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ABSTRACT 
This paper presents the design of a compact ball and socket 

type spherical joint that makes use of passive elements to 

increase the range of motion to greater than a hemisphere with 

infinite roll capacity. We discuss the limitations of typical 

spherical joints due to simple geometric considerations, and how 

the addition of redundancy, passive elements, and multiple 

contacting surfaces of differing geometry can increase the 

workspace of these joints. We discuss the relationship between 

kinematics, mechanical conditions (e.g. friction and contact 

forces) under quasistatic motion, and geometry required to 

achieve the increased range of motion. Furthermore, we provide 

a metric for assessing the viability or benefit of a potential 

design. Finally, we validate one of our designs with a physical 

prototype and demonstrate its achievable range of motion. 

1. INTRODUCTION
Kinematically, a spherical joint is a type of kinematic device

with three (generally) linearly independent axes of rotation 

intersecting at a common point.  Physically, there exist multiple 

ways of implementing this type of joint, including traditional ball 

and socket joints, three serial revolute joints with common 

intersection axis (often called roll-pitch-yaw devices or similarly 

named), universal joints in series with a revolute joint, or through 

more complicated spherical mechanisms[1]–[5]. While many of 

these implementations have differing benefits depending on the 

application, in terms of compactness and simplicity, the ball and 

socket design tends to outperform the other types. 

Passive spherical joints tend to be important components of 

spatial (i.e. nonplanar) mechanisms, especially when considering 

spatial parallel mechanisms. Parallel mechanisms are composed 

of a relatively fixed base and mobile platform, connected by a 

number of serial legs with varying mobility. In general, some of 

the joints in these legs will be passive (unactuated), and most of 

the actuated joints tend to be single degree-of-freedom (DOF) 

devices such as rotary or linear motors.  

Passive spherical joints can provide the necessary mobility 

in the legs of high DOF parallel mechanisms, such as the Stewart 

platform [6], Delta Robot [7]–[9], or parallel wrist devices [10]. 

They can also serve to constrain other types of mechanisms to 

spherical motion, which sometimes are designated as wrist, 

ankle, hip or shoulder mechanisms due to the biological 

resemblance. However, the range of motion of a spherical joint 

can often be the limiting factor in the range of motion of the 

larger mechanism. Though some work considers the motion 

limits of passive joints within mechanism design, this is not 

always considered in kinematic design and optimization, though 

it must be considered in the physical design to prevent potential 

damage to the overall mechanism. We thereby assert that 

increasing the range of motion of spherical joints may increase 

the overall workspace of the mechanisms they constitute. 

In this work, we propose the design of a ball and socket type 

spherical joint that can achieve a range of motion greater than a 

single hemisphere with infinite roll (rotation about the output 

shaft of the spherical joint) at any position in its workspace. Ball 

FIGURE 1: (Left) Typical ball and socket spherical joint with 
approximately 50º range of motion and infinite roll about shaft. (Right) 
An example of our proposed multiple contact edge ball and socket 
design, capable of 150º range of motion, with infinite roll about the 
shaft. 
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and socket joints with a static socket typically cannot have a 

hemispheric range of motion, as doing so would imply that at 

least half of the socket was missing and the ball could simply fall 

or be pulled out under some particular forces. By including 

additional passive revolute joints (axes of which still intersect at 

the center of the ball), multiple potential contact surfaces (places 

where the output shaft may contact the socket, or “capture” 

housing), and elastic/deformable elements, we create a joint 

capable of greater than hemispheric motion.  

The notion of using redundant joints and elastic elements is 

similar to the passive redundant spherical joint proposed in  [11] 

though their design utilizes a yoke based universal joint with a 

revolute joint on both the base and output shaft. Theirs is the 

most comprehensive treatment of large range of motion passive 

spherical joint design the authors could determine, and they 

establish some principles to be used in the design herein. 

However, we believe our design may address some issues with 

[11]. Namely, a ball and socket joint can likely provide greater 

strength and stiffness than the yoke based universal joint. In the 

universal joint design, loads (including torsional and bending 

loads) are passed through the pins that correspond to axes of 

revolution in the joint. These can thus require bearings if the 

mechanism is to be used under load, and the yoke arms 

themselves must be sufficiently strong/thick to support the loads 

coming through the pins or bearings.  However, the thickness of 

the yokes can limit compactness, and to a limited degree, the 

range of motion of their mechanism. In [12], a similar idea using 

ball and socket joints is shown, though no analysis or design is 

put forth. 

