coupling 
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floating pulley systems you can never ac
form closure due to the residual adaptability
that closure to be achieved with little ne
grasp acquisition performance. 

The adaptability behavior of FBCMs can
the introduction of a retention spring in the
Fig. 2) that lets the user tune the system so
in resistance to lateral motion starts near the
phase 3 (shown in (20)).  Furthermore, s
force is a controlled parameter of the system
can be altered mid-grasp by changing the o
A common practice in underactuated hands
non-backdrivable mechanisms (NBDMs) i
coupling that prevent forces on the link
balanced by the actuator. Most lead screw
systems, common to NBDMs, are ~40% e
addition of two NBDMs to the two-DOF 
Fig. 1a, would prevent reverse motion of t
and impose constraints (10) and (11) on th
the addition of (10) and (11) to the system c
form closure condition that could 
disturbances, the use of NBDMs reduces 
the system and even increases the value o
metric P. NBDMs also do not provide an
condition to extreme external forces. 
coefficient, µ, was set to be very large (th
mesh, for instance), the system would act 
two NBDMs once phase 3 of the grasp is re
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