The remainder of this paper is structured as follows. In 

Section 2, kinematic, geometric, and mechanical terminology 

and relevant concepts are introduced. In Section 3, our design is 

detailed and conditions for achieving a larger range of motion 

are discussed. In Section 4, we propose a metric for determining 

the efficacy of any particular design, and evaluate a few of our 

designs using this metric. In Section 5, we briefly validate some 

of our designs with physical prototypes. We end in Section 6 with 

a conclusion and discussion of future work. 

2. KINEMATIC & MECHANICAL CONSIDERATIONS
Before moving on to more specific concepts, we begin by

defining the physical components of the ball and socket spherical 

joint. First, we consider the ball portion to obviously be 

composed of a sphere, and the center of which all the principal 

axes of rotation intersection. Emanating radially out of the ball 

is the output shaft, subsequently just called the shaft. In typical 

ball and socket joints, the socket is the unmoving base which 

surrounds the ball, and has a spherical cavity removed from it 

which the ball contacts. In our case, the socket itself is allowed 

to rotate about a vertical axis which passes through the ball. 

On the socket, there may be bodies which move in a 

predetermined way relative to the socket through some 

kinematic constraints. We call these bodies auxiliary bodies. 

This axis supports the socket through the proximal bearing. In 

some cases, we also include a bearing on the shaft which shares 

the same axis as the shaft, and we call this the distal bearing. 

Finally, we call the surface where the shaft may intersect the 

socket or the auxiliary bodies as the contact surfaces. For most 

of our analysis, we will actually be examining 1 dimensional 

contact edges rather than contact surfaces, but the shaft may in 

some cases be able to contact a 2D surface. 

2.1 Kinematic Description 
Fig. 2 shows a kinematic representation of the spherical joint 

design in consideration in this paper. The architecture of these 

joints can be represented as an RS, or sometimes RSR, serial 

chain, where the axis of rotation of the R joints intersect the 

center of the ball S. The socket can rotate about the first R joint, 

whose axis is the z axis, via the proximal bearing. In fig. 2, the 

socket is purposefully shown as a very small socket that would 

not retain the ball simply for illustration purposes, but in practice 

would surround the ball. 

 The output of at the end of the chain is either at the end of 

the shaft, rigidly fixed to the shaft if the architecture is an RS 

chain, or on the outside of the distal bearing if the architecture is 

RSR. The distal bearing shares its axis with the shaft axis, though 

its purpose will be discussed later. The origin O is fixed to the 

base, which is considered fixed in space. Either architecture 

constrains the output to spherical motion about S. 

The angles θ and φ indicated in fig. 2 correspond to the polar 

and azimuthal angles, respectively. A third angle corresponding 

to roll about the shaft is not shown here, as majority of the 

FIGURE 2: Kinematic representation of ball and socket spherical joint 
with additional passive joints. Relevant geometric and kinematic 
properties are shown. 
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analysis is independent of this angle. The two relevant angles can 

thus be used to create 2D polar plots corresponding to the range 

of motion of a particular design, with polar angle as the radial 

coordinate and azimuthal angle as the angular coordinate on the 

plots. 

2.2 Mechanical Considerations 

2.2.1 Shaft Size Effects 

Two important parameters in the design of ball and socket 

joints are the radius of the ball rB and the radius of the shaft rS. 

Without loss of generality, we may assume for the remainder of 

this paper that rB = 1, and express the shaft radius rS as a ratio of 

their radii, and thus partially nondimensionalize the analysis. We 

denote this ratio as rT. 

As described earlier, the socket has a spherical cavity in 

which the ball rests. To accommodate for the shaft, however, the 

ball must have an exposed area corresponding to a cutout portion 

of the socket, which must be a circle with diameter larger than 

that of the shaft to result in any motion. For symmetric ball and 

socket joints (with symmetry defined via a rotation about the 

vertical axis), the maximum cutout would correspond to a 

hemisphere of the ball revealed, as any larger than a hemisphere 

would cause the ball to fall out if it was pulled in the open 

direction. However, this is only the case for rT = 0, as the shaft 

would contact the capturing portion of the socket before reaching 

θ = 90º.  

Moreover, an actual mechanical design requires more than 

an infinitesimal amount of capturing area on the ball, as tensile 

forces tending to pull the ball out could cause enough 

deformation to remove the ball from the only slightly capturing 

socket. Fig 3. shows the relationship between rT, the capture 

overlap length d (defined in fig. 3), and the resulting maximum 

θ achievable. Note that the symmetry means the maximum θ is 

independent of φ.  

Fig. 3 illustrates the limitations of typical symmetric ball 

and socket spherical joints. The available range of motion 

quickly falls even with rather small rT. As a result, designs which 

are asymmetric about the vertical axis (i.e. with contact geometry 

that is a function of φ), one may potentially increase the range of 

motion, though capture overlap length must still be taken into 

account. If a mechanism requires only a long, thin band of 

spherical motion, then one may tailor the capture geometry and 

contact surfaces to be elongated in one direction and narrow in 

the orthogonal direction. This would form a cutout that would 

look much like a slot cut into the socket. Rod-end spherical joints 

typically employ this kind of capture geometry, though they are 

not capable of infinite roll, unless they make use of another R 

joint on the output, much like the distal bearing. 

2.2.2 Contact Force Implications 

As changing the geometry of the capture from a symmetric 

design to an arbitrary shape (as long as there is still some capture 

length), potentially with high aspect ratio, one may then attempt 

to leverage this large workspace in one direction (in a particular 

φ direction) to achieve a large workspace in all directions (for all 

φ). This is the purpose of the proximal bearing: to allow a range 

of θ along a small range of φ to be applied to all φ. With the 

bearing, one could imagine changing the direction of large θ to 

align with the instantaneous direction of motion, i.e. aligning the 

slot with the intended direction of shaft motion. We call this 

alignment “reconfiguration,” and it is formally constituted of a 

rotation of the ball and socket about the z-axis. While 

reconfiguration could likely be achieved through sensing, 

control, and actuation of the first R joint, we endeavor to find a 

completely passive solution. 

During reconfiguration, we note that only the socket and 

potential auxiliary surfaces would be rotating about the z axis. 

The ball and shaft would still be moving in the same direction in 

the global frame that they were moving in before reconfiguration 

occurred. 

To enable passive reconfiguration, we realize that 

reconfiguration need only occur when the shaft is in contact with 

a contact edge and trying to move into that edge. To formalize 

these notions, we define relevant contact quantities. Namely, 

FIGURE 3: (Top) Cutaway diagram of ball and socket with shaft 
demonstrating capture overlap length d and its relationship to θ. 
(Bottom) Maximum allowable polar angle θ as a function of radius ratio 
rT and d. The white area implies that the combinations of rT and d would 
result in no range of motion, i.e. the shaft is too large for the desired 
amount of capture length.  
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these are the contact location p, contact normal vector nc, the 

contact tangent vector tc, and the contact force F. See figs. 4, 5 

for a geometric depiction of these quantities. In the frictionless 

case, F must align exactly with nc. With nonzero friction, F may 

be in the friction cone determined by the coefficient of friction 

between the shaft and contact edge of the socket, nc, and tc. 

To simplify our discussion of the contact mechanics, we will 

project all of the relevant contact quantities into a plane normal 

to the z-axis and always passing through the actual 3D contact 

point. We call this plane the contact plane. While the z 

component of p may vary, all of our designs will generally ensure 

that p lies in one of two z planes, define either by the top of the 

socket or the top of an auxiliary body. We then disregard forces 

in the z direction and moments about the x and y axes, as well at 

the z component of the previously defined vectors, as they have 

little bearing on the reconfiguration mechanics. 

Another simplifying assumption we make is the shaft’s 

cross section, when projected into the contact plane, is always a 

circle with radius rT. While this would introduce larger errors at 

large θ, the near θ = 0 

As the axis of the proximal bearing is in the z-direction, only 

the x and y components of the F and nc, are involved in the 

computation of the torque on the proximal bearing. We call this 

torque MS, as in the planar projection it is simply the moment 

about point S. We can thus derive a condition for 

reconfiguration: 

𝑀𝑆 = 𝑝𝑥𝐹𝑦 − 𝑝𝑦𝐹𝑥 ≠ 0                  (1) 
In the frictionless contact case, this condition encompasses 

the fact that a moment must be generated to cause 

reconfiguration, and due to the reconfiguration corresponding to 

rotation about S, (1) also corresponds to the way the surface must 

move to accommodate the desired shaft motion. This is because 

at points where no moment is created, this also corresponds to 

cases where reconfiguration would instantaneously not allow the 

shaft to move along its desired motion direction. We call any 

such point on the contact edge where this would occur a 

singularity. 

Fig. 5 shows why this is the case. To demonstrate this, we 

must also define a new vector tS, corresponding to the motion of 

the contact edge if reconfiguration were to occur. We call tS the 

circle tangent. This vector is located at p, and is tangent to a 

circle centered at S and passing through p. The direction of this 

tangent vector is dependent on the sign of the moment induced 

by the contact force. A counterclockwise MS would result in tS 

also being a counterclockwise tangent vector with respect to the 

aforementioned circle. 

Assume F = nc (frictionless) and assume WLOG that the 

instantaneous desired shaft motion in the contact plane is also 

along the nc. This means the shaft is trying to move into the 

contact surface of the socket. In fig. 5 top, we see that not only 

would there be no moment to cause reconfiguration, but even if 

there was a moment, the contact edge would not move along the 

direction nc. In contrast, fig. 5 bottom shows a case where 

reconfiguration would indeed be possible as MS ≠ 0, and where 

the induced reconfiguration would allow for the shaft to move 

FIGURE 4: Depictions of the relevant contact geometry, projected into 
a plane normal to the z axis. Note that in the frictionless case, the 
contact force and contact normal must align, but in the case with 
contact friction between the shaft and contact edge, the frictional force 
may be a linear combination of tangent and normal vectors. 
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FIGURE 5: Conditions for reconfiguration to occur. (Top) The contact 
force induces no moment about S, as its line of action passes through 
S. Moreover, the circle tangent and contact tangent align, meaning 
there is no way for the shaft to move into the surface and p is singular. 
(Bottom) The contact force induces a CCW moment about S, and the 
contact tangent tc and a positive component of the circle tangent tS span 
the all potential directions of motion into the surface. The light grey line 
corresponds to the way the contact edge would move post 
reconfiguration. 
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along the direction nc. The condition indicating that 

reconfiguration would allow motion into the surface is 

𝑎1𝑡𝑐 + 𝑎2𝑡𝑆 = 𝑛𝑐 (2) 

𝑎2 ≥ 0   
Because by definition tc is always normal to nc, the only way 

Eq (2) is not satisfied is when tS = tc. This can only occur when 

the line of action of nc passes through S and p is a singularity. 

Thus, Eq (1) and (2) state the same condition in the frictionless 

case. This also shows that a reconfiguring spherical joint with a 

single contact edge cannot be “self-locking,” i.e. it cannot 

produce a moment that would oppose its direction of intended 

motion if there is only a single contact. 

2.2.3 Frictional Issues 

So far, we have assumed that friction between the shaft and 

the contact edge, between the ball and socket, and in the 

proximal bearing are all 0. When any one of these assumptions 

in not met, the mechanics may change slightly. The first two 

conditions can partially be mitigated by use of the distal bearing, 

whereas the third condition imposes a change to Eq. (1). We 

assume a Coulomb friction model in general. 

Firstly, if friction between the shaft and contact edge is high, 

a few implications arise. Firstly, nc and F may no longer align, 

and the constraint would then be that F must lie within a friction 

cone defined by nc and a coefficient of friction. Furthermore, this 

may mean that moments due to frictional force are induced. 

However, one may still determine the contact force F using the 

desired shaft motion if static and the Maximum Dissipation 

Principle [13] when sliding. To avoid considering the intended 

direction of motion, we may instead assume the worst-case 

scenario: if any force within the friction cone does not induce a 

moment, then the socket will not reconfigure, and this contact 

point is a singularity. This is a conservative assumption, but can 

serve as proof that a particular contact edge design could have an 

entire singular zone. 

To mitigate this condition, if we were to allow the shaft to 

roll along the contact surface, then we would not need to consider 

sliding friction. We can do this by decoupling the roll of the shaft 

from the roll of the output, which is the purpose of the distal 

bearing. In this case, the ball is rolling relative to the socket, even 

if reconfiguration is not occurring. 

On the other hand, if the contact friction is low, but the 

friction between the ball and socket is high, this would mean 

reconfiguration would have to overcome the friction between the 

ball and socket, as the ball stays relatively fixed in roll during 

reconfiguration. Again, the distal bearing can alleviate this issue 

by allowing the ball to roll very little or not at all within the 

socket, and then allow the shaft to slide over the contact edges. 

The output can then still be independent of this fixed and force 

dependent roll. 

However, if both the contact friction and friction due to the 

ball are high, one would need to place another bearing on the 

shaft to interact with the contact edge. That bearing would then 

roll along the contact edge or reduce friction along the contact 

edge while allowing the ball and shaft to roll together with the 

socket. The distal bearing would then still decouple this roll from 

roll of the output. However, it may be difficult to fit a bearing on 

the shaft between edges, as this exacerbates the radius effects 

shown in fig. 3. 

Finally, friction in the proximal bearing subtly affects 

reconfiguration. Instead of requiring MS to be nonzero in Eq (1), 

we would instead require that its magnitude be greater than the 

bearing friction MB.  

Depending on how MB is modeled, different conditions of 

reconfiguration may arise. If we assume that MB is a constant, 

regardless of the load, then the MS simply needs to be greater 

than that value. This would require the geometry to be fully 

dimensionalized and actual value of the contact force to be 

determinable or known apriori to compute if reconfiguration 

would occur. This is because lengths and forces actual values 

with units must be known to compare them to torques, i.e. there 

is no way to dimensionlessly compare torques and moments. 

This case is representative of a ball bearing with roller elements 

used as the proximal bearing. 

One may also consider the effect of choosing a plain bearing 

or bushing as the proximal bearing. These might be used over a 

bearing for many reasons, including size, cost, and complexity 

requirements. While some bushings are lubricated and behave 

similarly to bearings, at low forces, they may behave like 

surfaces with low coefficients of friction, admitting a Coulomb 

friction model. Using this kind of model for MB leads to quite an 

interesting geometric interpretation. Firstly, the contact force F 

becomes proportional to the moment MB, as linearly increasing 

the contact force also linearly increases force through the 

bearing, and thus also the moment MB. This means we do not 

have to consider the magnitude of either the contact force or 

induced frictional moment, and can thus nondimensionalize the 

problem again. We consider all contact forces to be unit forces, 

and instead of using MB, we can consider the lever arm of F to 

be the quantity of interest. We then call the minimum lever arm 

that could cause reconfiguration rm. Qualitatively, the condition 

for reconfiguration becomes: if a contact force F or its line of 

action pass through a circle of radius rm centered at S, then 

reconfiguration will not occur. We define the actual contact force 

lever arm as radius rf. If we assume the frictionless contact case 

again, this becomes: 

𝑟𝑓 =  |𝑝𝑥𝑛𝑦 − 𝑝𝑦𝑛𝑥|
2

≥ 𝑟𝑚 > 0 (3) 

Eq (2) is fully contained within this constraint as long as the 

radius rm is nonzero. 

To keep the problem most general, we address this case and 

motivate the reason for our design. If a contact edge is 

continuous and has two sets of contact points, one set which 

causes a positive MS and the other set a negative MS, then there 

must be at least one singularity on the surface. In addition, every 

point between regions where MS has different sign is a 

singularity, and will not cause reconfiguration. If one applies Eq. 

(3) as the condition for reconfiguration, then there exist singular 

zones where no reconfiguration will occur.  

We address this issue by introducing mobile auxiliary edges, 

which are connected to the socket but may move in some 

prescribed manner relative to the socket. Contact may transition 
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from one contact edge to another, which thus changes the 

direction of nc and may be able to then induce a moment. 

3. MULTIPLE CONTACT EDGE DESIGN
We now introduce our multiple contact edge design (fig. 6).

The operating principle behind multiple contact edges is for the 

shaft to initially be in contact with a contact edge, preferably a 

contact edge belonging to an auxiliary body. If the moment 

induced by this contact is enough to cause reconfiguration, then 

the joint reconfigures and the auxiliary body stays fixed w.r.t. the 

socket. However, if the moment is not great enough, the auxiliary 

body will then move relative to the socket in a prescribed 

manner, either constrained by kinematics or elastic elements. 

This motion can generally change the contact location p and 

normal nc. If the shaft remains in contact with the contact edge 

on the auxiliary body and the reconfiguration condition is 

satisfied, then reconfiguration will occur. 

If reconfiguration does not occur while the shaft is 

displacing the auxiliary body, eventually, another contact will 

appear between the shaft and a different auxiliary body or the 

socket’s contact edge. If the “stiffness” of the new contact edge 

is higher than that of the previous one, increasing the contact 

force will generally tend to load the new contact edge more than 

the old one, causing the induced moment to change. 

If reconfiguration did not occur during the initial contact 

with the auxiliary body’s contact edge, we may say that contact 

occurred within the auxiliary body’s singular zone. If, while in 

contact with the first auxiliary body, contact occurs on another 

contact edge, but outside of the new edge’s singular zone, then 

reconfiguration will occur.  

To narrow down the space of potential designs, we establish 

a number of criteria for the auxiliary bodies and contact edges: 

1) We use a discrete rotational symmetry about the z axis

for all contact edges of degree 2. This means that

opposite sides are flipped mirror images of each other,

and that there are only two sides

2) We only use two contact edges per side of the joint, one

corresponding to the mobile auxiliary surface which

moves relative to the socket, and one corresponding to 

the contact edge of the socket. 

3) The auxiliary bodies rest on top of the socket in the z

direction, and are planar regions extruded in the z

direction. The tops of the sockets are also flat.

4) Any contact edge must be continuous and have a radius

of curvature larger than the shaft radius. This prevents

multiple contacts on a single contact edge, thus the

contact force and resulting moment can be determined

easily.

5) The auxiliary bodies must move in a planar fashion atop

the sockets. Moreover, they must move on a single DOF

trajectory in SE(2), the space of rigid body motions in a

plane.

6) The auxiliary bodies are “restored” to their original

positions when they are unloaded through some elastic

mechanism (springs, bands, etc.). This imparts the

contact edge on the auxiliary bodies a prescribed

stiffness.

7) Assume the socket is infinitely stiff.

These assumptions facilitate the design of auxiliary bodies 

and the way they move, but may exclude more optimal designs. 

For example, criteria 5 results in predictable motion, but if the 

contact edge on the auxiliary body was allowed to, for instance, 

pivot about different points depending on contact location, this 

may result in a design where singular zones do not meet. 

Note that criteria 4 does not imply that there may not be 

multiple simultaneous contact locations on different contact 

edges, just that a single edge may not have multiple contact 

locations. 

In our designs, if the shaft is not near a maximum of the 

range of motion, we enforce that contact first begin on an 

auxiliary body. As the auxiliary body is deflected (if the joint did 

not reconfigure), eventually, the socket contact edge would be 

contacted as well. Because the contact force on the auxiliary 

body is defined by a spring potential (i.e. a kinematic 

relationship), then the contact force on the auxiliary body’s 

FIGURE 6. Operation of a multiple contact edge design. The blue pieces correspond to the socket, which can rotate about a bearing hidden in the 
grey base, and the green is the auxiliary body. Springs and additional hardware are suppressed for clarity. A. Top down view of multiple contact 
edge design. B. The shaft initially contacts the auxiliary surface, but the moment is not yet high enough to cause reconfiguration (contact point is in 
the singular zone). C. The shaft continues to move, further displacing the auxiliary body via rotation about its pivot pin. D. The moment becomes 
high enough and the socket rotates to clear a path for the shaft, allowing it to descend in the desired direction. The auxiliary body is restored to its 
initial position relative to the socket. 

A. B. C. D.
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contact edge will not increase. However, the force on the 

socket’s contact edge could increase even without any motion or 

reconfiguration due to its infinite stiffness. This situation could 

arise if the mechanism containing this spherical joint was subject 

to a position controller with Integral-like terms. In short, this 

implies that in the limiting case of large contact force after the 

auxiliary body “bottomed out,” the resulting moment MS, or 

lever arm rf, appears to be completely a function of the geometry 

of the socket’s contact edge, not the auxiliary body’s contact 

edge. 

We further only consider auxiliary bodies whose 

displacement profiles correspond to rotations about a fixed point, 

or deformable bodies that approximate rotation about a fixed 

point. We examine this particular class of bodies because they 

can be implemented quite compactly and with low additional 

friction in their motion, and are simple to return to their initial 

positions. 

4. EVALUATION
4.1 Metric Description 

To evaluate the efficacy of a potential design satisfying the 

criteria list in Section 3, we first develop a metric as to how much 

a particular design may alter effective lever arm rf, if 

reconfiguration were prevented by an external locking method. 

We call this metric the “arm increase” g. Specifically, g is 

defined as the maximum increase in the lever arm rf that would 

be achieved if the shaft desired motions were straight lines. 

These straight lines can be lines purely in the y direction, i.e. 

across the slot, (lines of constant x). We call these lines actuated 

lines, and could generally be in any direction. One such actuation 

line is the black dashed vertical line seen in fig. 7. Other 

actuation lines would be parallel to this one. 

An immobile contact edge like the one on the socket will 

generally have only one contact edge per actuation line. 

However, as the auxiliary surface may continuously deflect, 

there are a series of potential contact points for each actuated line 

(Fig 7). As a result, we compute g as the maximum moment arm 

that occurs on a given actuated line, whether it occurs on the 

auxiliary body’s or the socket’s contact edge. 

Fig. 8. Shows a plot from which we may infer g. Namely, 

we see the blue line which shows the maximal moment arm 

encountered along an actuation line. The red curve corresponds 

to the moment arm imparted by the socket alone. The difference 

between the two of these curves is g (as a function of the x 

coordinate). One may average g across all actuation lines to 

determine an average score for the entire design.  

As a further heuristic check, one may observe the induced 

moment as a function of contact location (fig. 9). The dark blue 

FIGURE 7: Simulation of actuation lines. The blue surface 
corresponds to the auxiliary surface’s contact edge, which is able to 
pivot about the blue point. The solid red line is the socket’s contact 
edge. The red point corresponds to the intersection point between 
the shaft and the contact edge. Note the pale blue line and pale red 
dot correspond to the aux. body’s contact edge and the contact point 
before the aux. body deflected. Note that this pivot and geometry 
correspond to the joint design shown in fig. 6. 

FIGURE 8: Socket contact edge rf and max contact force along 
actuation line. The difference between the two lines is g. The sharp 
increase in the blue curve is due to the contact points cresting the 
peak seen in fig. 7. 

FIGURE 9. The moment arm rf as a function of contact point. The unit 
circle is shown to indicate the ball, whereas the smaller circle indicates 
the shaft size. The red line corresponds to the contact edge of the socket, 
which is fixed and thus immobile and the limit of motion in the y direction 
The dark blue curve corresponds to the path of the singularity on the 
contact edge as the auxiliary body deflects about its pivot point located 
at (-1.5, -.0.62). As the singularity of the socket is at (0, -0.4), if rm is low 
enough, this design will be able to reconfigure to maximum θ in all 
directions. 
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curve corresponds to the smallest rf achieved, which is 0. Note, 

that for a given arm rm, we may determine if a mechanism will 

not be able to actuate if the singularity zone of the socket and the 

swept singularity zone of the auxiliary body contact edge 

intersect. This would correspond to pushing the auxiliary body 

while in its singular zone, and then bottoming out in the sockets 

singular zone. 

4.2 Design Comparison 
For purposes of illustration, we show the differences in 

performance between a few different types of auxiliary body 

contact edge designs. We still restrict the designs to those where 

the auxiliary body rotates about a fixed point, and for sake of 

comparison, we keep the location of the pivot point fixed. 

Moreover, to isolate the benefit of auxiliary bodies, we restrict 

the socket’s contact edge to a straight line. 

Fig. 10 shows a comparison between a flat contact edge and 

shifted peaks. The peaks are shifted versions of one another, with 

the peaks either 10% (0.1 in the unitless coordinate system) of 

the total ball diameter to the left of center, directly below center, 

or 10% to the right of center. Given the location of the pivot point 

(significantly farther to the left), we firstly see that the flat edge 

does little to move the singularity away from the socket’s 

singularity (at x =0). This is because the normal of the surface 

may only change by at most the rotation angle about the pivot, 

which is a small angle – only approximately 15º at its maximum. 

Moreover, the smoothness of the transition shows that any flat 

contact edge’s rf profile cannot shift the moment very much even 

with large rotations. 

A peak design results in quite interesting behavior. The 

peak, which is actually rounded and not a discontinuity, leads to 

the normal direction changing very quickly as the contact moves 

over the peak. This in turn results in the moment very quickly 

changing and even flipping sign on different sides of the peak. 

In fig. 10B, we see the effect of shifting the peak to the left. 

This design is not optimal for a few reasons. Firstly, its singular 

zone is quite near the socket’s singular zone, so even when the 

auxiliary body would bottom out, there would still be very little 

moment. Moreover, when slightly to the left of the y axis, the 

auxiliary body’s contact edge would result in a clockwise 

moment, but if contact were to occur on the socket instead, the 

moment induced would be counterclockwise. While the general 

case will be that the auxiliary body, when bottomed out, and the 

socket will have moments of different directions, the fact that 

both have their smallest moments so close to each other and are 

of differing sign could tend to make a mechanism “lock  up” near 

the bottomed out position, even if the friction was quite low. 

Fig. 10C shifts the peak directly under the contact point. 

While this appears to have similar issues as the peak in 10B, the 

fact that the moment induced by the auxiliary body’s contact 

edge is much higher than the socket’s near the socket singularity 

(shown by the blue-green color near (0, -0.4)) means that it 

would likely be difficult to reach the point where the 

aforementioned locking condition could occur. 

Fig. 10D shows the peak shifted 10% to the right of center. 

While the singular curve of the auxiliary body is not far from the 

singular point of the socket, we note that the induced moment 

above the socket’s singular point is now quite low. This type of 

design would likely work quite well in the case of low bearing 

and ball friction for reasons described in Section 2.2.2. 

5. PROTYPE EVALUATION
As a proof of concept, a prototype of the joint design in fig.

10D using rigid auxiliary bodies (restored by rubber bands) and 

a prototype using deformable auxiliary bodies were 

manufactured. We call these concepts 1 and concept 2, 

respectively. Both concepts may be seen in fig 11. With both 

concepts, if the shaft is far from the vertical position, contacting 

the socket causes reconfiguration as the moment generated is 

quite high, and thus we are mostly concerned with the capacity 

for reconfiguration when the shaft is near vertical. 

Figures 11A and 11B show concept 1. The articular bodies 

pivot about a pin, in the top of the socket, and are restored by the 

green and purple rubber bands, which have ends fixed to the 

socket (wrapped about a separate pin).  

FIGURE 10. Comparison of rf of different auxiliary body contact edges. The contact edge in the undeflected case corresponds to the outermost edge 
of the colored region, and as it is deflected, it sweeps out the rest of the colored region. The dark blue regions correspond to the singularity points / 
zones. A. Flat contact edge design. B. Peak design shifted left 10% (0.1). C. Peak design centered. D. Peak design shifted to the right 10%. Note that 
the pivot point of the deflecting surface is the same across all the displayed designs, but the singularity position on the auxiliary body’s contact edge 
is not simply an arc centered about this point. 

A. B. C. D.

Copyright © 2020 ASMEV010T10A035-8

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/83990/V010T10A035/6586857/v010t10a035-detc2020-22753.pdf by Yale U

niversity user on 29 January 2024



While actuating the joint using the distal bearing, 

reconfiguration occurs easily, whereas if we directly actuate the 

shaft and prevent free rolling, the joint can become stuck. This 

indicates there is a decent amount of friction between the ball 

and socket, which is to be expected of a 3D printed cavity. 

Fig 11C shows a joint using deformable auxiliary bodies, 

where the deformation roughly approximates rotation about a 

fixed point. The design was found through heuristically 

optimizing the contact surface using geometric considerations, 

though an exhaustive discussion would be beyond the length 

constraints of this manuscript. We chose to use a deformable 

body design because placing the pivot point in the optimized 

location would be difficult given the material and strength 

properties.  

Much of our analysis was nondimensionalized and only 

needed to consider unit forces. This made studying the effect of 

stiffness of the auxiliary body impossible, as there was no true 

force magnitude to relate to the displacement. To then examine 

the effect of stiffness, we increase the thickness of one of the 

auxiliary bodies (twice the thickness of its counterpart, likely 

twice the stiffness).  When using the distal bearing, contact on 

either side of the joint leads to reconfiguration. When directly 

pinching the shaft, however, the thinner auxiliary body can 

bottom out and reconfiguration does not occur. The thicker body 

still manages to reconfigure when the shaft is directly actuated, 

however. This shows that while our analysis disregarded force 

magnitude, this approximation may sometimes fail if the forces 

involved are not high enough. 

We note that the size of this joint is approximately 1 inch 

(~2.5 cm) on any side, leading to quite a compact joint. This kind 

of joint design may also easily be scaled in size or shrunk quite 

easily. The proximal and distal bearings can be incorporated into 

the base or platform structures if this type of joint was to be used 

in a parallel mechanism. The bearing friction and contact edge 

design leads to singularities being unreachable.  

6. CONCLUSION
In this work, we present the design of a high range of motion

ball and socket spherical joint using multiple contact edges. We 

introduce redundancy in the joint to allow for reconfiguration, 

and auxiliary bodies which may be deflected to shift the contact 

normal. We conduct a kinematic analysis to determine if a 

particular design can cause reconfiguration, and present 

prototypes of two exemplar designs. Future work will consider 

FIGURE 11. Prototype images. (A, Left) Concept 1, demonstrating its range of motion. Note the bronze bushing as an example distal bearing on 
the output shaft. (A, Right) A side view of concept 1 showing the proximal bearing located between the two blocks. (B, Left) Concept 1 auxiliary 
body maximally deflected, making initial contact with the socket’s contact edge. Load on the shaft increases, leading to (B, Right), where the joint 
reconfigures, allowing the shaft to continue to move. (C, Left) Concept 2, with the deformable auxiliary bodies in blue. The left corresponds to an 
initial contact condition near the singularity of the auxiliary body. After increasing the force slightly, the body deforms, changing the contact normal, 
and then reconfigures, shown in C, right. 

A.

B. C.
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ways in which to algorithmically optimize the contact geometry 

to generate maximally reconfiguring spherical joints. 

Additionally, experiments validating the intended function of the 

joints will be carried out, and the suitability of this joint in 

dynamic or high-speed situation will be assessed. 
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